Quad-Serial Configuration (EPCQ) Devices Datasheet

2014.01.10

CF52012

Subscribe Send Feedback

This datasheet describes quad-serial configuration (EPCQ) devices.

Supported Devices

The following table lists the supported Altera® EPCQ devices.

Table 1: Altera EPCQ Devices

Device	Memory Size (bits)	On-Chip Decompression Support	ISP Support	Cascading Support	Reprogrammable	Recommended Operating Voltage (V)
EPCQ16	16,777,216	No	Yes	No	Yes	3.3
EPCQ32	33,554,432	No	Yes	No	Yes	3.3
EPCQ64	67,108,864	No	Yes	No	Yes	3.3
EPCQ128	134,217,728	No	Yes	No	Yes	3.3
EPCQ256	268,435,456	No	Yes	No	Yes	3.3
EPCQ512 (1)	536,870,912	No	Yes	No	Yes	3.3

Features

EPCQ devices offer the following features:

- Serial or quad-serial FPGA configuration in devices that support active serial (AS) x1 or AS x4 configuration schemes
- Low cost, low pin count, and non-volatile memory
- 2.7-V to 3.6-V operation
- Available in 8- or 16- small-outline integrated circuit (SOIC) package
- Reprogrammable memory with more than 100,000 erase or program cycles
- Write protection support for memory sectors using status register bits
- Fast read, extended dual input fast read, and extended quad input fast read of the entire memory using a single operation code

ISO 9001:2008

⁽¹⁾ Pending characterization data.

^{© 2014} Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at $www. alter a. com/common/legal. html. \ Alter a warrants performance of its semiconductor products to current specifications in accordance with the semiconductor products and the semiconductor products are considered by the semiconductor products and the semiconductor products are considered by the semiconductor products and the semiconductor products are considered by the semiconductor products and the semiconductor products are considered by the semiconductor pro$ Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

- Write bytes, extended dual input fast write bytes, and extended quad input fast write bytes of the entire
 memory using a single operation code
- Reprogrammable with an external microprocessor using the SRunner software driver
- In-system programming (ISP) support with the SRunner software driver
- ISP support with USB-Blaster[™], EthernetBlaster II, or EthernetBlaster download cables
- By default, the memory array is erased and the bits are set to 1

Operating Conditions

Table 2 through **Table 6** list information about the absolute maximum ratings, recommended operating conditions, DC operating conditions, I_{CC} supply current, and capacitance for EPCQ devices.

Note: The values from **Table 2** through **Table 6** are finalized for EPCQ16, EPCQ32, EPCQ64, EPCQ128, and EPCQ256 devices. The values for EPCQ512 devices are pending characterization.

Absolute Maximum Ratings

Table 2: Absolute Maximum Ratings

Symbol	Parameter	Condition	Min	Max	Unit
V_{CC}	Supply voltage	With respect to GND	-0.6	4	V
V _I	DC input voltage	With respect to GND	-0.6	4	V
I _{MAX}	DC V _{CC} or GND current	_	_	20	mA
I _{OUT}	DC output current per pin	_	-25	25	mA
$\overline{P_{D}}$	Power dissipation	_	_	54	mW
T_{STG}	Storage temperature	No bias	-65	150	°C
T_{AMB}	Ambient temperature	Under bias	-65	135	°C
T_{J}	Junction temperature	Under bias	_	135	°C

Recommended Operating Conditions

Table 3: Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Max	Unit
V_{CC}	Supply voltage	(2)	2.7	3.6	V
$V_{\rm I}$	Input voltage	With respect to GND	-0.5	0.4 + V _{CC}	V
V _O	Output voltage	_	0	V _{CC}	V

 $^{^{\}left(2\right)}\,$ The maximum V_{CC} rise time is 100 ms.

Symbol	Parameter	Condition	Min	Max	Unit
$T_A^{(3)}$	Operating temperature	For industrial use	-40	85	°C
t_R	Input rise time	_	_	5	ns
t_{F}	Input fall time	_	_	5	ns

DC Operating Conditions

Table 4: DC Operating Conditions

Symbol	Parameter	Condition	Min	Max	Unit
V_{IH}	High-level input voltage	_	0.7 x VCC	VCC + 0.4	V
$ m V_{IL}$	Low-level input voltage	_	-0.5	$0.3 \mathrm{x}\mathrm{V}_{\mathrm{CC}}$	V
V_{OH}	High-level output voltage	$I_{OH} = -100 \ \mu A^{(4)}$	V _{CC} - 0.2	_	V
V _{OL}	Low-level output voltage	$I_{OL} = 1.6 \text{ mA}^{(5)}$	_	0.4	V
I_{I}	Input leakage current	V _I =V _{CC} or GND	-10	10	μΑ
I _{OZ}	Tri-state output off-state current	$V_O = V_{CC}$ or GND	-10	10	μΑ

ICC Supply Current

Table 5: I_{CC} Supply Current

Symbol	Parameter	Condition	Min	Max	Unit
I_{CC0}	V _{CC} supply current	Standby	_	100	μΑ
I _{CC1}	V _{CC} supply current	During active power mode	5	20	mA

Capacitance

Table 6: Capacitance

Capacitance is sample-tested only at $T_A = 25 \text{ x C}$ and at a 20-MHz frequency.

Symbol	Parameter	Condition	Min	Max	Unit
C_{IN}	Input pin capacitance	$V_{IN} = 0 V$	_	6	pF
C_{OUT}	Output pin capacitance	V _{OUT} =0 V	_	8	pF

⁽³⁾ EPCQ devices can be paired with Altera industrial-grade FPGAs operating at junction temperatures up to 100°C as long as the ambient temperature does not exceed 85°C.

 $^{^{(4)}}$ The I $_{
m OH}$ parameter refers to the high-level TTL or CMOS output current.

 $^{^{(5)}\,}$ The I_{OL} parameter refers to the low-level TTL or CMOS output current.

Memory Array Organization

The following table lists the memory array organization in supported EPCQ devices.

Table 7: Memory Array Organization in EPCQ Devices

Details	EPCQ16	EPCQ32	EPCQ64	EPCQ128	EPCQ256	EPCQ512 ⁽⁶⁾
Bytes	2,097,152 bytes [16 megabits (Mb)]	4,194,304 bytes (32 Mb)	8,388,608 bytes (64 Mb)	16,777,216 bytes (128 Mb)	33,554,432 bytes (256 Mb)	67,108,864 bytes (512 Mb)
Number of sectors	32	64	128	256	512	1,024
Bytes per sector			65,536 bytes	[512 kilobits	(Kb)]	
Total numbers of subsectors ⁽⁷⁾	512	1,024	2,048	4,096	8,192	16,384
Bytes per subsector	4,096 bytes (32 Kb)					
Pages per sector	256					
Total number of pages	8,192	16,384	32,768	65,536	131,072	262,144
Bytes per page			2	256 bytes		

Address Range for EPCQ16

The following table lists the address range for each sector in EPCQ16 devices.

Table 8: Address Range for Sectors 31..0 and Subsectors 511..0 in EPCQ16 Devices

Sector	Subsector	Address Range (Byte Addresses in HEX)			
Sector	Jubsector	Start	End		
	511	1FF000	1FFFFF		
	510	1FE000	1FEFFF		
31					
31	498	1F2000	1F2FFF		
	497	1F1000	1F1FFF		
	496	1F0000	1F0FFF		

⁽⁶⁾ Pending characterization data.

Every sector is further divided into 16 subsectors with 4 KB of memory. Therefore, there are 512 (32 x 16) subsectors for the EPCQ16 device, 1,024 (64 x 16) subsectors for the EPCQ32 device, 2,048 (128 x 16) subsectors for the EPCQ64 device, 4,096 (256 x 16) subsectors for the EPCQ128 device, 8,192 (512 x 16) subsectors for the EPCQ256 device, and 16,384 (1,024 x 16) subsectors for the EPCQ512 device.

Sector	Subsector	Address Range (Byte Addresses in HEX)			
Sector	Subsector	Start	End		
	495	1EF000	1EFFFF		
	494	1EE000	1EEFFF		
30					
30	482	1E2000	1E2FFF		
	481	1E1000	1E1FFF		
	480	1E0000	1E0FFF		
	31	1F000	1FFFF		
	30	1E000	1EFFF		
1					
1	18	12000	12FFF		
	17	11000	11FFF		
	16	10000	10FFF		
	15	F000	FFFF		
	14	E000	EFFF		
0					
U	2	2000	2FFF		
	1	1000	1FFF		
	0	H'0000000	H'0000FFF		

The following table lists the address range for each sector in EPCQ32 devices.

Table 9: Address Range for Sectors 63..0 and Subsectors 1023..0 in EPCQ32 Devices

Sector	Subsector	Address Range (Byte Addresses in HEX)			
Sector	Jubsector	Start	End		
	1023	3FF000	3FFFFF		
	1022	3FE000	3FEFFF		
63					
03	1010	3F2000	3F2FFF		
	1009	3F1000	3F1FFF		
	1008	3F0000	3F0FFF		

Sector	Subsector	Address Range (Byte Addresses in HEX)			
Sector	Subsector	Start	End		
	1007	3EF000	3EFFFF		
	1006	3EE000	3EEFFF		
62					
02	994	3E2000	3E2FFF		
	993	3E1000	3E1FFF		
	992	3E0000	3E0FFF		
	31	1F000	1FFFF		
	30	1E000	1EFFF		
1					
1	18	12000	12FFF		
	17	11000	11FFF		
	16	10000	10FFF		
	15	F000	FFFF		
	14	E000	EFFF		
0					
	2	2000	2FFF		
	1	1000	1FFF		
	0	H'0000000	H'0000FFF		

The following table lists the address range for each sector in EPCQ64 devices.

