
Features
• Incorporates the ARM920T™ ARM® Thumb® Processor

– 200 MIPS at 180 MHz, Memory Management Unit
– 16-KByte Data Cache, 16-KByte Instruction Cache, Write Buffer
– In-circuit Emulator including Debug Communication Channel
– Mid-level Implementation Embedded Trace Macrocell™ (256-ball BGA Package

only)
• Low Power: On VDDCORE 24.4 mA in Normal Mode, 520 µA in Standby Mode
• Additional Embedded Memories

– 16K Bytes of SRAM and 128K Bytes of ROM
• External Bus Interface (EBI)

– Supports SDRAM, Static Memory, Burst Flash, Glueless Connection to
CompactFlash® and NAND Flash/SmartMedia®

• System Peripherals for Enhanced Performance:
– Enhanced Clock Generator and Power Management Controller
– Two On-chip Oscillators with Two PLLs
– Very Slow Clock Operating Mode and Software Power Optimization Capabilities
– Four Programmable External Clock Signals
– System Timer Including Periodic Interrupt, Watchdog and Second Counter
– Real-time Clock with Alarm Interrupt
– Debug Unit, Two-wire UART and Support for Debug Communication Channel
– Advanced Interrupt Controller with 8-level Priority, Individually Maskable Vectored

Interrupt Sources, Spurious Interrupt Protected
– Seven External Interrupt Sources and One Fast Interrupt Source
– Four 32-bit PIO Controllers with Up to 122 Programmable I/O Lines, Input Change

Interrupt and Open-drain Capability on Each Line
– 20-channel Peripheral DMA Controller (PDC)

• Ethernet MAC 10/100 Base-T
– Media Independent Interface (MII) or Reduced Media Independent Interface (RMII)
– Integrated 28-byte FIFOs and Dedicated DMA Channels for Receive and Transmit

• USB 2.0 Full Speed (12 Mbits per second) Host Double Port
– Dual On-chip Transceivers (Single Port Only on 208-lead PQFP Package)
– Integrated FIFOs and Dedicated DMA Channels

• USB 2.0 Full Speed (12 Mbits per second) Device Port
– On-chip Transceiver, 2-Kbyte Configurable Integrated FIFOs

• Multimedia Card Interface (MCI)
– Automatic Protocol Control and Fast Automatic Data Transfers
– MMC and SD Memory Card-compliant, Supports Up to Two SD Memory Cards

• Three Synchronous Serial Controllers (SSC)
– Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
– I2S Analog Interface Support, Time Division Multiplex Support
– High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer

• Four Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
– Support for ISO7816 T0/T1 Smart Card
– Hardware Handshaking
– RS485 Support, IrDA® Up To 115 Kbps
– Full Modem Control Lines on USART1

• Master/Slave Serial Peripheral Interface (SPI)
– 8- to 16-bit Programmable Data Length, 4 External Peripheral Chip Selects

ARM920T-based
Microcontroller

AT91RM9200

Rev. 1768I-ATARM–09-Jul-09

http://www.atmel.com

2
1768I–ATARM–09-Jul-09

AT91RM9200

• Two 3-channel, 16-bit Timer/Counters (TC)
– Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel
– Double PWM Generation, Capture/Waveform Mode, Up/Down Capability

• Two-wire Interface (TWI)
– Master Mode Support, All 2-wire Atmel EEPROMs Supported

• IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins
• Power Supplies

– 1.65V to 1.95V for VDDCORE, VDDOSC and VDDPLL
– 3.0V to 3.6V for VDDIOP (Peripheral I/Os) and for VDDIOM (Memory I/Os)

• Available in a 208-pin Green PQFP or 256-ball RoHS-compliant BGA Package

1. Description
The AT91RM9200 is a complete system-on-chip built around the ARM920T ARM Thumb pro-
cessor. It incorporates a rich set of system and application peripherals and standard interfaces
in order to provide a single-chip solution for a wide range of compute-intensive applications that
require maximum functionality at minimum power consumption at lowest cost.

