# PTN36221A

# Single-channel SuperSpeed USB 3.0 redriver Rev. 2 — 9 September 2014

Product data sheet

#### **General description** 1.

The PTN36221A is a small, low power, high performance SuperSpeed USB 3.0 redriver that enhances signal quality by performing receive equalization on the deteriorated input signal followed by transmit de-emphasis maximizing system link performance. With its superior differential signal conditioning and enhancement capability, the device delivers significant flexibility and performance scaling for various systems with different PCB trace and cable channel conditions and still benefit from optimum power consumption. PTN36221A is a single-channel device that supports data signaling rate of 5 Gbit/s.

The PTN36221A has built-in advanced power management capability that enables significant power saving under various different USB 3.0 Low-power modes (U2/U3). The device performs these actions without host software intervention and conserves power.

The PTN36221A is powered by a 1.8 V supply. It is available in X2QFN12 1.6 mm  $\times$  1.6 mm  $\times$  0.35 mm package with 0.4 mm pitch.

#### 2. Features and benefits

- Supports single-channel USB 3.0 redriver at 5 Gbit/s
- Compliant to SuperSpeed USB 3.0 standard
- Supports Low Frequency Periodic Signaling (LFPS) and is USB3.0 compatible
- Adjustable receive equalization, transmit de-emphasis and output swing functions
  - Selectable receive equalization to recover from InterSymbol Interference (ISI) and high-frequency losses
  - Selectable transmit de-emphasis and output swing delivers pre-compensation suited to channel conditions
  - Selectable output swing adjustment
- Integrated termination resistors provide impedance matching on both transmit and receive paths
- Automatic receiver termination detection
- Low power management scheme (When V<sub>DD</sub> = 1.8 V, V<sub>os</sub> = 1000 mV)
  - 97 mW active power
  - 5 mW in U2/U3 state
  - 1 mW with no connection
  - 18 μW in Deep power saving state
- Support hot plug with automatic receiver detect
- Power supply: 1.8 V ± 5 %
- ESD 8 kV HBM, 1 kV CDM for data path
- Operating temperature range: -40 °C to +85 °C



## Single-channel SuperSpeed USB 3.0 redriver

■ Package offered: X2QFN12 package 1.6 mm × 1.6 mm × 0.35 mm, 0.4 mm pitch

## 3. Applications

- Smart phones, tablets
- Active cables
- Notebook/netbook/nettop platforms
- Docking stations
- Desktop and AIO platforms
- Server and storage platforms
- USB 3.0 peripherals such as consumer/storage devices, printers, or USB 3.0 capable hubs/repeaters

## 4. System context diagrams

The system context diagrams in Figure 1 illustrate PTN36221A usage.

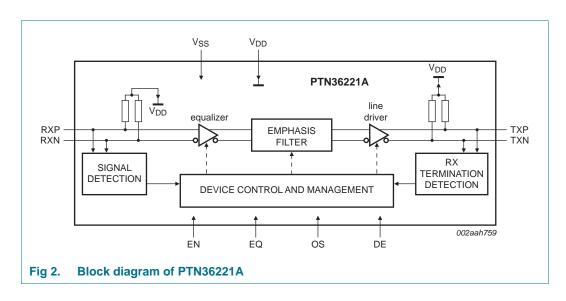


#### Single-channel SuperSpeed USB 3.0 redriver

## 5. Ordering information

Table 1. Ordering information

| Type number | Topside        | Package |                                                                                                                 |           |  |
|-------------|----------------|---------|-----------------------------------------------------------------------------------------------------------------|-----------|--|
|             | mark           | Name    | Description                                                                                                     | Version   |  |
| PTN36221AHX | 1A*[ <u>1]</u> | X2QFN12 | plastic, super thin quad flat package; no leads; 12 terminals; body $1.6 \times 1.6 \times 0.35 \text{ mm}^{2}$ | SOT1355-1 |  |

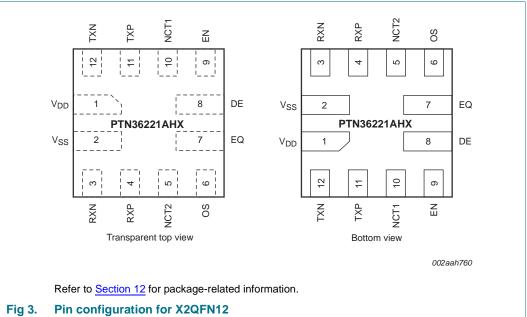

- [1] Where \* = week of the month.
- [2] Maximum package height = 0.4 mm.

