
GGeettttiinngg  SSttaarrtteedd  WWiitthh  EEmmbbeeddddeedd  

LLiinnuuxx  ––  ZZeeddBBooaarrdd     
 

Revision: January 13, 2013 
1300 NE Henley Court, Suite 3 

Pullman, WA 99163 
(509) 334 6306 Voice | (509) 334 6300 Fax 

 

  page 1 of 12 

 
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners. 

Overview 
 
Booting the Zynq-7000TM All Programmable SoC (Zynq AP SoC) from an SD card, or another form of 
compatible memory, requires that you first place four items onto your storage device. The four 
required items are the Linux file system (either Linaro or BusyBox), a Linux kernel image, a 
BOOT.BIN file, and a compiled device tree. 
 
This guide provides instructions on how to generate these four items and on using them to boot the 
ZedBoard from an SD card. To complete these instructions, you must first ensure that you have a 
computer running a Linux distribution, a working knowledge of how to use the corresponding package 
manager to obtain software applications and libraries (e.g. yum for Fedora, or apt-get for Ubuntu), a 
4GB or larger SD card, and a card reader.  
 

Formatting the SD Card 
 
Booting Linux on the ZedBoard from an SD card requires that you first set up the correct partitions on 
the SD card. You must format the first two partitions on the SD card to specific parameters. The first 
partition must have a FAT file system and be at least 1GB and the second partition must have an ext4 
file system and be at least 3GB.  
 
The second partition is only necessary when using the Linaro file system.  However, Digilent Inc. 
recommends formatting your SD card with both partitions in case you decide to switch file systems in 
the future. Follow steps 1-4 on a Linux computer to properly format the SD card with both partitions.  
 
Note: The shaded terminal display sections in this guide show operator input in bold characters. 
 

1) Identify the SD card device node.  Identify this node by making sure to remove the SD card 

from your Linux machine and then running lsblk.  

 

 
 

After first running lsblk, insert the SD card and run the command again. 

[tinghui.wang@DIGILENT_LINUX ~]$ lsblk 

NAME                        MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT 

sda                           8:0    0 465.8G  0 disk 

├─sda1                        8:1    0   500M  0 part /boot 

└─sda2                        8:2    0 465.3G  0 part 

  ├─VolGroup-lv_root (dm-0) 253:0    0 455.5G  0 lvm  / 

  └─VolGroup-lv_swap (dm-1) 253:1    0   9.8G  0 lvm  [SWAP] 

sr0                          11:0    1   6.8G  0 rom 



Getting Started with Embedded Linux – ZedBoard 
 

  

www.digilentinc.com  page 2 of 12 
 

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners. 

  
 

A new line containing the SD card device node will appear the second time you run lsblk. In 

the example above, the SD card device node is /dev/sdd, highlighted in red.    

 
2) Some distributions will automatically mount any partitions on an SD Card when you insert it. 

Input the df command to see if the SD card has any mounted partitions. If it does, ensure that 

you unmount these automatically mounted partitions before you repartition the disk.  
 

 
 

Call umount for each of the mounted partitions on your SD Card to remove them. 

 

 
 
 

3) Once you have unmounted all of the partitions, you can begin to repartition the SD card with 

the fdisk tool. Open the SD card device using fdisk and issue command p to print the 

current SD card partition table. 
 

[tinghui.wang@DIGILENT_LINUX ~]$ lsblk 

NAME                        MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT 

sda                           8:0    0 465.8G  0 disk 

├─sda1                        8:1    0   500M  0 part /boot 

└─sda2                        8:2    0 465.3G  0 part 

  ├─VolGroup-lv_root (dm-0) 253:0    0 455.5G  0 lvm  / 

  └─VolGroup-lv_swap (dm-1) 253:1    0   9.8G  0 lvm  [SWAP] 

sr0                          11:0    1   6.8G  0 rom 

sdd                           8:48   1   7.5G  0 disk 

└─sdd1                        8:49   1   3.7G  0 part /media/ZED_BOOT 

[tinghui.wang@DIGILENT_LINUX ~]$ sudo umount /media/ZED_BOOT/ 

[tinghui.wang@DIGILENT_LINUX ~]$ df 

Filesystem           1K-blocks      Used Available Use% Mounted on 

/dev/mapper/VolGroup-lv_root 

                     470166952 316062016 130221776  71% / 

tmpfs                  3988440       976   3987464   1% /dev/shm 

/dev/sda1               495844     65557    404687  14% /boot 

 