The AT91RM9200 incorporates a high-speed on-chip SRAM workspace, and a low-latency
External Bus Interface (EBI) for seamless connection to whatever configuration of off-chip mem-
ories and memory-mapped peripherals is required by the application. The EBI incorporates
controllers for synchronous DRAM (SDRAM), Burst Flash and Static memories and features
specific circuitry facilitating the interface for NAND Flash/SmartMedia and Compact Flash.

The Advanced Interrupt Controller (AIC) enhances the interrupt handling performance of the
ARM920T processor by providing multiple vectored, prioritized interrupt sources and reducing
the time taken to transfer to an interrupt handler.

The Peripheral DMA Controller (PDC) provides DMA channels for all the serial peripherals,
enabling them to transfer data to or from on- and off-chip memories without processor interven-
tion. This reduces the processor overhead when dealing with transfers of continuous data
streams.The AT91RM9200 benefits from a new generation of PDC which includes dual pointers
that simplify significantly buffer chaining.

The set of Parallel I/O (PIO) controllers multiplex the peripheral input/output lines with general-
purpose data I/Os for maximum flexibility in device configuration. An input change interrupt,
open drain capability and programmable pull-up resistor is included on each line.

The Power Management Controller (PMC) keeps system power consumption to a minimum by
selectively enabling/disabling the processor and various peripherals under software control. It
uses an enhanced clock generator to provide a selection of clock signals including a slow clock
(32 kHz) to optimize power consumption and performance at all times.

The AT91RM9200 integrates a wide range of standard interfaces including USB 2.0 Full Speed
Host and Device and Ethernet 10/100 Base-T Media Access Controller (MAC), which provides
connection to a extensive range of external peripheral devices and a widely used networking
layer. In addition, it provides an extensive set of peripherals that operate in accordance with sev-
eral industry standards, such as those used in audio, telecom, Flash Card, infrared and Smart
Card applications.

To complete the offer, the AT91RM9200 benefits from the integration of a wide range of debug
features including JTAG-ICE, a dedicated UART debug channel (DBGU) and an embedded real
time trace. This enables the development and debug of all applications, especially those with
real-time constraints.

3
1768I–ATARM–09-Jul-09

AT91RM9200

2. Block Diagram
Bold arrows () indicate master-to-slave dependency.

Figure 2-1. AT91RM9200 Block Diagram

ARM920T Core

JTAG
Scan

ICE

AIC Fast SRAM
16K bytes

P
IO

PLLB

PLLA

OSC
PMC

System
Timer

OSC RTC

EBI

PIOA/PIOB/PIOC/PIOD
Controller

DBGU

MCI

USART0

USART1

USART2

USART3

SPI

SSC0

SSC1

SSC2

Timer Counter

TC0

TC1

TC2

Timer Counter

TC3

TC4

TC5

TWI

P
IO

P
IO

D0-D15
A0/NBS0
A1/NBS2/NWR2
A2-A15/A18-A22
A16/BA0
A17/BA1
NCS0/BFCS
NCS1/SDCS

NCS3/SMCS
NRD/NOE/CFOE
NWR0/NWE/CFWE
NWR1/NBS1/CFIOR
NWR3/NBS3/CFIOW
SDCK
SDCKE
RAS-CAS
SDWE
SDA10
BFRDY/SMOE
BFCK
BFAVD
BFBAA/SMWE
BFOE
BFWE
A23-A24