#### 5.1 Ordering options

Table 2. Ordering options

| Type number | Orderable part number | Package | Packing method                    | Minimum order quantity | Temperature                                                         |
|-------------|-----------------------|---------|-----------------------------------|------------------------|---------------------------------------------------------------------|
| PTN36221AHX | PTN36221AHXHP         | X2QFN12 | Reel 13" Q2/T3 *Standard mark SMD | 10000                  | $T_{amb} = -40  ^{\circ}\text{C} \text{ to } +85  ^{\circ}\text{C}$ |
|             | PTN36221AHXZ          | X2QFN12 | Reel 7" Q2/T3 *Standard mark      | 5000                   | $T_{amb} = -40  ^{\circ}\text{C} \text{ to } +85  ^{\circ}\text{C}$ |

## 6. Block diagram




PTN36221A **NXP Semiconductors** 

### Single-channel SuperSpeed USB 3.0 redriver

## **Pinning information**

### 7.1 Pinning



## 7.2 Pin description

Table 3. Pin description

| Symbol    | Pin       | Туре                                   | Description                                                                                                                                           |
|-----------|-----------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | ed differ | ential signals                         |                                                                                                                                                       |
| RXP       | 4         | self-biasing<br>differential<br>input  | Differential signal from SuperSpeed USB 3.0 transmitter. RXP makes a differential pair with RXN. The input to this pin must be AC-coupled externally. |
| RXN       | 3         | self-biasing<br>differential<br>input  | Differential signal from SuperSpeed USB 3.0 transmitter. RXN makes a differential pair with RXP. The input to this pin must be AC-coupled externally. |
| TXP       | 11        | self-biasing<br>differential<br>output | Differential signal to SuperSpeed USB 3.0 receiver.  TXP makes a differential pair with TXN. The output of this pin must be AC-coupled externally.    |
| TXN       | 12        | self-biasing<br>differential<br>output | Differential signal to SuperSpeed USB 3.0 receiver.  TXN makes a differential pair with TXP. The output of this pin must be AC-coupled externally.    |
| Control a | nd confi  | guration signa                         | ls                                                                                                                                                    |
| NCT1      | 10        | CMOS input                             | Test pin 1. Leave open or connect to ground for functional mode.                                                                                      |
| NCT2      | 5         | analog input                           | Test pin 2. Leave open or connect to ground for functional mode.                                                                                      |
| EN        | 9         | CMOS input                             | Chip enable input (active HIGH); internal 260 $k\Omega$ pull-up resistor.                                                                             |

#### Single-channel SuperSpeed USB 3.0 redriver

 Table 3.
 Pin description ...continued

| Symbol          | Pin               | Туре          | Description                                                           |  |  |  |  |
|-----------------|-------------------|---------------|-----------------------------------------------------------------------|--|--|--|--|
| DE              | 8                 | Trinary input | Programmable output de-emphasis level setting for the output channel. |  |  |  |  |
|                 |                   |               | [DE] =                                                                |  |  |  |  |
|                 |                   |               | LOW: 0 dB                                                             |  |  |  |  |
|                 |                   |               | open: -3.5 dB (default)                                               |  |  |  |  |
|                 |                   |               | HIGH: -6 dB                                                           |  |  |  |  |
| EQ              | 7                 | Trinary input | Equalizer control for the input channel.                              |  |  |  |  |
|                 |                   |               | [EQ] =                                                                |  |  |  |  |
|                 |                   |               | LOW: 3 dB                                                             |  |  |  |  |
|                 |                   |               | open: 6 dB (default)                                                  |  |  |  |  |
|                 |                   |               | HIGH: 9 dB                                                            |  |  |  |  |
| os              | 6                 | Trinary input | Differential output swing control.                                    |  |  |  |  |
|                 |                   |               | [OS] =                                                                |  |  |  |  |
|                 |                   |               | LOW: 900 mV                                                           |  |  |  |  |
|                 |                   |               | open: 1000 mV (default)                                               |  |  |  |  |
|                 |                   |               | HIGH: 1100 mV                                                         |  |  |  |  |
| Supply vo       | ltage             |               |                                                                       |  |  |  |  |
| $V_{DD}$        | 1                 | Power         | 1.8 V supply.                                                         |  |  |  |  |
| Ground co       | Ground connection |               |                                                                       |  |  |  |  |
| V <sub>SS</sub> | 2                 | Ground        | Ground supply (0 V).                                                  |  |  |  |  |

## 8. Functional description

Refer to Figure 2 "Block diagram of PTN36221A".

PTN36221A is a single-channel SuperSpeed USB 3.0 redriver meant to be used for signal integrity enhancement on various platforms — smart phone, tablet, active cable, notebooks, docking station, desktop, AIO, peripheral devices, etc. With its high fidelity differential signal conditioning capability and wide configurability, this chip is flexible enough for use under a variety of system environments.

The following sections describe the individual block functions and capabilities of the device in more detail.

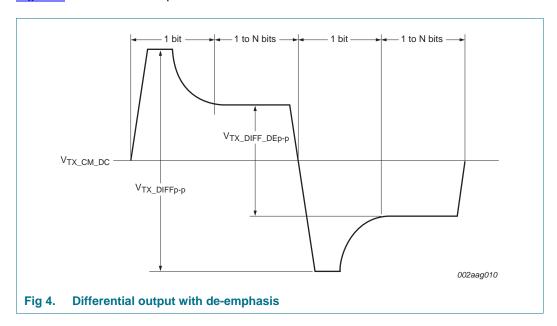
#### 8.1 Receive equalization

On the high-speed signal path, the device performs receive equalization providing frequency selective gain to configuration pin EQ setting. <u>Table 4</u> lists the configuration options available in this device.