Table 10: Address Range for Sectors 127..0 and Subsectors 2047..0 in EPCQ64 Devices

Sector	Subsector	Address Range (Byte Addresses in HEX)		
Sector		Start	End	
	2047	7FF000	7FFFF	
	2046	7FE000	7FEFFF	
127			•••	
	2034	7F2000	7F2FFF	
	2033	7F1000	7F1FFF	
	2032	7F0000	7F0FFF	

Contain	Cubaratan	Address Range (Byte Addresses in HEX)		
Sector	Subsector	Start	End	
	1039	40F000	40FFFF	
	1038	40E000	40EFFF	
64				
04	1026	402000	402FFF	
	1025	401000	401FFF	
	1024	400000	400FFF	
	1023	3FF000	3FFFFF	
	1022	3FE000	3FEFFF	
63				
03	1010	3F2000	3F2FFF	
	1009	3F1000	3F1FFF	
	1008	3F0000	3F0FFF	
	1007	3EF000	3EFFFF	
	1006	3EE000	3EEFFF	
62				
02	994	3E2000	3E2FFF	
	993	3E1000	3E1FFF	
	992	3E0000	3E0FFF	
	31	1F000	1FFFF	
	30	1E000	1EFFF	
1			•••	
1	18	12000	12FFF	
	17	11000	11FFF	
	16	10000	10FFF	
	15	F000	FFFF	
	14	E000	EFFF	
0			•••	
U	2	2000	2FFF	
	1	1000	1FFF	
	0	н'000000	H'0000FFF	

The following table lists the address range for each sector in EPCQ128 devices.

Table 11: Address Range for Sectors 255..0 and Subsectors 4095..0 in EPCQ128 Devices

Coston	Cubacator	Address Range (Byte Addresses in HEX)		
Sector	Subsector	Start	End	
	4095	FFF000	FFFFFF	
	4094	FFE000	FFEFFF	
255				
233	4082	FF2000	FF2FFF	
	4081	FF1000	FF1FFF	
	4080	FF0000	FF0FFF	
	4079	FEF000	FEFFFF	
	4078	FEE000	FEEFFF	
254				
234	4066	FE2000	FE2FFF	
	4065	FE1000	FE1FFF	
	4064	FE0000	FE0FFF	
	2079	81F000	81FFFF	
	2078	81E000	81EFFF	
129				
129	2066	812000	812FFF	
	2065	811000	811FFF	
	2064	810000	810FFF	
	2063	80F000	80FFFF	
	2062	80E000	80EFFF	
128				
120	2050	802000	802FFF	
	2049	801000	801FFF	
	2048	800000	800FFF	

Coston	Cubaaatau	Address Range (Byte Addresses in HEX)		
Sector	Subsector	Start	End	
	2047	7FF000	7FFFFF	
	2046	7FE000	7FEFFF	
127				
127	2034	7F2000	7F2FFF	
	2033	7F1000	7F1FFF	
	2032	7F0000	7F0FFF	
	1039	40F000	40FFFF	
	1038	40E000	40EFFF	
64				
04	1026	402000	402FFF	
	1025	401000	401FFF	
	1024	400000	400FFF	
	1023	3FF000	3FFFFF	
	1022	3FE000	3FEFFF	
63				
03	1010	3F2000	3F2FFF	
	1009	3F1000	3F1FFF	
	1008	3F0000	3F0FFF	
	1007	3EF000	3EFFFF	
	1006	3EE000	3EEFFF	
62				
02	994	3E2000	3E2FFF	
	993	3E1000	3E1FFF	
	992	3E0000	3E0FFF	
	31	1F000	1FFFF	
1	30	1E000	1EFFF	
1	18	12000	12FFF	
	17	11000	11FFF	
	16	10000	10FFF	

Sector	Subsector	Address Range (Byte Addresses in HEX)		
Sector		Start	End	
	15	F000	FFFF	
0	14	E000	EFFF	
	2	2000	2FFF	
	1	1000	1FFF	
	0	н'000000	H'0000FFF	

The following table lists the address range for each sector in EPCQ256 devices.

Table 12: Address Range for Sectors 511..0 and Subsectors 8191..0 in EPCQ256 Devices

Sector	Cubaastar	Address Range (Byte Addresses in HEX)	
Sector	Subsector	Start	End
	8191	1FFF000	1FFFFF
	8190	1FFE000	1FFEFFF
511			
511	8178	1FF2000	1FF2FFF
	8177	1FF1000	1FF1FFF
	8176	1FF0000	1FF0FFF
	8175	1FEF000	1FEFFFF
	8174	1FEE000	1FEEFFF
510		• • •	
310	8162	1FE2000	1FE2FFF
	8161	1FE1000	1FE1FFF
	8160	1FE0000	1FE0FFF
	4127	101F000	101FFFF
	4126	101E000	101EFFF
257		• • •	
237	4114	1012000	1012FFF
	4113	1011000	1011FFF
	4112	1010000	1010FFF

Conton	Cubaaatan	Address Range (Byte Addresses in HEX)		
Sector	Subsector	Start	End	
	4111	100F000	100FFFF	
	4110	100E000	100EFFF	
256				
230	4098	1002000	1002FFF	
	4097	1001000	1001FFF	
	4096	1000000	1000FFF	
	4095	FFF000	FFFFFF	
	4094	FFE000	FFEFFF	
255				
233	4082	FF2000	FF2FFF	
	4081	FF1000	FF1FFF	
	4080	FF0000	FF0FFF	
	4079	FEF000	FEFFFF	
	4078	FEE000	FEEFFF	
254				
234	4066	FE2000	FE2FFF	
	4065	FE1000	FE1FFF	
	4064	FE0000	FE0FFF	
	2079	81F000	81FFFF	
	2078	81E000	81EFFF	
129				
12)	2066	812000	812FFF	
	2065	811000	811FFF	
	2064	810000	810FFF	
	2063	80F000	80FFFF	
	2062	80E000	80EFFF	
128				
120	2050	802000	802FFF	
	2049	801000	801FFF	
	2048	800000	800FFF	

Coston	Cubaaatan	Address Range (Byte Addresses in HEX)		
Sector	Subsector	Start	End	
	2047	7FF000	7FFFFF	
	2046	7FE000	7FEFFF	
127				
127	2034	7F2000	7F2FFF	
	2033	7F1000	7F1FFF	
	2032	7F0000	7F0FFF	
	1039	40F000	40FFFF	
	1038	40E000	40EFFF	
64				
04	1026	402000	402FFF	
	1025	401000	401FFF	
	1024	400000	400FFF	
	1023	3FF000	3FFFFF	
	1022	3FE000	3FEFFF	
63				
03	1010	3F2000	3F2FFF	
	1009	3F1000	3F1FFF	
	1008	3F0000	3F0FFF	
	1007	3EF000	3EFFFF	
	1006	3EE000	3EEFFF	
62				
02	994	3E2000	3E2FFF	
	993	3E1000	3E1FFF	
	992	3E0000	3E0FFF	
	31	1F000	1FFFF	
	30	1E000	1EFFF	
1				
1	18	12000	12FFF	
	17	11000	11FFF	
	16	10000	10FFF	

Sector	Subsector	Address Range (Byte Addresses in HEX)		
		Start	End	
	15	F000	FFFF	
	14	E000	EFFF	
0				
U	2	2000	2FFF	
	1	1000	1FFF	
	0	н'000000	H'0000FFF	

The following table lists the address range for each sector in EPCQ512 devices.

Table 13: Address Range for Sectors 1023..0 and Subsectors 16383..0 in EPCQ512 Devices—Preliminary

Conton	Cubaaatan	Address Range (Byt	Address Range (Byte Addresses in HEX)		
Sector	Subsector	Start	End		
	16383	3FFF000	3FFFFF		
1023					
	16368	3FF0000	3FF0FFF		
	8191	1FFF000	1FFFFF		
511	•••				
	8176	FF0000	1FF0FFF		
	4095	FFF000	FFFFFF		
255	•••				
	4080	FF0000	FF0FFF		
	2047	7FF000	7FFFF		
127	•••				
	2032	7F0000	7F0FFF		
	•••				
	1023	3FF000	3FFFFF		
63	•••				
	1008	3F0000	3F0FFF		
	•••				

Quad-Serial Configuration (EPCQ) Devices Datasheet

Altera Corporation

Sector	Subsector	Address Range (Byte Addresses in HEX)		
		Start	End	
0	15	F000	FFFF	
	0	н'0000000	H'0000FFF	

Memory Operations

This section describes the operations that you can use to access the memory in EPCQ devices. When performing the operation, addresses and data are shifted in and out of the device serially, with the MSB first.

Timing Requirements

When the active low chip select (ncs) signal is driven low, shift in the operation code into the EPCQ device using the serial data (DATA) pin. Each operation code bit is latched into the EPCQ device on the rising edge of the DCLK.