NWAIT

NCS5/CFCE1

D16-D31

TF0
TK0
TD0
RD0
RK0
RF0

TF1
TK1
TD1
RD1
RK1
RF1

TF2
TK2
TD2
RD2
RK2
RF2

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0
TIOA1
TIOB1
TIOA2
TIOB2

TCLK3
TCLK4
TCLK5
TIOA3
TIOB3
TIOA4
TIOB4
TIOA5
TIOB5

TWD

TWCK

JTAGSEL
TDI

TDO
TMS
TCK

NTRST

FIQ

IRQ0-IRQ6

PCK0-PCK3

PLLRCB

PLLRCA

XIN

XOUT

XIN32

XOUT32

DDM
DDP

MCCK
MCCDA

MCDA0-MCDA3
MCCDB

RXD0
TXD0
SCK0
RTS0
CTS0

RXD1
TXD1
SCK1
RTS1
CTS1
DSR1
DTR1
DCD1

RI1

RXD2
TXD2
SCK2
RTS2
CTS2

RXD3
TXD3
SCK3
RTS3
CTS3

NPCS0
NPCS1
NPCS2
NPCS3

MISO
MOSI
SPCK

MCDB0-MCDB3

HDMA

HDPB

HDPA

HDMB

DRXD

DTXD

Ethernet MAC 10/100

ETXCK-ERXCK-EREFCK
ETXEN-ETXER
ECRS-ECOL
ERXER-ERXDV
ERX0-ERX3
ETX0-ETX3
EMDC

SDRAM
Controller

Burst
Flash

Controller

Static
Memory

Controller

P
IO

Instruction Cache
16K bytes

Data Cache
16K bytes

MMU

EMDIO

DMA FIFO

DMA FIFO

USB HostFIFO

USB Device

Tr
an

sc
ei

ve
r

P
IO

P
IO

P
IO

Reset
and
Test

TST0-TST1

NRST

APB

Fast ROM
128K bytes

BMS

NCS2

A25/CFRNW

NCS4/CFCS

Misalignment
Detector

Address
Decoder

Abort
Status

NCS6/CFCE2

Tr
an

sc
ei

ve
r

NCS7

Memory
Controller

Bus
Arbiter

Peripheral
Bridge

Peripheral
DMA

Controller

EF100

ETM

TSYNC

TCLK

TPS0 - TPS2

TPK0 - TPK15

CompactFlash
NAND Flash
SmartMedia

PDC

PDC

PDC

PDC

PDC

PDC

PDC

PDCPDCPDC

PDC

PDC

4
1768I–ATARM–09-Jul-09

AT91RM9200

3. Signal Description

Table 3-1. Signal Description by Peripheral

Pin Name Function Type
Active
Level Comments

Power

VDDIOM Memory I/O Lines Power Supply Power 3.0V to 3.6V

VDDIOP Peripheral I/O Lines Power Supply Power 3.0V to 3.6V

VDDPLL Oscillator and PLL Power Supply Power 1.65V to 1.95V

VDDCORE Core Chip Power Supply Power 1.65V to 1.95V

VDDOSC Oscillator Power Supply Power 1.65V to 1.95V

GND Ground Ground

GNDPLL PLL Ground Ground

GNDOSC Oscillator Ground Ground

Clocks, Oscillators and PLLs

XIN Main Crystal Input Input

XOUT Main Crystal Output Output

XIN32 32KHz Crystal Input Input

XOUT32 32KHz Crystal Output Output

PLLRCA PLL A Filter Input

PLLRCB PLL B Filter Input

PCK0 - PCK3 Programmable Clock Output Output

ICE and JTAG

TCK Test Clock Input Schmitt trigger

TDI Test Data In Input Internal Pull-up, Schmitt trigger

TDO Test Data Out Output Tri-state

TMS Test Mode Select Input Internal Pull-up, Schmitt trigger

NTRST Test Reset Signal Input Low Internal Pull-up, Schmitt trigger

JTAGSEL JTAG Selection Input Schmitt trigger

ETM™

TSYNC Trace Synchronization Signal Output

TCLK Trace Clock Output

TPS0 - TPS2 Trace ARM Pipeline Status Output

TPK0 - TPK15 Trace Packet Port Output

Reset/Test

NRST Microcontroller Reset Input Low No on-chip pull-up, Schmitt trigger

TST0 - TST1 Test Mode Select Input
Must be tied low for normal
operation, Schmitt trigger