Table 4. EQ configuration options

| EQ           | perSpeed USB 3.0 signal equalization gain at 2.5 GHz |  |  |  |
|--------------|------------------------------------------------------|--|--|--|
| LOW (0 V)    | 3 dB                                                 |  |  |  |
| Open         | 6 dB (default)                                       |  |  |  |
| HIGH (1.8 V) | 9 dB                                                 |  |  |  |

#### Single-channel SuperSpeed USB 3.0 redriver


#### 8.2 Transmit de-emphasis

The PTN36221A device enhances High Frequency (HF) signal content further by performing de-emphasis on the high-speed signals. In addition, the device provides flat frequency gain by boosting output signal. Both flat and frequency selective gains prepare the system to cover up for losses further down the link. <u>Table 5</u> lists de-emphasis configuration options of PTN36221A.

Table 5. DE configuration options

| DE           | SuperSpeed USB 3.0 signal de-emphasis gain |  |  |  |
|--------------|--------------------------------------------|--|--|--|
| LOW (0 V)    | 0 dB                                       |  |  |  |
| Open         | -3.5 dB (default)                          |  |  |  |
| HIGH (1.8 V0 | −6 dB                                      |  |  |  |

Figure 4 illustrates de-emphasis as a function of time.



#### 8.3 Device states and power management

PTN36221A has implemented an advanced power management scheme that operates in tune with USB 3.0 bus electrical condition. Though the device does not decode USB power management commands (related to USB 3.0 U1/U2/U3 transitions) exchanged between USB 3.0 host and peripheral/device, it relies on bus electrical conditions to decide to be in one of the following states:

- Active state wherein device is fully operational, USB data is transported. In this state, USB connection exists, but there is no need for Receive Termination detection.
- Power-saving states:
  - U2/U3 state
  - No connection state
- Deep power-saving state: When EN is LOW, this chip is in shut-down state.

The Receive Termination Detection circuitry is implemented as part of a transmitter and detect whether a load device with equivalent DC impedance  $Z_{RX\ DC}$  is present.

PTN36221A

#### Single-channel SuperSpeed USB 3.0 redriver

## 9. Limiting values

#### Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol           | Parameter                       | Conditions                  | Min  | Max                   | Unit |
|------------------|---------------------------------|-----------------------------|------|-----------------------|------|
| $V_{DD}$         | supply voltage                  | [1]                         | -0.3 | +2.5                  | V    |
| VI               | input voltage                   | [1]                         | -0.3 | V <sub>DD</sub> + 0.5 | V    |
| T <sub>stg</sub> | storage temperature             |                             | -65  | +150                  | °C   |
| V <sub>ESD</sub> | electrostatic discharge voltage | HBM for high-speed pins [2] | -    | 8000                  | V    |
|                  |                                 | HBM for control pins [2]    | -    | 4000                  | V    |
|                  |                                 | CDM for high-speed pins [3] | -    | 1000                  | V    |
|                  |                                 | CDM for control pins [3]    | -    | 500                   | V    |

<sup>[1]</sup> All voltage values (except differential voltages) are with respect to network ground terminal.

## 10. Recommended operating conditions

#### Table 7. Operating conditions

| Symbol           | Parameter           | Conditions                                                      | Min  | Тур      | Max                   | Unit |
|------------------|---------------------|-----------------------------------------------------------------|------|----------|-----------------------|------|
| $V_{DD}$         | supply voltage      | 1.8 V supply option                                             | 1.71 | 1.8      | 1.89                  | V    |
| VI               | input voltage       | control and configuration pins (for example, EQ, DE, OS and EN) | -0.3 | $V_{DD}$ | V <sub>DD</sub> + 0.3 | V    |
| T <sub>amb</sub> | ambient temperature | operating in free air                                           | -40  | -        | +85                   | °C   |

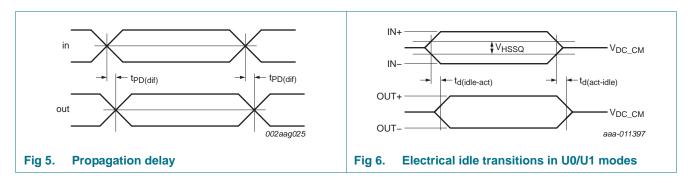
<sup>[2]</sup> Human Body Model: ANSI/ESDA/JEDEC JDS-001-2012 (Revision of ANSI/ESDA/JEDEC JS-001-2011), ESDA/JEDEC Joint standard for ESD sensitivity testing, Human Body Model - Component level; Electrostatic Discharge Association, Rome, NY, USA; JEDEC Solid State Technology Association, Arlington, VA, USA.

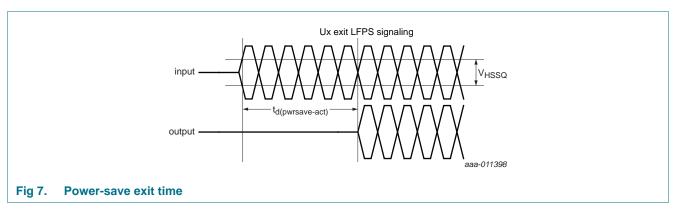
<sup>[3]</sup> Charged Device Model; JESD22-C101E December 2009 (Revision of JESD220C101D, October 2008), standard for ESD sensitivity testing, Charged Device Model - Component level; JEDEC Solid State Technology Association, Arlington, VA, USA.