While executing an operation, shift in the desired operation code, followed by the address or data bytes as listed in **Table 14**. The device must drive the nCS pin high after the last bit of the operation sequence is shifted in.

For read operations, the data read is shifted out on the DATA pin. You can drive the nCS pin high when any bit of the data is shifted out.

For write and erase operations, drive the nCS pin high at a byte boundary, that is in a multiple of eight clock pulses. Otherwise, the operation is rejected and not executed.

All attempts to access the memory contents while a write or erase cycle is in progress are rejected, and the write or erase cycle continues unaffected.

Addressing Mode

The 3-byte addressing mode is enabled by default. To access the EPCQ256 or EPCQ512 memory, you must use the 4-byte addressing mode. In 4-byte addressing mode, the address width is 32-bit address. To enable the 4-byte addressing mode, you must execute the 4BYTEADDREN operation. This addressing mode takes effect immediately after you execute the 4BYTEADDREN operation and remains active in the subsequent power-ups. To disable the 4-byte addressing mode, you must execute the 4BYTEADDREX operation.

Note: If you are using the Quartus[®] II software or the SRunner software to program the EPCQ256 or EPCQ512 device, you do not need to execute the 4BYTEADDREN operation. These software automatically enable the 4-byte addressing mode when programming the device.

Summary of Operation Codes

The following table lists the supported operations.

Note: The values in **Table 14** are finalized for EPCQ16, EPCQ32, EPCQ64, EPCQ128, and EPCQ256 devices. The values for EPCQ512 devices are pending characterization.

Altera Corporation

Table 14: Operation Codes for EPCQ Devices

Operation	Operation Code ⁽⁸⁾	Address Bytes	Dummy Cycles	Data Bytes	DCLK f _{MAX} (MHz)
Read status	b'0000 0101	0	0	1 to infinite	100
Read bytes	b'0000 0011	3 or 4	0	1 to infinite	50
Read device identification	b'1001 111x	0	2	1 to 20 ⁽⁹⁾	100
Fast read	b'0000 1011	3 or 4	8 (10)	1 to infinite	100
Extended dual input fast read	b'1011 1011	3 or 4	8 (10)	1 to infinite	100
Extended quad input fast read	b'1110 1011	3 or 4	10 (10)	1 to infinite	100
Write enable	b'0000 0110	0	0	0	100
Write disable	b'0000 0100	0	0	0	100
Write status	b'0000 0001	0	0	1	100
Write bytes	b'0000 0010	3 or 4	0	1 to 256 (11)	100
Write non-volatile configura- tion register	b'1011 0001	0	0	2	100
Extended dual input fast write bytes	b'1101 0010	3 or 4	0	1 to 256 ⁽¹¹⁾	100
Extended quad input fast write bytes	b'0001 0010	3 or 4	0	1 to 256 ⁽¹¹⁾	100
Erase bulk	b'1100 0111	0	0	0	100
Erase sector	b'1101 1000	3 or 4	0	0	100
4BYTEADDREN (12)	b'1011 0111	0	0	0	100
4BYTEADDREX (12)	b'1110 1001	0	0	0	100

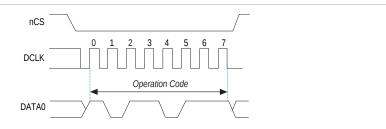
⁽⁸⁾ List MSB first and LSB last.

⁽⁹⁾ The status register, data, or read device identification is read out at least once on the DATA1 pin and is continuously read out until the nCS pin is driven high.

You can configure the number of dummy cycles.

A write bytes operation requires at least one data byte on the DATA1 pin. If more than 256 bytes are sent to the device, only the last 256 bytes are written to the memory.

 $^{^{\}left(12\right)}$ This operation is applicable for EPCQ256 and EPCQ512 devices only.


4BYTEADDREN and **4BYTEADDREX** Operations

To enable 4BYTEADDREN or 4BYTEADDREX operations, you can select the device by driving the nCS signal low, followed by shifting in the operation code through DATAO.

Note: You must execute a write enable operation before you can enable the 4BYTEADDREN or 4BYTEADDREX operation.

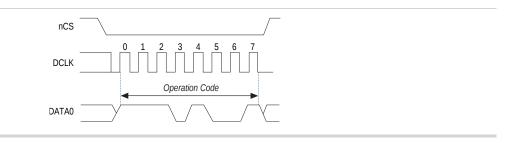
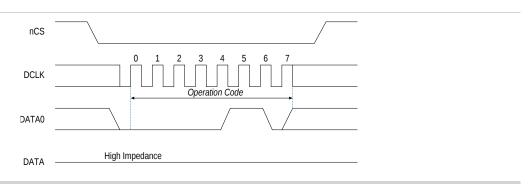

The following figure shows the timing diagram for the 4BYTEADDREN operation.

Figure 1: 4BYTEADDREN Timing Diagram

The following figure shows the timing diagram for the 4BYTEADDREX operation.

Figure 2: 4BYTEADDREX Timing Diagram

Related Information


Write Enable Operation on page 16

Write Enable Operation

When you enable the write enable operation, the write enable latch bit is set to 1 in the status register. You must execute this operation before the write bytes, write status, erase bulk, erase sector, extended dual input fast write bytes, extended quad input fast write bytes, 4BYTEADDREN, and 4BYTEADDREX operations.

The following figure shows the timing diagram for the write enable operation.

Figure 3: Write Enable Operation Timing Diagram

Write Non-Volatile Configuration Register Operation

You need to write the non-volatile configuration registers for EPCQ devices for different configuration schemes. If you are using the .jic file, the Quartus II programmer sets the number of dummy clock cycles and address bytes according to Table 15. If you are using an external programmer tools, you must set the non-volatile configuration registers.

Table 15: Dummy Clock Cycles and Address Bytes for the Non-Volatile Configuration Register Operation

FPGA Device	Address Bytes ⁽¹³⁾	Dum	my Clock Cycles
FFGA Device	Address bytes	AS x1	AS x4
• Arria GX	3-byte addressing	8	_
 Arria II Cyclone Cyclone II Cyclone IVI Stratix Stratix GX Stratix II Stratix II GX Stratix III Stratix IV 	4-byte addressing	8	_
Arria V	3-byte addressing	12	12
Cyclone V Stratix V	4-byte addressing	4	10

Quad-Serial Configuration (EPCQ) Devices Datasheet

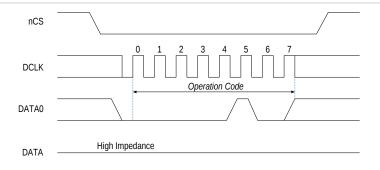
Altera Corporation

 $^{^{\}left(13\right)}$ The 4-byte addressing mode is used for EPCQ256 and EPCQ512 devices.

To set the non-volatile configuration register, follow these steps:

- **1.** Execute the write enable operation.
- **2.** Execute the write non-volatile configuration register operation.
- **3.** Set the 16-bit register value.

Set the 16-bit register value as b'1111 111y xxxx 1111 where y is the address byte (0 for 4-byte addressing and 1 for 3-byte addressing) and xxxx is the dummy clock value. When the xxxx value is from 0001 to 1110, the dummy clock value is from 1 to 14. When xxxx is 0000 or 1111, the dummy clock value is at the default value, which is 8 for AS x1 mode and 10 for AS x4 mode.


Write Disable Operation

The write disable operation resets the write enable latch bit in the status register. To prevent the memory from being written unintentionally, the write enable latch bit is automatically reset when implementing the write disable operation, and under the following conditions:

- Power up
- Write bytes operation completion
- Write status operation completion
- Erase bulk operation completion
- Erase sector operation completion
- Extended dual input fast write bytes operation completion
- Extended quad input fast write bytes operation completion

The following figure shows the timing diagram for the write disable operation.

Figure 4: Write Disable Operation Timing Diagram

Read Status Operation

You can use the read status operation to read the status register. The following figures show the status bits in the status register of the EPCQ devices.

Figure 5: EPCQ16 and EPCQ32 Status Register Status Bits

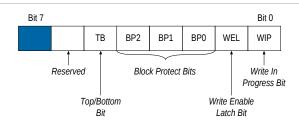
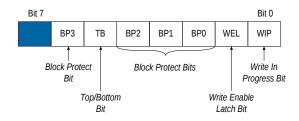



Figure 6: EPCQ64, EPCQ128, EPCQ256, and EPCQ512 Status Register Status Bits

If you set the write in progress bit to 1, the EPCQ device executes a write or erase cycle and 0 indicates that no write or erase cycle is in progress.

If you set the write enable latch bit to 0, the EPCQ device rejects a write or erase cycle. You must set the write enable latch bit to 1 before every write bytes, write status, erase bulk, and erase sector operations.

Use the top or bottom bit (TB bit) with the block protect bits to determine that the protected area starts from the top or bottom of the memory array. When the top or bottom bit is set to 0, the protected area starts from the top of the memory array. When the top or bottom bit is set to 1, the protected area starts from the bottom of the memory array.