  

 

[tinghui.wang@DIGILENT_LINUX ~]$ df  

Filesystem           1K-blocks      Used Available Use% Mounted on  

/dev/mapper/VolGroup-lv_root 

                     470166952 316061992 130221800  71% / 

tmpfs                  3988440       976   3987464   1% /dev/shm 

/dev/sda1               495844     65557    404687  14% /boot 

/dev/sdd1              3862528     10268   3852260   1% /media/ZED_BOOT 

 

  

 



Getting Started with Embedded Linux – ZedBoard 
 

  

www.digilentinc.com  page 3 of 12 
 

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners. 

 
 

Input the d command to delete any existing partitions. If only one partition exists, it will be 

selected automatically. 
 

 
 

Once you have deleted the existing partitions, you can create the new partitions with the n 

command. Create two primary partitions with these properties. 
 

 Partition Number 1: A primary partition starting from the first cylinder with a size of 
1GB. 

 Partition Number 2: A primary partition starting from the next available cylinder that 
ideally takes up the remainder of the available space on the SD Card. 

 
Use the commands in the following terminal display to create these two partitions. 
 
Note: The system will set any prompt you leave blank to the default value. 

Command (m for help): d 

Selected partition 1 

 

Command (m for help): p 

 

Disk /dev/sdd: 3965 MB, 3965190144 bytes 

228 heads, 2 sectors/track, 16983 cylinders 

Units = cylinders of 456 * 512 = 233472 bytes 

Sector size (logical/physical): 512 bytes / 512 bytes 

I/O size (minimum/optimal): 512 bytes / 512 bytes 

Disk identifier: 0x00047708 

 

   Device Boot      Start         End      Blocks   Id  System 

 

  

 

[tinghui.wang@DIGILENT_LINUX ~]$ sudo fdisk /dev/sdd 

[sudo] password for tinghui.wang: 

 

WARNING: DOS-compatible mode is deprecated. It's strongly recommended to 

         switch off the mode (command 'c') and change display units to 

         sectors (command 'u'). 

 

Command (m for help): p 

 

Disk /dev/sdd: 3965 MB, 3965190144 bytes 

228 heads, 2 sectors/track, 16983 cylinders 

Units = cylinders of 456 * 512 = 233472 bytes 

Sector size (logical/physical): 512 bytes / 512 bytes 

I/O size (minimum/optimal): 512 bytes / 512 bytes 

Disk identifier: 0x00047708 

 

   Device Boot      Start         End      Blocks   Id  System 

/dev/sdd1               1       16978     3870720    b  W95 FAT32 

 



Getting Started with Embedded Linux – ZedBoard 
 

  

www.digilentinc.com  page 4 of 12 
 

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners. 

 
 

Once you make the required changes, use command w to write them to the SD card’s partition 

table. Issuing command w will cause fdisk to automatically exit. 

 

 
    

Command (m for help): w 

The partition table has been altered! 

 

Calling ioctl() to re-read partition table. 

Syncing disks. 

 

  

 

Command (m for help): n 

Command action 

   e   extended 

   p   primary partition (1-4) 

p 

Partition number (1-4): 1 

First cylinder (1-16983, default 1): 1 

Last cylinder, +cylinders or +size{K,M,G} (1-16983, default 16983): +1G 

 

Command (m for help): p 

 

Disk /dev/sdd: 3965 MB, 3965190144 bytes 

228 heads, 2 sectors/track, 16983 cylinders 

Units = cylinders of 456 * 512 = 233472 bytes 

Sector size (logical/physical): 512 bytes / 512 bytes 

I/O size (minimum/optimal): 512 bytes / 512 bytes 

Disk identifier: 0x00047708 

 

   Device Boot      Start         End      Blocks   Id  System 

/dev/sdd1               1        4600     1048799   83  Linux 

 

Command (m for help): n 

Command action 

   e   extended 

   p   primary partition (1-4) 

p 

Partition number (1-4): 2 

First cylinder (4601-16983, default 4601): 

Using default value 4601 

Last cylinder, +cylinders or +size{K,M,G} (4601-16983, default 16983): 

Using default value 16983 

 

Command (m for help): p 

 

Disk /dev/sdd: 3965 MB, 3965190144 bytes 

228 heads, 2 sectors/track, 16983 cylinders 

Units = cylinders of 456 * 512 = 233472 bytes 

Sector size (logical/physical): 512 bytes / 512 bytes 

I/O size (minimum/optimal): 512 bytes / 512 bytes 

Disk identifier: 0x00047708 

 

   Device Boot      Start         End      Blocks   Id  System 

/dev/sdd1               1        4600     1048799   83  Linux 

/dev/sdd2            4601       16983     2823324   83  Linux 

 

  

 



Getting Started with Embedded Linux – ZedBoard 
 

  

www.digilentinc.com  page 5 of 12 
 

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners. 