#### Single-channel SuperSpeed USB 3.0 redriver

## 11. Characteristics

#### 11.1 Device characteristics


 Table 8.
 Device characteristics


 $V_{DD}$  = 1.8 V  $\pm$  5 %;  $T_{amb}$  = -40 °C to +85 °C, unless otherwise specified.

| Symbol                      | Parameter                                   | Conditions                                                                                                                                                           | Min | Тур   | Max                | Unit |
|-----------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--------------------|------|
| t <sub>startup</sub>        | start-up time                               | between supply voltage within operating range to specified operating characteristics (90 % of V <sub>DD</sub> ) until first automatic receiver termination detection | -   | -     | 6                  | ms   |
| t <sub>s(HL)</sub>          | HIGH to LOW settling time                   | enable to disable; power-down time;<br>EN HIGH → LOW change to deep power-saving<br>state; device is supplied with valid supply voltage                              |     | -     | 1                  | ms   |
| t <sub>s(LH)</sub>          | LOW to HIGH settling time                   | disable to enable; start-up time;<br>EN LOW → HIGH change to specified operating<br>characteristics; device is supplied with valid supply<br>voltage                 |     | -     | 6                  | ms   |
| t <sub>rcfg</sub>           | reconfiguration time                        | any configuration pin change (from one setting to another setting) to specified operating characteristics; device is supplied with valid supply voltage              | -   | -     | 115                | ms   |
| t <sub>PD(dif)</sub>        | differential propagation delay              | between 50 % level at input and output; see Figure 5                                                                                                                 | -   | -     | 0.5                | ns   |
| t <sub>idle</sub>           | idle time                                   | default wait time to wait before getting into Power-saving state                                                                                                     | -   | 300   | 400                | ms   |
| t <sub>d(pwrsave-act)</sub> | delay time from power-save to active        | time for exiting from Power-saving state and get into Active state; see Figure 7                                                                                     | -   | 0.1   | 115 <sup>[1]</sup> | μЅ   |
| t <sub>d(act-idle)</sub>    | delay time from active to idle              | reaction time for squelch detection circuit and transmitter output buffer; see Figure 6                                                                              | -   | 9     | 14                 | ns   |
| t <sub>d(idle-act)</sub>    | delay time from idle to active              | reaction time for squelch detection circuit and transmitter output buffer; see Figure 6                                                                              | -   | 9     | 14                 | ns   |
| I <sub>DD</sub>             | supply current                              | Active state; Tx de-emphasis = -3.5 dB;<br>Rx equalization gain = 6 dB;<br>Tx output signal swing (peak-to-peak) = 1000 mV                                           | -   | 57    | -                  | mA   |
|                             |                                             | U2/U3 Power-saving state                                                                                                                                             | -   | 2.8   |                    | mA   |
|                             |                                             | no USB connection state                                                                                                                                              | -   | 0.4   |                    | mA   |
|                             |                                             | Deep power-saving state; EN = LOW                                                                                                                                    | -   | 10    |                    | μА   |
| $R_{th(j-a)}$               | thermal resistance from junction to ambient | JEDEC still air test environment                                                                                                                                     | -   | 138.5 | -                  | °C/W |

<sup>[1]</sup> When special U2/U3 Power-saving mode is ON.

#### Single-channel SuperSpeed USB 3.0 redriver



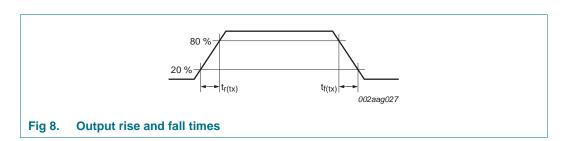


#### 11.2 Receiver AC/DC characteristics

Table 9. Receiver AC/DC characteristics

 $V_{DD}$  = 1.8 V  $\pm$  5 %;  $T_{amb}$  = -40 °C to +85 °C, unless otherwise specified.

| Symbol                  | Parameter                                                                      | Conditions                      | Min | Тур | Max  | Unit |
|-------------------------|--------------------------------------------------------------------------------|---------------------------------|-----|-----|------|------|
| Z <sub>RX_DC</sub>      | receiver DC common-mode impedance                                              |                                 | 18  | -   | 30   | Ω    |
| Z <sub>RX_DIFF_DC</sub> | DC differential impedance                                                      | RX pair                         | 72  | -   | 120  | Ω    |
| Z <sub>IH</sub>         | HIGH-level input impedance                                                     | DC input; common-mode           | 25  | -   | -    | kΩ   |
| V <sub>RX_DIFFp-p</sub> | differential input peak-to-peak voltage                                        | receiver                        | 100 | -   | 1200 | mV   |
| V <sub>RX_DC_CM</sub>   | RX DC common mode voltage                                                      |                                 | -   | 1.8 | -    | V    |
| V <sub>RX_CM_AC_P</sub> | RX AC common-mode voltage                                                      | peak                            | -   | -   | 150  | mV   |
| $V_{th(i)}$             | input threshold voltage                                                        | differential peak-to-peak value | 100 | -   | -    | mV   |
| V <sub>HSSQ</sub>       | high-speed squelch detection threshold voltage (differential signal amplitude) | differential peak-to-peak value | -   | 100 | -    | mV   |