The non-volatile block protect bits determine the area of the memory protected from being written or erased unintentionally. **Table 16** through **Table 27** list the protected area in EPCQ16, EPCQ32, EPCQ64, EPCQ128, EPCQ256, and EPCQ512 devices with reference to the block protect bits. The erase bulk operation is only available when all the block protect bits are set to 0. When any of the block protect bits are set to 1, the relevant area is protected from being written by a write bytes operation or erased by an erase sector operation.

Block Protection Bits in EPCQ16 when TB Bit is Set to 0

Table 16: Block Protection Bits in EPCQ16 when TB Bit is Set to 0

S	tatus Register	Content	Memory Content		
TB Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area
0	0	0	0	None	All sectors
0	0	0	1	Sector 31	Sectors (0 to 30)
0	0	1	0	Sectors (30 to 31)	Sectors (0 to 29)
0	0	1	1	Sectors (28 to 31)	Sectors (0 to 27)

S	tatus Register	Content	Memory Content		
TB Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area
0	1	0	0	Sectors (24 to 31)	Sectors (0 to 23)
0	1	0	1	Sectors (16 to 31)	Sectors (0 to 15)
0	1	1	0	All sectors	None
0	1	1	1	All sectors	None

Block Protection Bits in EPCQ16 when TB Bit is Set to 1

Table 17: Block Protection Bits in EPCQ16 when TB Bit is Set to 1

9	Status Register	Content	Memory Content		
TB Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area
1	0	0	0	None	All sectors
1	0	0	1	Sector 0	Sectors (1 to 31)
1	0	1	0	Sectors (0 to 1)	Sectors (2 to 31)
1	0	1	1	Sectors (0 to 3)	Sectors (4 to 31)
1	1	0	0	Sectors (0 to 7)	Sectors (8 to 31)
1	1	0	1	Sectors (0 to 15)	Sectors (16 to 31)
1	1	1	0	All sectors	None
1	1	1	1	All sectors	None

Block Protection Bits in EPCQ32 when TB Bit is Set to 0

Table 18: Block Protection Bits in EPCQ32 when TB Bit is Set to 0

9	Status Register	Content	Memory Content		
TB Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area
0	0	0	0	None	All sectors
0	0	0	1	Sector 63	Sectors (0 to 62)
0	0	1	0	Sectors (62 to 63)	Sectors (0 to 61)
0	0	1	1	Sectors (60 to 63)	Sectors (0 to 59)
0	1	0	0	Sectors (56 to 63)	Sectors (0 to 55)
0	1	0	1	Sectors (48 to 63)	Sectors (0 to 47)
0	1	1	0	Sectors (32 to 63)	Sectors (0 to 31)
0	1	1	1	All sectors	None

Altera Corporation

Block Protection Bits in EPCQ32 when TB Bit is Set to 1

Table 19: Block Protection Bits in EPCQ32 when TB Bit is Set to 1

S	tatus Register	Content	Memory Content		
TB Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area
1	0	0	0	None	All sectors
1	0	0	1	Sector 0	Sectors (1 to 63)
1	0	1	0	Sectors (0 to 1)	Sectors (2 to 63)
1	0	1	1	Sectors (0 to 3)	Sectors (4 to 63)
1	1	0	0	Sectors (0 to 7)	Sectors (8 to 63)
1	1	0	1	Sectors (0 to 15)	Sectors (16 to 63)
1	1	1	0	Sectors (0 to 31)	Sectors (32 to 63)
1	1	1	1	All sectors	None

Block Protection Bits in EPCQ64 when TB Bit is Set to 0

Table 20: Block Protection Bits in EPCQ64 when TB Bit is Set to 0

	Status Re	gister Con	tent		Memory	Content
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area
0	0	0	0	0	None	All sectors
0	0	0	0	1	Sector 127	Sectors (0 to 126)
0	0	0	1	0	Sectors (126 to 127)	Sectors (0 to 125)
0	0	0	1	1	Sectors (124 to 127)	Sectors (0 to 123)
0	0	1	0	0	Sectors (120 to 127)	Sectors (0 to 119)
0	0	1	0	1	Sectors (112 to 127)	Sectors (0 to 111)
0	0	1	1	0	Sectors (96 to 127)	Sectors (0 to 95)
0	0	1	1	1	Sectors (64 to 127)	Sectors (0 to 63)
0	1	0	0	0	All sectors	None
0	1	0	0	1	All sectors	None
0	1	0	1	0	All sectors	None
0	1	0	1	1	All sectors	None
0	1	1	0	0	All sectors	None
0	1	1	0	1	All sectors	None
0	1	1	1	0	All sectors	None

	Status Re	gister Con	tent		Memory	Content
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area
0	1	1	1	1	All sectors	None

Block Protection Bits in EPCQ64 when TB Bit is Set to 1

Table 21: Block Protection Bits in EPCQ64 when TB Bit is Set to 1

	Status Re	gister Con	tent		Memory Content		
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area	
1	0	0	0	0	None	All sectors	
1	0	0	0	1	Sector 0	Sectors (1 to 127)	
1	0	0	1	0	Sectors (0 to 1)	Sectors (2 to 127)	
1	0	0	1	1	Sectors (0 to 3)	Sectors (4 to 127)	
1	0	1	0	0	Sectors (0 to 7)	Sectors (8 to 127)	
1	0	1	0	1	Sectors (0 to 15)	Sectors (16 to 127)	
1	0	1	1	0	Sectors (0 to 31)	Sectors (32 to 127)	
1	0	1	1	1	Sectors (0 to 63)	Sectors (64 to 127)	
1	1	0	0	0	All sectors	None	
1	1	0	0	1	All sectors	None	
1	1	0	1	0	All sectors	None	
1	1	0	1	1	All sectors	None	
1	1	1	0	0	All sectors	None	
1	1	1	0	1	All sectors	None	
1	1	1	1	0	All sectors	None	
1	1	1	1	1	All sectors	None	

Block Protection Bits in EPCQ128 when TB Bit is Set to 0

Table 22: Block Protection Bits in EPCQ128 when TB Bit is Set to 0

	Status Re	gister Con	tent		Memory Content		
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area	
0	0	0	0	0	None	All sectors	
0	0	0	0	1	Sector 255	Sectors (0 to 254)	
0	0	0	1	0	Sectors (254 to 255)	Sectors (0 to 253)	
0	0	0	1	1	Sectors (252 to 255)	Sectors (0 to 251)	

Altera Corporation

	Status Re	gister Con	tent		Memory Content		
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area	
0	0	1	0	0	Sectors (248 to 255)	Sectors (0 to 247)	
0	0	1	0	1	Sectors (240 to 255)	Sectors (0 to 239)	
0	0	1	1	0	Sectors (224 to 255)	Sectors (0 to 223)	
0	0	1	1	1	Sectors (192 to 255)	Sectors (0 to 191)	
0	1	0	0	0	Sectors (128 to 255)	Sectors (0 to 127)	
0	1	0	0	1	All sectors	None	
0	1	0	1	0	All sectors	None	
0	1	0	1	1	All sectors	None	
0	1	1	0	0	All sectors	None	
0	1	1	0	1	All sectors	None	
0	1	1	1	0	All sectors	None	
0	1	1	1	1	All sectors	None	

Block Protection Bits in EPCQ128 when TB Bit is Set to 1

Table 23: Block Protection Bits in EPCQ128 when TB Bit is Set to 1

	Status Re	gister Con	tent		Memory Content		
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BPO Bit	Protected Area	Unprotected Area	
1	0	0	0	0	None	All sectors	
1	0	0	0	1	Sector 0	Sectors (1 to 255)	
1	0	0	1	0	Sectors (0 to 1)	Sectors (2 to 255)	
1	0	0	1	1	Sectors (0 to 3)	Sectors (4 to 255)	
1	0	1	0	0	Sectors (0 to 7)	Sectors (8 to 255)	
1	0	1	0	1	Sectors (0 to 15)	Sectors (16 to 255)	
1	0	1	1	0	Sectors (0 to 31)	Sectors (32 to 255)	
1	0	1	1	1	Sectors (0 to 63)	Sectors (64 to 255)	
1	1	0	0	0	Sectors (0 to 127)	Sectors (128 to 255)	
1	1	0	0	1	All sectors	None	
1	1	0	1	0	All sectors	None	
1	1	0	1	1	All sectors	None	
1	1	1	0	0	All sectors	None	
1	1	1	0	1	All sectors	None	

	Status Re	gister Con	tent		Memory Content		
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area	
1	1	1	1	0	All sectors	None	
1	1	1	1	1	All sectors	None	

Block Protection Bits in EPCQ256 when TB Bit is Set to 0

Table 24: Block Protection Bits in EPCQ256 when TB Bit is Set to 0

	Status Re	gister Con	tent		Memory Content		
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area	
0	0	0	0	0	None	All sectors	
0	0	0	0	1	Sector 511	Sectors (0 to 510)	
0	0	0	1	0	Sectors (510 to 511)	Sectors (0 to 509)	
0	0	0	1	1	Sectors (508 to 511)	Sectors (0 to 507)	
0	0	1	0	0	Sectors (504 to 511)	Sectors (0 to 503)	
0	0	1	0	1	Sectors (496 to 511)	Sectors (0 to 495)	
0	0	1	1	0	Sectors (480 to 511)	Sectors (0 to 479)	
0	0	1	1	1	Sectors (448 to 511)	Sectors (0 to 447)	
0	1	0	0	0	Sectors (384 to 511)	Sectors (0 to 383)	
0	1	0	0	1	Sectors (256 to 511)	Sectors (0 to 255)	
0	1	0	1	0	All sectors	None	
0	1	0	1	1	All sectors	None	
0	1	1	0	0	All sectors	None	
0	1	1	0	1	All sectors	None	
0	1	1	1	0	All sectors	None	
0	1	1	1	1	All sectors	None	