4) The final step to partitioning your SD card is creating the file systems. Format Partition 
Number 1 to FAT with the label “ZED_BOOT” and Partition Number 2 to EXT4 with the label 

“ROOT_FS”. Use the utility mkfs to format your partitions. 

 

 
 
The SD card should be ready for the Linux file system once you have correctly formatted the 
partitions. 
 

The Linux File System 
 
The ZedBoard currently supports two different Linux file systems, a BusyBox ramdisk and a Linaro 
Ubuntu distribution.  
 
The BusyBox ramdisk is a very small file system that includes basic functionality and runs through 
RAM.  BusyBox is non-persistent, which means it will not save any changes you make during your 
operating session after you power down the ZedBoard. (See Figure 1.) 
 

[tinghui.wang@DIGILENT_LINUX ~]$ sudo mkfs -t vfat -n ZED_BOOT /dev/sdd1 

mkfs.vfat 3.0.9 (31 Jan 2010) 

[tinghui.wang@DIGILENT_LINUX ~]$ sudo mkfs -t ext4 -L ROOT_FS /dev/sdd2 

mke2fs 1.41.12 (17-May-2010) 

Filesystem label=ROOT_FS 

OS type: Linux 

Block size=4096 (log=2) 

Fragment size=4096 (log=2) 

Stride=0 blocks, Stripe width=0 blocks 

176704 inodes, 705831 blocks 

35291 blocks (5.00%) reserved for the super user 

First data block=0 

Maximum filesystem blocks=725614592 

22 block groups 

32768 blocks per group, 32768 fragments per group 

8032 inodes per group 

Superblock backups stored on blocks: 

        32768, 98304, 163840, 229376, 294912 

 

Writing inode tables: done 

Creating journal (16384 blocks): done 

Writing superblocks and filesystem accounting information: done 

 

This filesystem will be automatically checked every 37 mounts or 

180 days, whichever comes first.  Use tune2fs -c or -i to override. 

 



Getting Started with Embedded Linux – ZedBoard 
 

  

www.digilentinc.com  page 6 of 12 
 

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners. 

 
 

Figure 1. BusyBox boot output on a terminal connected to the ZedBoard UART port 
 
The Linaro file system is a complete Linux distribution based on Ubuntu. It includes a graphical 
desktop that displays via the onboard HDMI port. Linaro executes from a separate partition on the SD 
card, and all changes made are written to memory. The utility of Linaro is that it will save files even 
after you power down and reboot the ZedBoard.  
 

 
 

Figure 2. Linaro graphical desktop 



Getting Started with Embedded Linux – ZedBoard 
 

  

www.digilentinc.com  page 7 of 12 
 

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners. 

Before using your ZedBoard you will need to choose which of these two file systems would work best 
for your needs. Once you have selected a system, see the corresponding sub-headings below to 
prepare your removable storage device for booting Linux. 
 
Using a BusyBox Ramdisk 
 
You may find a prebuilt BusyBox ramdisk for the ZedBoard inside the Linux Hardware Design, 
available at www.digilentinc.com/zedboard. The ramdisk is found within the project at 

ZedBoard_Linux_Design/sd_image/ramdisk8M.image.gz. To use the prebuilt ramdisk, place the 

“ramdisk8M.image.gz” file on the FAT partition of the SD card. You are now ready to build the Linux 
kernel. 
 
Digilent’s prebuilt ramdisk uses source code that Xilinx provides online. See the Xilinx materials at: 
http://wiki.xilinx.com/zynq-rootfs for a detailed description of the ramdisk and how to create a custom 
system. 
 