#### Single-channel SuperSpeed USB 3.0 redriver

#### 11.3 Transmitter AC/DC characteristics

Table 10. Transmitter AC/DC characteristics

 $V_{DD}$  = 1.8 V  $\pm$  5 %;  $T_{amb}$  = -40 °C to +85 °C, unless otherwise specified.

| Symbol                         | Parameter                                                    | Conditions                                                         | Min  | Тур  | Max      | Unit |
|--------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|------|------|----------|------|
| Z <sub>TX_DC</sub>             | transmitter DC common-mode impedance                         |                                                                    | 18   | -    | 30       | Ω    |
| Z <sub>TX_DIFF_DC</sub>        | DC differential impedance                                    | TX pair                                                            | 72   | -    | 120      | Ω    |
| V <sub>TX_DIFFp-p</sub>        | differential peak-to-peak                                    | $R_L = 100 \Omega$                                                 |      |      |          |      |
|                                | output voltage                                               | OS = open                                                          | 900  | 1000 | 1100     | mV   |
|                                |                                                              | OS = HIGH                                                          | 1000 | 1100 | 1200     | mV   |
|                                |                                                              | OS = LOW                                                           | 800  | 900  | 1000     | mV   |
| V <sub>TX_DC_CM</sub>          | transmitter DC common-mode voltage                           |                                                                    | -    | 1.3  | $V_{DD}$ | V    |
| V <sub>TX_CM_ACpp_</sub> ACTIV | TX AC common-mode peak-to-peak output voltage (active state) | device input fed with differential signal                          | -    | -    | 100      | mV   |
| VTX_IDL_DIFF_ACpp              | electrical idle differential peak-to-peak output voltage     | when link is in electrical idle                                    | -    | -    | 10       | mV   |
| V <sub>TX_RCV_DETECT</sub>     | voltage change allowed during receiver detection             | positive voltage swing to sense the receiver termination detection | -    | -    | 600      | mV   |
| t <sub>r(tx)</sub>             | transmit rise time                                           | measured using 20 % and 80 % levels; see Figure 8                  | 40   | 55   | 75       | ps   |
| t <sub>f(tx)</sub>             | transmit fall time                                           | measured using 80 % and 20 % levels; see Figure 8                  | 40   | 55   | 75       | ps   |
| t <sub>(r-f)tx</sub>           | difference between transmit rise and fall time               | measured using 20 % and 80 % levels                                | -    | -    | 15       | ps   |



#### Single-channel SuperSpeed USB 3.0 redriver

#### 11.4 Jitter performance

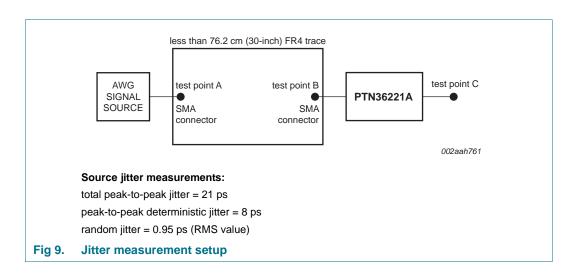

<u>Table 11</u> provides jitter performance of PTN36221A under a specific set of conditions that is illustrated by Figure 9.

Table 11. Jitter performance characteristics

Unit Interval (UI) = 200 ps.

| Symbol                      | Parameter                              | Conditions                   | Min | Тур  | Max | Unit |
|-----------------------------|----------------------------------------|------------------------------|-----|------|-----|------|
| t <sub>jit(o)(p-p)</sub>    | peak-to-peak output jitter time        | total jitter at test point C | -   | 0.19 | -   | UI   |
| t <sub>jit(dtrm)(p-p)</sub> | peak-to-peak deterministic jitter time | <u>[1]</u>                   | -   | 0.11 | -   | UI   |
| t <sub>jit(rndm)(p-p)</sub> | peak-to-peak random jitter time        | [1][2]                       | -   | 0.08 | -   | UI   |

- [1] Measured at test point C with K28.5 pattern, V<sub>ID</sub> = 1000 mV (peak-to-peak), 5 Gbit/s; -3.5 dB de-emphasis from source.
- [2] Random jitter calculated as 14.069 times the RMS random jitter for 10<sup>-12</sup> bit error rate.