Block Protection Bits in EPCQ256 when TB Bit is Set to 1

Table 25: Block Protection Bits in EPCQ256 when TB Bit is Set to 1

	Status Re	gister Con	tent		Memory Content		
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area	
1	0	0	0	0	None	All sectors	
1	0	0	0	1	Sector 0	Sectors (1 to 511)	
1	0	0	1	0	Sectors (0 to 1)	Sectors (2 to 511)	

Altera Corporation

	Status Re	gister Con	tent		Memory Content		
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area	
1	0	0	1	1	Sectors (0 to 3)	Sectors (4 to 511)	
1	0	1	0	0	Sectors (0 to 7)	Sectors (8 to 511)	
1	0	1	0	1	Sectors (0 to 15)	Sectors (16 to 511)	
1	0	1	1	0	Sectors (0 to 31)	Sectors (32 to 511)	
1	0	1	1	1	Sectors (0 to 63)	Sectors (64 to 511)	
1	1	0	0	0	Sectors (0 to 127)	Sectors (128 to 511)	
1	1	0	0	1	Sectors (0 to 255)	Sectors (256 to 511)	
1	1	0	1	0	All sectors	None	
1	1	0	1	1	All sectors	None	
1	1	1	0	0	All sectors	None	
1	1	1	0	1	All sectors	None	
1	1	1	1	0	All sectors	None	
1	1	1	1	1	All sectors	None	

Block Protection Bits in EPCQ512 when TB is Set to 0

Table 26: Block Protection Bits in EPCQ512 when TB Bit is Set to 0

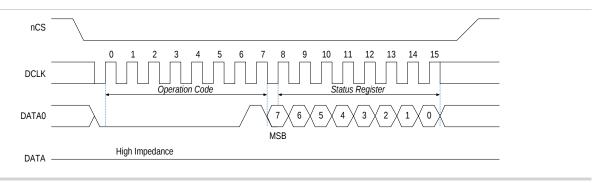
	Status Re	gister Con	tent		Memory Content		
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area	
0	0	0	0	0	None	All sectors	
0	0	0	0	1	Sector 1023	Sectors (0 to 1022)	
0	0	0	1	0	Sectors (1022 to 1023)	Sectors (0 to 1021)	
0	0	0	1	1	Sectors (1020 to 1023)	Sectors (0 to 1019)	
0	0	1	0	0	Sectors (1016 to 1023)	Sectors (0 to 1015)	
0	0	1	0	1	Sectors (1008 to 1023)	Sectors (0 to 1007)	
0	0	1	1	0	Sectors (992 to 1023)	Sectors (0 to 991)	
0	0	1	1	1	Sectors (960 to 1023)	Sectors (0 to 959)	
0	1	0	0	0	Sectors (896 to 1023)	Sectors (0 to 895)	
0	1	0	0	1	Sectors (768 to 1023)	Sectors (0 to 767)	
0	1	0	1	0	Sectors (512 to 1023)	Sectors (0 to 511)	
0	1	0	1	1	All sectors	None	
0	1	1	0	0	All sectors	None	

	Status Re	gister Con	tent		Memory Content		
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area	
0	1	1	0	1	All sectors	None	
0	1	1	1	0	All sectors	None	
0	1	1	1	1	All sectors	None	

Block Protection Bits in EPCQ512 when TB is Set to 1

Table 27: Block Protection Bits in EPCQ512 when TB Bit is Set to 1

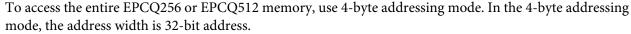
	Status Re	gister Con	tent		Memory Content		
TB Bit	BP3 Bit	BP2 Bit	BP1 Bit	BPO Bit	Protected Area	Unprotected Area	
1	0	0	0	0	None	All sectors	
1	0	0	0	1	Sector 0	Sectors (1 to 1023)	
1	0	0	1	0	Sectors (0 to 1)	Sectors (2 to 1023)	
1	0	0	1	1	Sectors (0 to 3)	Sectors (4 to 1023)	
1	0	1	0	0	Sectors (0 to 7)	Sectors (8 to 1023)	
1	0	1	0	1	Sectors (0 to 15)	Sectors (16 to 1023)	
1	0	1	1	0	Sectors (0 to 31)	Sectors (32 to 1023)	
1	0	1	1	1	Sectors (0 to 63)	Sectors (64 to 1023)	
1	1	0	0	0	Sectors (0 to 127)	Sectors (128 to 1023)	
1	1	0	0	1	Sectors (0 to 255)	Sectors (256 to 1023)	
1	1	0	1	0	Sectors (0 to 511)	Sectors (512 to 1023)	
1	1	0	1	1	All sectors	None	
1	1	1	0	0	All sectors	None	
1	1	1	0	1	All sectors	None	
1	1	1	1	0	All sectors	None	
1	1	1	1	1	All sectors	None	

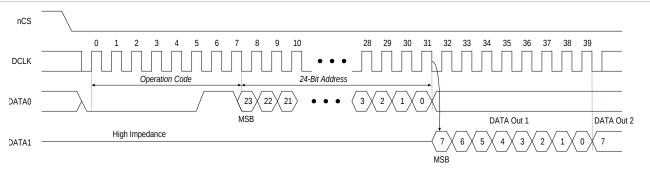

Write Status Operation

The write status operation does not affect the write enable latch and write in progress bits. You can use the write status operation to set the status register block protection and top or bottom bits. Therefore, you can implement this operation to protect certain memory sectors. Refer to **Table 16** through **Table 25**. After setting the block protect bits, the protected memory sectors are treated as read-only memory. You must execute the write enable operation before the write status operation.

The following figure shows the timing diagram for the write status operation.

Figure 7: Write Status Operation Timing Diagram


Immediately after the nCS signal drives high, the device initiates the self-timed write status cycle. The self-timed write status cycle usually takes 5 ms for all EPCQ devices and is guaranteed to be less than 8 ms. For details about t_{WS} , refer to **Table 29**. You must account for this delay to ensure that the status register is written with the desired block protect bits. Alternatively, you can check the write in progress bit in the status register by executing the read status operation while the self-timed write status cycle is in progress. Set the write in progress bit to 1 during the self-timed write status cycle and 0 when it is complete.


Read Bytes Operation

When you execute the read bytes operation, you first shift in the read bytes operation code, followed by a 3-byte addressing mode (A[31..0]) or a 4-byte addressing mode (A[31..0]). Each address bit must be latched in on the rising edge of the DCLK signal. After the address is latched in, the memory contents of the specified address are shifted out serially on the DATA1 pin, beginning with the MSB. For reading Raw Programming Data File (.rpd), the content is shifted out serially beginning with the LSB. Each data bit is shifted out on the falling edge of the DCLK signal. The maximum DCLK frequency during the read bytes operation is 50 MHz.

The following figure shows the timing diagram for the read bytes operation.

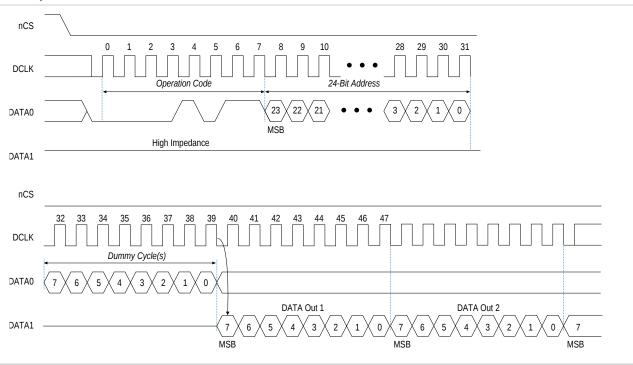
Figure 8: Read Bytes Operation Timing Diagram

The first byte address can be at any location. The device automatically increases the address to the next higher address after shifting out each byte of data. Therefore, the device can read the whole memory with a single read bytes operation. When the device reaches the highest address, the address counter restarts at 0x000000, allowing the memory contents to be read out indefinitely until the read bytes operation is

Quad-Serial Configuration (EPCQ) Devices Datasheet

Altera Corporation

terminated by driving the nCS signal high. If the read bytes operation is shifted in while a write or erase cycle is in progress, the operation is not executed and does not affect the write or erase cycle in progress.


Fast Read Operation

When you execute the fast read operation, you first shift in the fast read operation code, followed by a 3-byte addressing mode (A[31..0]), and dummy cycle(s) with each bit being latched-in during the rising edge of the DCLK signal. Then, the memory contents at that address is shifted out on DATA1 with each bit being shifted out at a maximum frequency of 100 MHz during the falling edge of the DCLK signal.

The following figure shows the operation sequence of the fast read operation.