Using a Linaro File System 
 
The first step in preparing the Linaro file system is to obtain the tarball of your preferred Linaro Ubuntu 
distribution. You can obtain these from Linaro at http://releases.linaro.org/ by clicking the desired 
version and then traversing to ubuntu/precise-images. Linaro provides several different Ubuntu builds, 
some of which are very lightweight and do not use a desktop. You can find a version that does contain 
a graphical desktop and that has been tested on the ZedBoard at: 
http://releases.linaro.org/12.09/ubuntu/precise-images/ubuntu-desktop/linaro-precise-ubuntu-desktop-
20120923-436.tar.gz. 
 
After downloading the tarball to your home directory, complete steps 1-6 to copy the file system to the 
ext4 partition on the SD Card. 
 

1) Create a folder under /tmp named linaro, and copy the zipped Linaro image to it.  

 
Note: We omitted the username from the command line in the terminal display to prevent word wrap. 

 

 
 

2) Unpack the disk image using the tar command. 

 

 
 
3) Insert the SD Card. Unmount any automatically mounted partitions by following the procedures 

this guide previously listed in step 2 of the “Formatting the SD Card” section. 
 

[tinghui.wang@DIGILENT_LINUX linaro]$ sudo tar zxf fs.tar.gz 

[tinghui.wang@DIGILENT_LINUX linaro]$ ls 

binary      fs.tar.gz 

[~]$ mkdir -p /tmp/linaro 

[~]$ sudo cp linaro-precise-ubuntu-desktop-20120923-436.tar.gz /tmp/linaro/fs.tar.gz 

[~]$ cd /tmp/linaro/ 

[linaro]$ ls 

fs.tar.gz 

http://www.digilentinc.com/zedboard
http://wiki.xilinx.com/zynq-rootfs
http://releases.linaro.org/
http://releases.linaro.org/12.09/ubuntu/precise-images/ubuntu-desktop/linaro-precise-ubuntu-desktop-20120923-436.tar.gz
http://releases.linaro.org/12.09/ubuntu/precise-images/ubuntu-desktop/linaro-precise-ubuntu-desktop-20120923-436.tar.gz


Getting Started with Embedded Linux – ZedBoard 
 

  

www.digilentinc.com  page 8 of 12 
 

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners. 

4) Mount the SD Card to /tmp/sd_ext4. Make sure to replace the device node, highlighted red 

in the following terminal display, with the device node of the ext4 partition on your SD Card. 
 

 
 

5) Use the command rsync to copy the root file system onto the SD card. This command will 

preserve those attributes that should remain unchanged. 
 

 
 
6) Unmount before removing the SD card to make sure all the files have been synchronized to it. 

Unmounting /tmp/sd_ext4 may take several minutes, but you must wait to see that umount 

returns before removing the SD card. 
 

 
 
The Linaro file system should now be on the SD card and you are ready to build the Linux kernel. 
 
 

Building the Linux Kernel 
 
Digilent maintains a Linux source tree targeted to run on Digilent system boards. This repository 
contains custom drivers for onboard peripherals and attachable Pmods. Before building the kernel 
users must first download and install the ARM GNU tools from Xilinx. The installer and instructions for 
these Xilinx tools are available at: http://wiki.xilinx.com/zynq-tools.  
 

1. After you install the ARM GNU tool chain, we recommend that you open the .bashrc file in your 
home folder and add the lines in the terminal display below.  

 
Note: You may need to change the path line, in red below, to identify where you installed the 
ARM GNU tools on your system. 

 

 
 

The addition of these lines causes the tool chain environment variables to be set each time the 
system opens a bash terminal.  

 

2. Download the Linux kernel source code using git. You can obtain and install git using the 

package manager in your Linux distribution. After installing git, open a terminal and change to 

the directory where you would like to place the source. Then run the command in the terminal 
display below. 

[tinghui.wang@DIGILENT_LINUX linaro]$ mkdir -p /tmp/sd_ext4 

[tinghui.wang@DIGILENT_LINUX linaro]$ sudo mount /dev/sdd2 /tmp/sd_ext4 

 

[tinghui.wang@DIGILENT_LINUX filesystem.dir]$ sudo umount /tmp/sd_ext4 

[tinghui.wang@DIGILENT_LINUX filesystem.dir]$ 

 

 

[tinghui.wang@DIGILENT_LINUX linaro]$ cd binary/boot/filesystem.dir/ 

[tinghui.wang@DIGILENT_LINUX filesystem.dir]$ pwd 

/tmp/linaro/binary/boot/filesystem.dir 

[tinghui.wang@DIGILENT_LINUX filesystem.dir]$ sudo rsync –a ./ /tmp/sd_ext4 

 

PATH=~/CodeSourcery/Sourcery_CodeBench_Lite_for_Xilinx_GNU_Linux/bin:$PATH 

export CROSS_COMPILE=arm-xilinx-linux-gnueabi- 

http://wiki.xilinx.com/zynq-tools


Getting Started with Embedded Linux – ZedBoard 
 

  

www.digilentinc.com  page 9 of 12 
 

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners. 