#### 11.5 Control inputs

Table 12. Control input characteristics for EN pin

 $V_{DD}$  = 1.8 V  $\pm$  5 %;  $T_{amb}$  = -40 °C to +85 °C, unless otherwise specified.

| Symbol               | Parameter                   | Conditions                                             | Min                  | Тур | Max                  | Unit |
|----------------------|-----------------------------|--------------------------------------------------------|----------------------|-----|----------------------|------|
| $V_{IH}$             | HIGH-level input voltage    |                                                        | $0.65 \times V_{DD}$ | -   | -                    | V    |
| $V_{IL}$             | LOW-level input voltage     |                                                        | -                    | -   | $0.35 \times V_{DD}$ | V    |
| lu                   | input leakage current       | measured with input at $V_{IH(max)}$ and $V_{IL(min)}$ | -                    | 7   | 20                   | μΑ   |
| R <sub>pu(int)</sub> | internal pull-up resistance |                                                        | -                    | 230 | -                    | kΩ   |

Table 13. Trinary control input characteristics for DE, EQ, and OS pins

 $V_{DD}$  = 1.8 V  $\pm$  5 %;  $T_{amb}$  = -40 °C to +85 °C, unless otherwise specified.

| Symbol               | Parameter                     | Conditions                                                       | Min | Тур | Max | Unit |
|----------------------|-------------------------------|------------------------------------------------------------------|-----|-----|-----|------|
| ILI                  | input leakage current         | EN = LOW; measured with input at $V_{IH(max)}$ and $V_{IL(min)}$ | -   | -   | 1   | μΑ   |
| R <sub>pu(int)</sub> | internal pull-up resistance   | Trinary setting                                                  | -   | 50  | -   | kΩ   |
| R <sub>pd(int)</sub> | internal pull-down resistance | Trinary setting                                                  | -   | 50  | -   | kΩ   |

PTN36221A

#### Single-channel SuperSpeed USB 3.0 redriver

## 12. Package outline

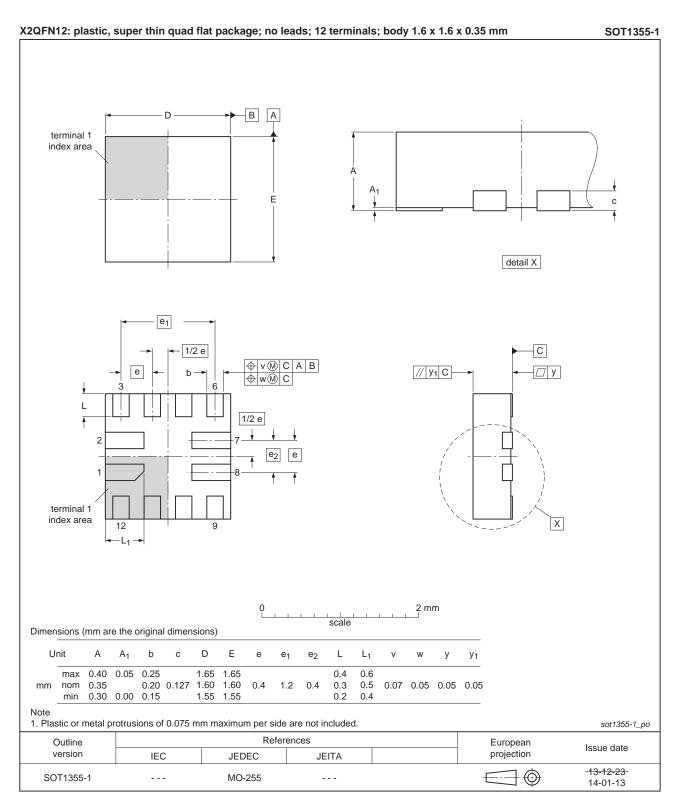



Fig 10. Package outline SOT1355-1 (X2QFN12)

PTN36221A

Product data sheet

Single-channel SuperSpeed USB 3.0 redriver

Fig 11. 13" reel dimensions (13-inch diameter; 4-inch hub; 8 mm carrier tape)