Figure 9: Fast Read Operation Timing Diagram

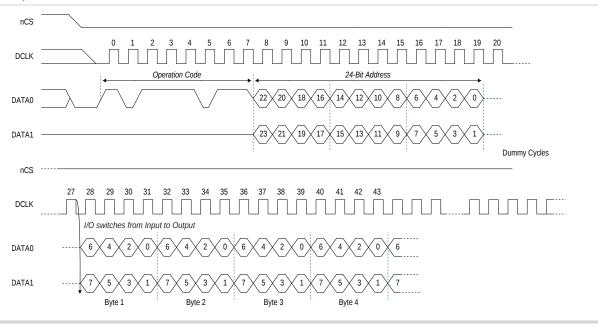
To access the entire EPCQ256 or EPCQ512 memory, use 4-byte addressing mode. In the 4-byte addressing mode, the address width is 32-bit address.

The first byte address can be at any location. The device automatically increases the address to the next higher address after shifting out each byte of data. Therefore, the device can read the whole memory with a single fast read operation. When the device reaches the highest address, the address counter restarts at 0×000000 , allowing the read sequence to continue indefinitely.

You can terminate the fast read operation by driving the nos signal high at any time during data output. If the fast read operation is shifted in while an erase, program, or write cycle is in progress, the operation is not executed and does not affect the erase, program, or write cycle in progress.

Extended Dual Input Fast Read Operation

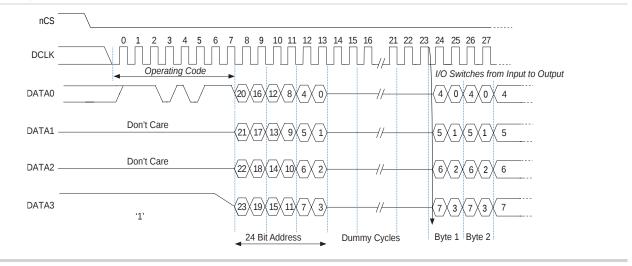
This operation is similar to the fast read operation except that the data and addresses are shifted in and out on the DATA1 pins.


Altera Corporation

The following figure shows the operation sequence of the extended dual input fast read operation.

Figure 10: Extended Dual Input Fast Read Operation Timing Diagram

To access the entire EPCQ256 or EPCQ512 memory, use 4-byte addressing mode. In the 4-byte addressing mode, the address width is 32-bit address.


Extended Quad Input Fast Read Operation

This operation is similar to the extended dual input fast read operation except that the data and addresses are shifted in and out on the DATAO, DATAI, DATA2, and DATA3 pins.

The following figure shows the operation sequence of the extended quad input fast read operation.

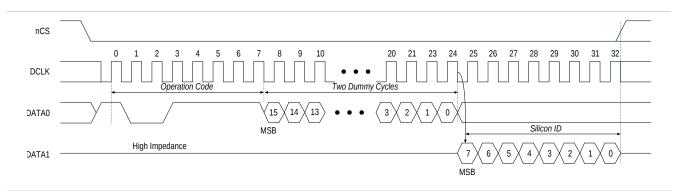
Figure 11: Extended Quad Input Fast Read Operation

To access the entire EPCQ256 or EPCQ512 memory, use 4-byte addressing mode. In the 4-byte addressing mode, the address width is 32-bit address.

Read Device Identification Operation

This operation reads the 8-bit device identification of the EPCQ device from the DATA1 output pin. If this operation is shifted in while an erase or write cycle is in progress, the operation is not executed and does not affect the erase or write cycle in progress.

The following table lists the EPCQ device identifications.


Table 28: EPCQ Device Identification

EPCQ Device	Silicon ID (Binary Value)
EPCQ16	b'0001 0101
EPCQ32	b'0001 0110
EPCQ64	b'0001 0111
EPCQ128	b'0001 1000
EPCQ256	b'0001 1001
EPCQ512	b'0010 0000

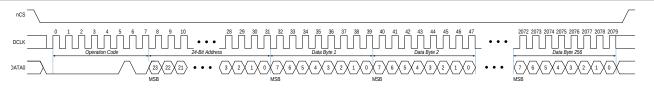
The 8-bit device identification of the EPCQ device is shifted out on the DATA1 pin on the falling edge of the DCLK signal.

The following figure shows the operation sequence of the read device identification operation.

Figure 12: Read Device Identification Operation Timing Diagram

Write Bytes Operation

This operation allows bytes to be written to the memory. You must execute the write enable operation before the write bytes operation. After the write bytes operation is completed, the write enable latch bit in the status register is set to 0.


When you execute the write bytes operation, you shift in the write bytes operation code, followed by a 3byte addressing mode (A[23..0]) or a 4-byte addressing mode (A[31..0]), and at least one data byte on the DATAO pin. If the eight LSBs (A[7..0]) are not all 0, all sent data that goes beyond the end of the current page is not written into the next page. Instead, this data is written at the start address of the same page. You must ensure the nCS signal is set low during the entire write bytes operation.

The following figure shows the operation sequence of the write bytes operation.

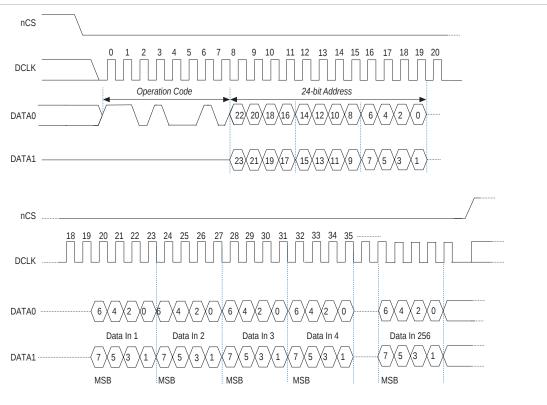
Figure 13: Write Bytes Operation Timing Diagram

To access the entire EPCQ256 or EPCQ512 memory, use 4-byte addressing mode. In the 4-byte addressing mode, the address width is 32-bit address.

If more than 256 data bytes are shifted into the EPCQ device with a write bytes operation, the previously latched data is discarded and the last 256 bytes are written to the page. However, if less than 256 data bytes are shifted into the EPCQ device, they are guaranteed to be written at the specified addresses and the other bytes of the same page are not affected.

The device initiates a self-timed write cycle immediately after the ncs signal is driven high. For details about the self-timed write cycle time, refer to t_{WB} in **Table 29**. You must account for this amount of delay before another page of memory is written. Alternatively, you can check the write in progress bit in the status register by executing the read status operation while the self-timed write cycle is in progress. The write in progress bit is set to 1 during the self-timed write cycle and 0 when it is complete.

Note: You must erase all the memory bytes of EPCQ devices before you implement the write bytes operation. You can erase all the memory bytes by executing the erase sector operation in a sector or the erase bulk operation throughout the entire memory


Extended Dual Input Fast Write Bytes Operation

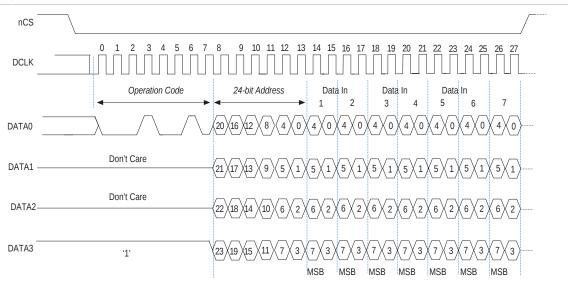
This operation is similar to the write bytes operation except that the data and addresses are shifted in on the DATAO and DATAI pins.

The following figure shows the operation sequence of the extended dual input fast write bytes operation.

Figure 14: Extended Dual Input Fast Write Bytes Timing Diagram

To access the entire EPCQ256 or EPCQ512 memory, use 4-byte addressing mode. In the 4-byte addressing mode, the address width is 32-bit address.

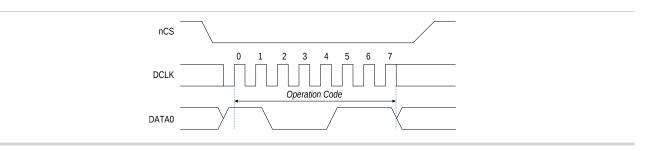
Extended Quad Input Fast Write Bytes Operation


This operation is similar to the extended dual input fast write bytes operation except that the data and addresses are shifted in on the DATAO, DATA1, DATA2, and DATA3 pins.

The following figure shows the operation sequence of the extended quad input fast write bytes operation.

Figure 15: Extended Quad Input Fast Write Bytes Operation Timing Diagram

To access the entire EPCQ256 or EPCQ512 memory, use 4-byte addressing mode. In the 4-byte addressing mode, the address width is 32-bit address.


Erase Bulk Operation

This operation sets all the memory bits to 1 or 0xFF. Similar to the write bytes operation, you must execute the write enable operation before the erase bulk operation.

You can implement the erase bulk operation by driving the nCS signal low and then shifting in the erase bulk operation code on the DATAO pin. The nCS signal must be driven high after the eighth bit of the erase bulk operation code has been latched in.

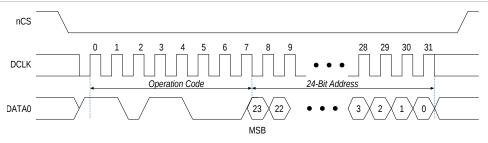
The following figure shows the erase bulk operation.