 

 
 

3. After the download has completed, change to the linux-digilent directory. Run the 

command below to configure the kernel for the ZedBoard. 
 

 
 

The command, make ARCH=arm digilent_zed_defconfig, will configure the kernel to work 

properly with the hardware on your board. To view or alter this default configuration run the 
following command. 

 

 
 

The make ARCH=arm menuconfig command will open up a graphical interface for modifying 

the kernel. You must install the library “ncurses” on your system to successfully use 
menuconfig.  Many operators commonly use this interface for selecting drivers built into the 
kernel and those built as loadable modules. Do not modify any of these settings right now. 

 

 
 

Figure 3. menuconfig Interface for Configuring the Kernel 
 

4. After following steps 1-3 run the following command to build the kernel. 
 

make ARCH=arm digilent_zed_defconfig 

git clone https://github.com/Digilent/linux-digilent.git 

make ARCH=arm menuconfig 

 



Getting Started with Embedded Linux – ZedBoard 
 

  

www.digilentinc.com  page 10 of 12 
 

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners. 

 
 

If the build completes without errors, you will find the built kernel image (a single binary file 

named “zImage”) at linux-digilent/arch/arm/boot/zImage. Copy this file to the FAT 

partition of the SD Card. 
 

Obtaining the BOOT.BIN File  
 
The BOOT.BIN file is a container file for the various Xilinx specific files that initially configure the two 
sections of the Zynq AP SoC, the programmable logic and processing systems. This container also 
holds u-boot, a second-stage bootloader that is responsible for loading Linux.  
 
Digilent distributes the source code for a Xilinx Embedded Design Kit (EDK) project that will configure 
the Zynq part on the ZedBoard in a manner that allows Linux to communicate properly with the 
onboard hardware. This project is called the “ZedBoard Linux Hardware Design” and can be obtained 
at: www.digilentinc.com/zedboard. Those interested in making changes to this design and building 
their own custom BOOT.BIN should view the included project guide in the doc folder. For the 
purposes of this getting started guide, copy the prebuilt BOOT.BIN from the sd_image folder to the 
FAT partition of the SD Card. 
 

Compiling the Device Tree 
 
The device tree is a data structure that describes the hardware present in your system to the Linux 
kernel. The tree lists devices as “nodes” that contain information needed for the corresponding driver 
to operate properly. The kernel parses through these nodes and initializes a driver for each of them 
during the boot up process.  
 
The Digilent Linux repository contains a default device tree for the ZedBoard that corresponds with 

the Linux Hardware Design. You may find this default device tree at linux-

digilent/arch/arm/boot/digilent-zed.dts.  

 
Users must update the device tree to reflect any changes made to the Linux hardware design in Xilinx 
Platform Studio. Common changes that require an update to the device tree include, but are not 
limited to, changing the physical address of an IP core, changing the priority of an interrupt used by a 
device driver, and adding or removing an IP core.  
 
In addition to describing the hardware, the device tree is also home to the boot arguments that 
configure the kernel at boot time. Boot arguments can be specified that instruct the kernel to do many 
different things. What should most concern you, is that this is also where the kernel is told what file 
system to load. This means that you will need to modify the digilent-zed.dts file to indicate which file 
system you are using. 
 
If you are using a Linaro file system to boot the ZedBoard, open digilent-zed.dts in a text editor and 
replace the line containing the bootargs definition with the following code. 
 

 
 

make ARCH=arm 

 

bootargs = "console=ttyPS0,115200 root=/dev/mmcblk0p2 rw earlyprintk rootfstype=ext4 

rootwait devtmpfs.mount=0"; 

 

http://www.digilentinc.com/zedboard


Getting Started with Embedded Linux – ZedBoard 
 

  

www.digilentinc.com  page 11 of 12 
 

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners. 

If you are using a ramdisk to boot the ZedBoard, replace bootargs with the following code. 
 
 
   

After you have correctly set the boot arguments, you can build the device tree with a tool called dtc. 