All information provided in this document is subject to legal disclaimers

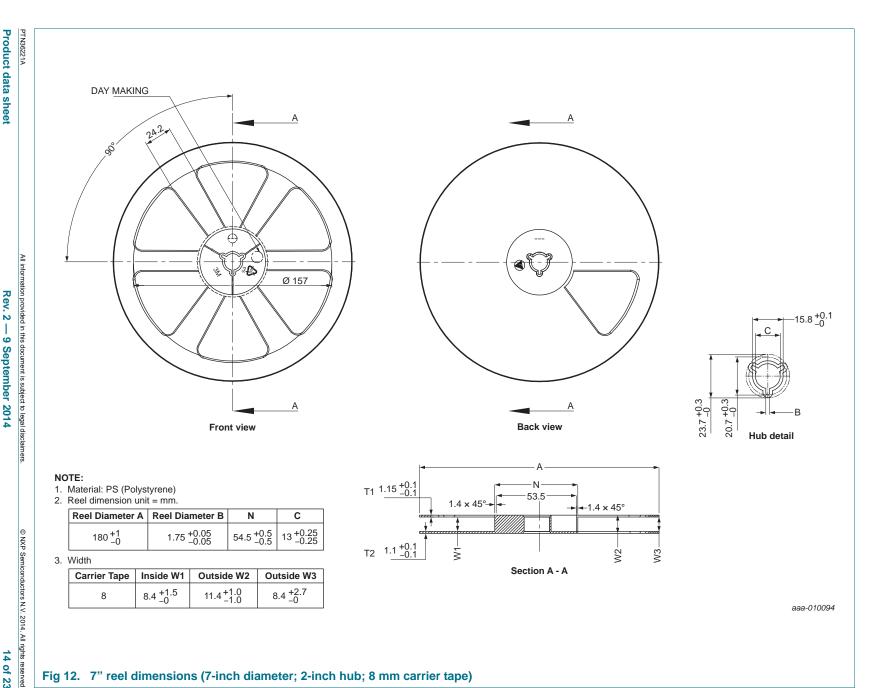
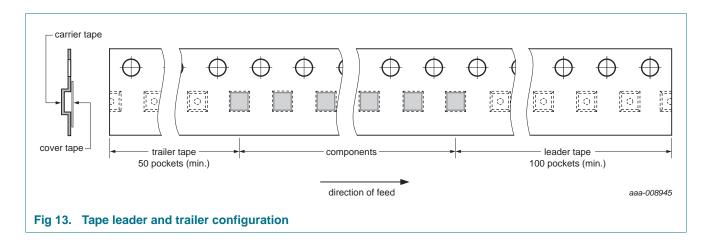
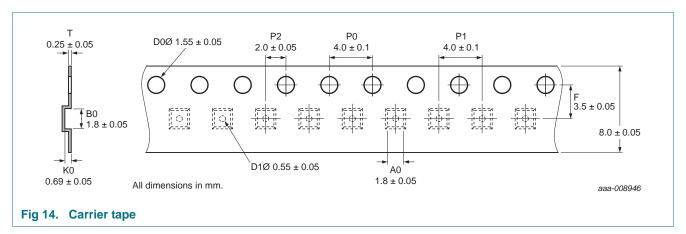
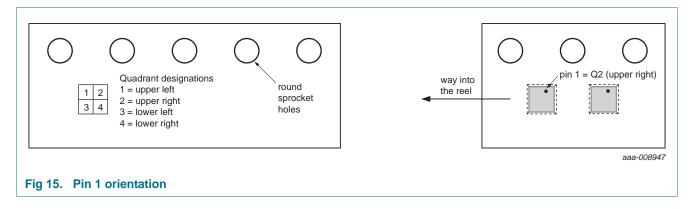






Fig 12. 7" reel dimensions (7-inch diameter; 2-inch hub; 8 mm carrier tape)

#### Single-channel SuperSpeed USB 3.0 redriver







#### Single-channel SuperSpeed USB 3.0 redriver

## 14. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365* "Surface mount reflow soldering description".

#### 14.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

#### 14.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

#### 14.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

#### Single-channel SuperSpeed USB 3.0 redriver

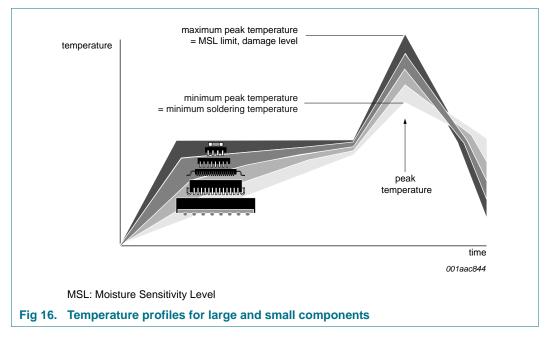
#### 14.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 16</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 14 and 15

Table 14. SnPb eutectic process (from J-STD-020D)

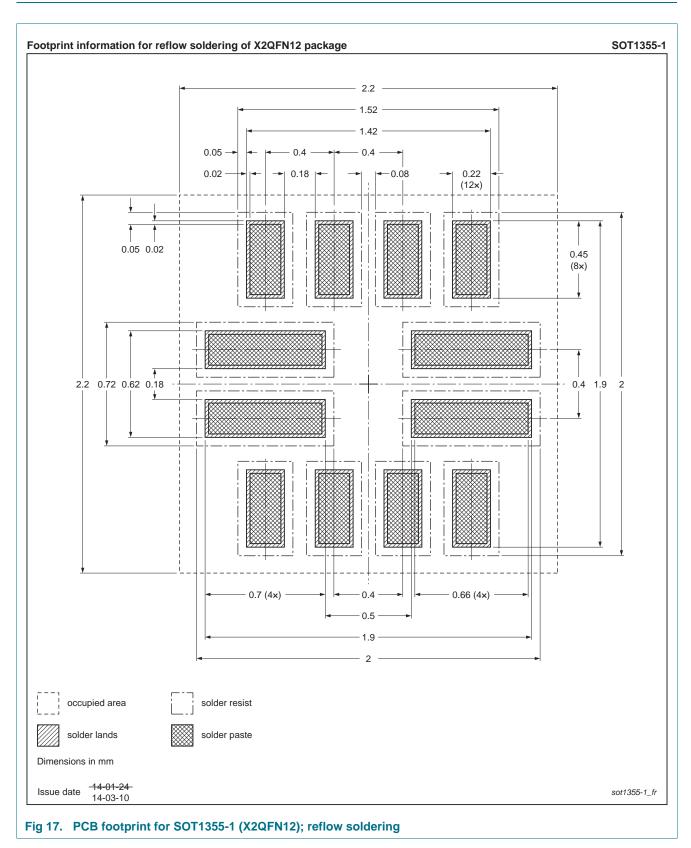
| Package thickness (mm) | Package reflow temperature (°C) |       |  |
|------------------------|---------------------------------|-------|--|
|                        | Volume (mm³)                    |       |  |
|                        | < 350                           | ≥ 350 |  |
| < 2.5                  | 235                             | 220   |  |
| ≥ 2.5                  | 220                             | 220   |  |