Figure 16: Erase Bulk Operation Timing Diagram

The device initiates a self-timed erase bulk cycle immediately after the nCS signal is driven high. For details about the self-timed erase bulk cycle time, refer to t_{WB} in Table 29.

You must account for this delay before accessing the memory contents. Alternatively, you can check the write in progress bit in the status register by executing the read status operation while the self-timed erase cycle is in progress. The write in progress bit is set to 1 during the self-timed erase cycle and 0 when it is complete. The write enable latch bit in the status register is reset to 0 before the erase cycle is complete.

Erase Sector Operation


The erase sector operation allows you to erase a certain sector in the EPCQ device by setting all the bits inside the sector to 1 or 0xff. This operation is useful if you want to access the unused sectors as a general purpose memory in your applications. You must execute the write enable operation before the erase sector operation.

When you execute the erase sector operation, you must first shift in the erase sector operation code, followed by the 3-byte addressing mode (A[23..0]) or the 4-byte addressing mode (A[31..0]) of the chosen sector on the DATAO pin. The 3-byte addressing mode or the 4-byte addressing mode for the erase sector operation can be any address inside the specified sector. For details about the sector address range, refer to **Table 8** through **Table 12**. Drive the nCS signal high after the eighth bit of the erase sector operation code has been latched in.

The following figure shows the erase sector operation.

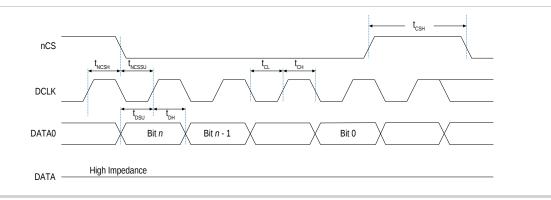
Figure 17: Erase Sector Operation Timing Diagram

To access the entire EPCQ256 or EPCQ512 memory, use 4-byte addressing mode. In the 4-byte addressing mode, the address width is 32-bit address.

The device initiates a self-timed erase sector cycle immediately after the ncs signal is driven high. For details about the self-timed erase sector cycle time, refer to t_{ES} in **Table 29**. You must account for this amount of delay before another page of memory is written. Alternatively, you can check the write in progress bit in the status register by executing the read status operation while the self-timed erase cycle is in progress. The write in progress bit is set to 1 during the self-timed erase cycle and 0 when it is complete. The write enable latch bit in the status register is set to 0 before the self-timed erase cycle is complete.

Power Mode

EPCQ devices support active and standby power modes. When the nCS signal is low, the device is enabled and is in active power mode. The FPGA is configured while the EPCQ device is in active power mode. When the nCS signal is high, the device is disabled but remains in active power mode until all internal cycles are completed, such as write or erase operations. The EPCQ device then goes into standby power mode. The I_{CC1} and I_{CC0} parameters list the V_{CC} supply current when the device is in active and standby power modes. Refer to Table 5.


Timing Information

Note: The values in **Table 29** and **Table 30** are finalized for EPCQ16, EPCQ32, EPCQ64, EPCQ128, and EPCQ256 devices. The values for EPCQ512 devices are pending characterization.

Write Operation Timing

The following figure shows the timing waveform for the write operation.

Figure 18: Write Operation Timing Diagram

The following table lists the EPCQ device timing parameters for the write operation.

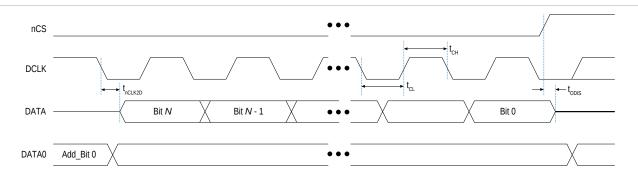
Table 29: Write Operation Parameters

Symbol	Parameter	Min	Typical	Max	Unit
$f_{ m WCLK}$	Write clock frequency (from the FPGA, download cable, or embedded processor) for write enable, write disable, read status, read device identification, write bytes, erase bulk, and erase sector operations	_	_	100	MHz
t _{CH} (14)	DCLK high time	4	_	_	ns
t _{CL} (14)	DCLK low time	4	_	_	ns
t _{NCSSU}	Chip select (ncs) setup time	4	_	_	ns
t _{NCSH}	Chip select (ncs) hold time	4	_	_	ns
$t_{ m DSU}$	DATA[] in setup time before the rising edge on DCLK	2	_	_	ns
t _{DH}	DATA[] hold time after the rising edge on DCLK	3	_	_	ns
t _{CSH}	Chip select (ncs) high time	50	_	_	ns

 $^{^{(14)}\,}$ The value must be larger /than or equal to 1/f $_{WCLK}.$

Send Feedback

Symbol	Parameter	Min	Typical	Max	Unit
t _{WB} (15)	Write bytes cycle time	_	0.6	5	ms
t _{WS} (15)	Write status cycle time	_	1.3	8	ms
	Erase bulk cycle time for EPCQ16		30	60	
	Erase bulk cycle time for EPCQ32		30	60	
t _{EB} (15)	Erase bulk cycle time for EPCQ64		60	250	
EB	Erase bulk cycle time for EPCQ128	_	170	250	S
	Erase bulk cycle time for EPCQ256		240	480	
	Erase bulk cycle time for EPCQ512 (16)		240	480	
	Erase sector cycle time for EPCQ16				
	Erase sector cycle time for EPCQ32			3	s
(15)	Erase sector cycle time for EPCQ64		0.7		
$t_{\rm ES}$ (15)	Erase sector cycle time for EPCQ128	_			
	Erase sector cycle time for EPCQ256				
	Erase sector cycle time for EPCQ512 (16)				
	Erase subsector cycle time for EPCQ16				
	Erase subsector cycle time for EPCQ32				
	Erase subsector cycle time for EPCQ64				
$t_{\rm ESS}$ (15)	Erase subsector cycle time for EPCQ128	<u> </u>	0.3	1.5	s
	Erase subsector cycle time for EPCQ256				
	Erase subsector cycle time for EPCQ512				


Read Operation Timing

The following figure shows the timing waveform for the read operation.

⁽¹⁵⁾ Figure 18 does not show these parameters.

⁽¹⁶⁾ Pending characterization data.

Figure 19: Read Operation Timing Diagram

The following table lists the EPCQ device timing parameters for the read operation.

Table 30: Read Operation Parameters

Symbol	Parameter	Min	Max	Unit
f	Read clock frequency (from the FPGA or embedded processor) for read bytes operations	_	50	MHz
f_{RCLK}	Fast read clock frequency (from the FPGA or embedded processor) for fast read bytes operation	_	100	MHz
t_{CH}	DCLK high time	4	_	ns
t_{CL}	DCLK low time	4	_	ns
t _{ODIS}	Output disable time after read	_	8	ns
t _{nCLK2D}	Clock falling edge to DATA	_	7	ns

Programming and Configuration File Support

The Quartus II software provides programming support for EPCQ devices. When you select an EPCQ device, the Quartus II software automatically generates the Programmer Object File (.pof) to program the device. The software allows you to select the appropriate EPCQ device density that most efficiently stores the configuration data for the selected FPGA.

You can program the EPCQ device in-system by an external microprocessor using the SRunner software driver. The SRunner software driver is developed for embedded EPCQ device programming that you can customize to fit in different embedded systems. The SRunner software driver reads .rpd files and writes to the EPCQ devices. The programming time is comparable to the Quartus II software programming time. Because the FPGA reads the LSB of the .rpd data first during the configuration process, the LSB of .rpd bytes must be shifted out first during the read bytes operation and shifted in first during the write bytes operation.

Writing and reading the **.rpd** file to and from the EPCQ device is different from the other data and address bytes.

During the ISP of an EPCQ device using the USB-Blaster, EthernetBlaster II, or EthernetBlaster download cable, the cable pulls the nconfig signal low to reset the FPGA and overrides the $10\text{-k}\Omega$ pull-down resistor on the nce pin of the FPGA. The download cable then uses the interface pins depending on the selected AS mode to program the EPCQ device. When programming is complete, the download cable releases the interface pins of the EPCQ device and the nce pin of the FPGA and pulses the nconfig signal to start the configuration process.

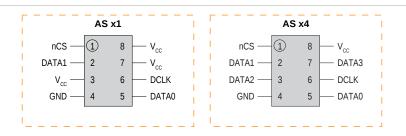
The FPGA can program the EPCQ device in-system using the JTAG interface with the SFL. This solution allows you to indirectly program the EPCQ device using the same JTAG interface that is used to configure the FPGA.