The kernel source includes the dtc tool, which you can find at linux-digilent/scripts/dtc/dtc 

after you build the kernel. Change to the linux-digilent directory and run the following command to 

build the device tree.  You will need to change the input file, highlighted red in the terminal display 
below, to the modified digilent-zed.dts file location. 
 

 
 
The compiled device tree should now be at linux-digilent/devicetree.dtb. Copy this file to the FAT 
partition of the SD Card. 
 

Booting the SD Card 
 
Once you complete these guide instructions, the SD card will have everything it needs to boot Linux 
on the ZedBoard. Complete the procedures in steps 1-8 to test your SD card with the ZedBoard. 
 

1. Insert the SD card into the ZedBoard.  
 

2. Set the jumpers on the ZedBoard as follows: 
 

 MIO 6: set to GND 

 MIO 5: set to 3V3 

 MIO 4: set to 3V3 

 MIO 3: set to GND 

 MIO 2: set to GND 

 VADJ Select: Set to 1V8 

 JP6: Shorted 

 JP2: Shorted 

 All other jumpers should be left unshorted 
 

3. Attach a computer running a terminal emulator to the UART port with a Micro-USB cable. 
Configure the terminal emulator with the following settings: 

 

 Baud: 115200 

 8 data bits 

 1 stop bit 

 no parity 
 

4. Connect any peripherals you would like to use in Linux. If using a Linaro file system, we 
recommend that you connect a monitor to the HDMI port and a USB hub to the USB OTG port. 
You can then attach a mouse and keyboard to the USB hub. 

 
5. Attach a 12V power supply to the ZedBoard and power it on. 

 

bootargs = "console=ttyPS0,115200 root=/dev/ram rw initrd=0x800000,8M earlyprintk"; 

./scripts/dtc/dtc -I dts -O dtb -o ./devicetree.dtb ./digilent-zed.dts 



Getting Started with Embedded Linux – ZedBoard 
 

  

www.digilentinc.com  page 12 of 12 
 

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners. 

6. Connect to the appropriate port in the terminal emulator. You should begin to see feedback 
from the boot process within a few seconds, depending on the speed of the SD card. 
 

7. Wait for the boot process to complete. If using a BusyBox file system, you will know boot-up 
has completed when pressing return at the terminal presents you with a red "zynq>" prompt. 
(See Figure 1.) If you are operating with the Linaro file system, the attached monitor will 
display the Linaro desktop once the system boots up. (See Figure 2.) 
 

8. You now have a complete Linux system running on the ZedBoard. 
 

Additional Resources 
 
Consult the following documents for additional information on designing embedded Linux systems for 
Digilent system boards. 

 

 Embedded Linux Development Guide  
This document describes the differences between conventional Linux Development and Linux 
Development for Digilent system boards. It should be read by anyone who plans on tweaking 
the kernel or adding device drivers. The Embedded Linux Development Guide can be obtained 
from the embedded Linux product page on the Digilent website. 
 

 Embedded Linux Hands-on Tutorial – ZedBoard 
This document walks the reader through the process of modifying the ZedBoard Linux 
Hardware Design to include additional hardware, making this hardware accessible to Linux by 
modifying the device tree, and finally designing a custom driver that brings the hardware’s 
functionality up to the Linux user. It can be obtained from the ZedBoard product page on the 
Digilent website. 
 

 ZedBoard Linux Hardware Design Project Guide 
This document describes the ZedBoard Linux Hardware Design, and walks the reader through 
the process of building all the sources required to generate the BOOT.BIN file. It is packaged 
along with the ZedBoard Linux Hardware Design, which can be obtained from the ZedBoard 
product page. 
 

 Linux Developer’s Wiki 
This web page contains an up to date list of hardware that is supported by the Digilent Linux 
repository and an FAQ section that addresses some issues you may run into while using the 
current version of the kernel. It also contains information on submitting patches for those who 
are interested in contributing code. You can find the Linux Developer’s Wiki at: 
www.github.com/Digilent/linux-digilent/wiki. 
  

 

http://www.github.com/Digilent/linux-digilent/wiki


Mouser Electronics
  

Authorized Distributor
 
  

Click to View Pricing, Inventory, Delivery & Lifecycle Information:
 
 
 
 Digilent:   

  410-248P-KIT

http://www.mouser.com/digilent
http://www.mouser.com/access/?pn=410-248P-KIT