Table 15. Lead-free process (from J-STD-020D)

| Package thickness (mm) | Package reflow temperature (°C)  Volume (mm³) |             |        |  |
|------------------------|-----------------------------------------------|-------------|--------|--|
|                        |                                               |             |        |  |
|                        | < 350                                         | 350 to 2000 | > 2000 |  |
| < 1.6                  | 260                                           | 260         | 260    |  |
| 1.6 to 2.5             | 260                                           | 250         | 245    |  |
| > 2.5                  | 250                                           | 245         | 245    |  |

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 16.


### Single-channel SuperSpeed USB 3.0 redriver



For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

#### Single-channel SuperSpeed USB 3.0 redriver

## 15. Soldering: PCB footprints



## Single-channel SuperSpeed USB 3.0 redriver

## 16. Abbreviations

Table 16. Abbreviations

| Acronym | Description                     |
|---------|---------------------------------|
| AIO     | All In One computer platform    |
| CDM     | Charged-Device Model            |
| HBM     | Human Body Model                |
| IC      | Integrated Circuit              |
| LFPS    | Low Frequency Periodic Sampling |
| PCB     | Printed-Circuit Board           |
| Rx      | Receive                         |
| SI      | Signal Integrity                |
| Tx      | Transmit                        |
| UI      | Unit Interval                   |
| USB     | Universal Serial Bus            |

## 17. Revision history

#### Table 17. Revision history

| Document ID    | Release date                                 | Data sheet status  | Change notice | Supersedes    |  |
|----------------|----------------------------------------------|--------------------|---------------|---------------|--|
| PTN36221A v.2  | 20140909                                     | Product data sheet | -             | PTN36221A v.1 |  |
| Modifications: | Added Section 15 "Soldering: PCB footprints" |                    |               |               |  |
| PTN36221A v.1  | 20140120                                     | Product data sheet | -             | -             |  |

#### Single-channel SuperSpeed USB 3.0 redriver

## 18. Legal information

#### 18.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

#### 18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

PTN36221A

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2014. All rights reserved.

#### Single-channel SuperSpeed USB 3.0 redriver

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### 18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

#### 19. Contact information

For more information, please visit: <a href="http://www.nxp.com">http://www.nxp.com</a>

For sales office addresses, please send an email to: salesaddresses@nxp.com

#### Single-channel SuperSpeed USB 3.0 redriver

## 20. Contents

| 1    | General description                | . 1 |
|------|------------------------------------|-----|
| 2    | Features and benefits              | . 1 |
| 3    | Applications                       | . 2 |
| 4    | System context diagrams            | . 2 |
| 5    | Ordering information               | . 3 |
| 5.1  | Ordering options                   |     |
| 6    | Block diagram                      |     |
| 7    | Pinning information                |     |
| 7.1  | Pinning                            |     |
| 7.2  | Pin description                    |     |
| 8    | Functional description             | . 5 |
| 8.1  | Receive equalization               |     |
| 8.2  | Transmit de-emphasis               | . 6 |
| 8.3  | Device states and power management | . 6 |
| 9    | Limiting values                    | . 7 |
| 10   | Recommended operating conditions   | . 7 |
| 11   | Characteristics                    | . 8 |
| 11.1 | Device characteristics             | . 8 |
| 11.2 | Receiver AC/DC characteristics     |     |
| 11.3 | Transmitter AC/DC characteristics  | 10  |
| 11.4 | Jitter performance                 | 11  |
| 11.5 | Control inputs                     | 11  |
| 12   | Package outline                    | 12  |
| 13   | Packing information                | 13  |
| 14   | Soldering of SMD packages          | 16  |
| 14.1 | Introduction to soldering          | 16  |
| 14.2 | Wave and reflow soldering          | 16  |
| 14.3 | Wave soldering                     | 16  |
| 14.4 | Reflow soldering                   | 17  |
| 15   | Soldering: PCB footprints          | 19  |
| 16   | Abbreviations                      | 20  |
| 17   | Revision history                   | 20  |
| 18   | Legal information                  | 21  |
| 18.1 | Data sheet status                  | 21  |
| 18.2 | Definitions                        | 21  |
| 18.3 | Disclaimers                        | 21  |
| 18.4 | Trademarks                         |     |
| 19   | Contact information                |     |
| 20   | Contents                           | 23  |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

PTN36221AHXHP PTN36221AHXZ