Related Information

- Using the Serial FlashLoader with the Quartus II Software
- Active Serial Memory Interface (ALTASMI_PARALLEL) Megafunction User Guide
- USB-Blaster Download Cable User Guide
- EthernetBlaster II Communications Cable User Guide
- EthernetBlaster Communications Cable User Guide
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices
- Configuration, Design Security, and Remote System Upgrades in Cyclone V Devices
- Configuration, Design Security, and Remote System Upgrades in Stratix V Devices

Pin Information

Figure 20 and **Figure 21** show the EPCQ device in an 8-pin device and a 16-pin device. The following lists the control pins on the EPCQ device:


- Serial data 3 (DATA3)
- Serial data 2 (DATA2)
- Serial data 1 (DATA1)
- Serial data 0 (DATA0)
- Serial clock (DCLK)
- Chip select (ncs)

Related Information

- Configuration, Design Security, and Remote System Upgrades in Arria V Devices
- Configuration, Design Security, and Remote System Upgrades in Cyclone V Devices
- Configuration, Design Security, and Remote System Upgrades in Stratix V Devices

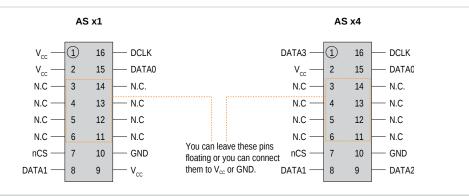

Pin-Out Diagram for EPCQ16 and EPCQ32 Devices

Figure 20: AS x1 and AS x4 Pin-Out Diagrams for EPCQ16 and EPCQ32 Devices

Pin-Out Diagram for EPCQ64, EPCQ128, EPCQ256, and EPCQ512 Devices

Figure 21: AS x1 and AS x4 Pin-Out Diagrams for EPCQ64, EPCQ128, EPCQ256, and EPCQ512 Devices

EPCQ Device Pin Description

The following table lists the pin description of the EPCQ device.

Note: EPCQ512 devices are pending characterization data.

Table 31: EPCQ Device Pin Description

	AS x1 Pin-0	ut Diagram	AS x4 Pin-0	ut Diagram		
Pin Name	Pin Number in 8-Pin SOIC Package	Pin Number in 16-Pin SOIC Package	Pin Number in 8-Pin SOIC Package	Pin Number in 16-Pin SOIC Package	Pin Type	Description
DATA0	5	15	5	15	I/O	For AS x1 mode, use this pin as an input signal pin to write or program the EPCQ device. During write or program operations, the data is latched on the rising edge of the DCLK signal.
						For AS x4 mode, use this pin as an I/O signal pin. During write or program operations, this pin acts as an input pin that serially transfers data into the EPCQ device. The data is latched on the rising edge of the DCLK signal. During read or configuration operations, this pin acts as an output signal pin that serially transfers data out of the EPCQ device to the FPGA. The data is shifted out on the falling edge of the DCLK signal.
						During the extended quad input fast write bytes or extended dual input fast write bytes operations, this pin acts as an input pin that serially transfers data into the EPCQ device. The data is latched on the rising edge of the DCLK signal. During extended dual input fast read or extended quad input fast read operations, this pin acts as an output signal pin that serially transfers data out of the EPCQ device to the FPGA. The data is shifted out on the falling edge of the DCLK signal.

	AS x1 Pin-Out Diagram		AS x4 Pin-Out Diagram			
Pin Name	Pin Number in 8-Pin SOIC Package	Pin Number in 16-Pin SOIC Package	Pin Number in 8-Pin SOIC Package	Pin Number in 16-Pin SOIC Package	Pin Type	Description
DATA1	2	8	2	8	I/O	For AS x1 and x4 modes, use this pin as an output signal pin that serially transfers data out of the EPCQ device to the FPGA during read or configuration operations. The transition of the signal is on the falling edge of the DCLK signal.
						During the extended dual input fast write bytes or extended quad input fast write bytes operation, this pin acts as an input signal pin that serially transfers data into the EPCQ device. The data is latched on the rising edge of the DCLK signal.
						During extended dual input fast read or extended quad input fast read operations, this pin acts as an output signal pin that serially transfer data out of the EPCQ device to the FPGA. The data is shifted out on the falling edge of the DCLK signal. During read, configuration, or program operations, you can enable the EPCQ device by pulling the nCS signal low.
DATA2	_	_	3	9	I/O	For AS x1 mode, extended dual input fast write bytes operation and extended dual input fast read operation, this pin must connect to a 3.3-V power supply.
						For AS x4 mode, use this pin as an output signal that serially transfers data out of the EPCQ device to the FPGA during read or configuration operations. The transition of the signal is on the falling edge of the DCLK signal.
						During the extended quad input fast write bytes operation, this pin acts as an input pin that serially transfers data into the EPCQ device. The data is latched on the rising edge of the DCLK signal. During the extended quad input fast read operation, this pin acts as an output signal pin that serially transfers data out of the EPCQ device to the FPGA. The data is shifted out on the falling edge of the DCLK signal.

	AS x1 Pin-O	ut Diagram	AS x4 Pin-C	ut Diagram		
Pin Name	Pin Number in 8-Pin SOIC Package	Pin Number in 16-Pin SOIC Package	Pin Number in 8-Pin SOIC Package	Pin Number in 16-Pin SOIC Package	Pin Type	Description
DATA3	_	_	7	1	I/O	For AS x1 mode, extended dual input fast write bytes operation and extended dual input fast read operation, this pin must connect to a 3.3-V power supply.
						For AS x4 mode, use this pin as an output signal that serially transfers data out of the EPCQ device to the FPGA during read or configuration operations. The transition of the signal is on the falling edge of the DCLK signal.
						During the extended quad input fast write bytes operation, this pin acts as an input pin that serially transfers data into the EPCQ device. The data is latched on the rising edge of the DCLK signal. During the extended quad input fast read operation, this pin acts as an output signal pin that serially transfers data out of the EPCQ device to the FPGA. The data is shifted out on the falling edge of the DCLK signal.
nCS	1	7	1	7	Input	The active low nCS input signal toggles at the beginning and end of a valid operation. When this signal is high, the device is deselected and the DATA pin is tri-stated. When this signal is low, the device is enabled and is in active mode. After power up, the EPCQ device requires a falling edge on the nCS signal before you begin any operation.
DCLK	6	16	6	16	Input	The FPGA provides the DCLK signal. This signal provides the timing for the serial interface. The data presented on the DATAO pin is latched to the EPCQ device on the rising edge of the DCLK signal. The data on the DATA pin changes after the falling edge of the DCLK signal and is latched in to the FPGA on the next falling edge of the DCLK signal.
V _{CC}	3, 7, 8	1, 2, 9	8	2	Power	Connect the power pins to a 3.3-V power supply.
GND	4	10	4	10	Ground	Ground pin.

Device Package and Ordering Code

This section describes the package offered in EPCQ devices and the ordering codes for each EPCQ device.

Package

The EPCQ16 and EPCQ32 devices are available in 8-pin SOIC packages. The EPCQ64, EPCQ128, EPCQ256, and EPCQ512 devices are available in 16-pin SOIC packages.

For a 16-pin SOIC package, you can migrate vertically from EPCQ64 device to EPCQ128, EPCQ256, or EPCQ512 device. You can also migrate EPCQ128 device to EPCQ512 device, and EPCQ256 device to EPCQ512 device.

Ordering Code

The following table lists the ordering codes for EPCQ devices.

Table 32: EPCQ Device Ordering Codes

Device	Ordering Code ⁽¹⁷⁾
EPCQ16	EPCQ16SI8N
EPCQ32	EPCQ32SI8N
EPCQ64	EPCQ64SI16N
EPCQ128	EPCQ128SI16N
EPCQ256	EPCQ256SI16N
EPCQ512	EPCQ512SI16N

Document Revision History

The following table lists the revision history for this document.

⁽¹⁷⁾ N indicates that the device is lead free.

Table 33: Document Revision History

Date	Version	Changes
January 2014	2014.01.10	 Added EPCQ512 device support. Added the write non-volatile configuration register operation. Added a link to the ALTASMI_PARALLEL Megafunction User Guide. Removed preliminary for EPCQ16, EPCQ32, EPCQ64, EPCQ128, and EPCQ256 devices. Updated block protection bits for EPCQ16, EPCQ32, EPCQ64, EPCQ128, and EPCQ256 devices. Updated the dummy byte term to dummy cycle. Updated the dummy cycles for the read device identification operation in the Operation Codes for EPCQ Devices. Updated the t_{CL} and t_{CH} parameters in the write operation timing diagram. Updated the Package section. Updated the erase bulk cycle time for EPCQ16 and EPCQ32 devices. Updated the operating temperature in the Recommended Operating Conditions.
July 2012	3.0	 Added Table 3, Table 4, and Table 5 to include the address range for EPCQ16, EPCQ32, and EPCQ64 devices. Added Table 9, Table 10, Table 11, Table 12, Table 13, and Table 14 to include the block protection bits for EPCQ16, EPCQ32, and EPCQ64 devices. Added Figure 5, Figure 20 and Figure 21 to include EPCQ16 and EPCQ32 devices. Updated the "Device Package and Ordering Code" section. Updated Table 1, Table 2, Table 19, Table 20, Table 27, and Table 28 to include EPCQ16, EPCQ32, and EPCQ64 devices. Updated the address bytes for the extended quad input fast write bytes operation in Table 8. Updated Figure 22 and Figure 23 to include EPCQ64 devices.

Date	Version	Changes
January 2012	2.0	 Added Figure 2. Updated "Read Bytes Operation" and "Fast Read Operation" sections. Updated Figure 1, Figure 3, Figure 4, Figure 7, and Figure 13. Updated Table 5, Table 11, Table 12, and Table 14. Minor text edits.
June 2011	1.0	Initial release.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Altera:

EPCQ16SI8N EPCQ128SI16N EPCQ256SI16N EPCQ32SI8N EPCQ64SI16N