5
1768I–ATARM–09-Jul-09

AT91RM9200

Memory Controller

BMS Boot Mode Select Input

Debug Unit

DRXD Debug Receive Data Input Debug Receive Data

DTXD Debug Transmit Data Output Debug Transmit Data

AIC

IRQ0 - IRQ6 External Interrupt Inputs Input

FIQ Fast Interrupt Input Input

PIO

PA0 - PA31 Parallel IO Controller A I/O Pulled-up input at reset

PB0 - PB29 Parallel IO Controller B I/O Pulled-up input at reset

PC0 - PC31 Parallel IO Controller C I/O Pulled-up input at reset

PD0 - PD27 Parallel IO Controller D I/O Pulled-up input at reset

EBI

D0 - D31 Data Bus I/O Pulled-up input at reset

A0 - A25 Address Bus Output 0 at reset

SMC

NCS0 - NCS7 Chip Select Lines Output Low 1 at reset

NWR0 - NWR3 Write Signal Output Low 1 at reset

NOE Output Enable Output Low 1 at reset

NRD Read Signal Output Low 1 at reset

NUB Upper Byte Select Output Low 1 at reset

NLB Lower Byte Select Output Low 1 at reset

NWE Write Enable Output Low 1 at reset

NWAIT Wait Signal Input Low

NBS0 - NBS3 Byte Mask Signal Output Low 1 at reset

EBI for CompactFlash Support

CFCE1 - CFCE2 CompactFlash Chip Enable Output Low

CFOE CompactFlash Output Enable Output Low

CFWE CompactFlash Write Enable Output Low

CFIOR CompactFlash IO Read Output Low

CFIOW CompactFlash IO Write Output Low

CFRNW CompactFlash Read Not Write Output

CFCS CompactFlash Chip Select Output Low

Table 3-1. Signal Description by Peripheral

Pin Name Function Type
Active
Level Comments

6
1768I–ATARM–09-Jul-09

AT91RM9200

EBI for NAND Flash/SmartMedia Support

SMCS NAND Flash/SmartMedia Chip Select Output Low

SMOE NAND Flash/SmartMedia Output Enable Output Low

SMWE NAND Flash/SmartMedia Write Enable Output Low

SDRAM Controller

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output High

SDCS SDRAM Controller Chip Select Output Low

BA0 - BA1 Bank Select Output

SDWE SDRAM Write Enable Output Low

RAS - CAS Row and Column Signal Output Low

SDA10 SDRAM Address 10 Line Output

Burst Flash Controller

BFCK Burst Flash Clock Output

BFCS Burst Flash Chip Select Output Low

BFAVD Burst Flash Address Valid Output Low

BFBAA Burst Flash Address Advance Output Low

BFOE Burst Flash Output Enable Output Low

BFRDY Burst Flash Ready Input High

BFWE Burst Flash Write Enable Output Low

Multimedia Card Interface

MCCK Multimedia Card Clock Output

MCCDA Multimedia Card A Command I/O

MCDA0 - MCDA3 Multimedia Card A Data I/O

MCCDB Multimedia Card B Command I/O

MCDB0 - MCDB3 Multimedia Card B Data I/O

USART

SCK0 - SCK3 Serial Clock I/O

TXD0 - TXD3 Transmit Data Output

RXD0 - RXD3 Receive Data Input

RTS0 - RTS3 Ready To Send Output

CTS0 - CTS3 Clear To Send Input

DSR1 Data Set Ready Input

DTR1 Data Terminal Ready Output

DCD1 Data Carrier Detect Input

RI1 Ring Indicator Input

Table 3-1. Signal Description by Peripheral

Pin Name Function Type
Active
Level Comments

7
1768I–ATARM–09-Jul-09

AT91RM9200

USB Device Port

DDM USB Device Port Data - Analog

DDP USB Device Port Data + Analog

USB Host Port

HDMA USB Host Port A Data - Analog

HDPA USB Host Port A Data + Analog

HDMB USB Host Port B Data - Analog

HDPB USB Host Port B Data + Analog

Ethernet MAC

EREFCK Reference Clock Input RMII only

ETXCK Transmit Clock Input MII only

ERXCK Receive Clock Input MII only

ETXEN Transmit Enable Output

ETX0 - ETX3 Transmit Data Output ETX0 - ETX1 only in RMII

ETXER Transmit Coding Error Output MII only

ERXDV Receive Data Valid Input MII only

ECRSDV Carrier Sense and Data Valid Input RMII only

ERX0 - ERX3 Receive Data Input ERX0 - ERX1 only in RMII

ERXER Receive Error Input

ECRS Carrier Sense Input MII only

ECOL Collision Detected Input MII only

EMDC Management Data Clock Output

EMDIO Management Data Input/Output I/O

EF100 Force 100 Mbits/sec. Output High RMII only

Synchronous Serial Controller

TD0 - TD2 Transmit Data Output

RD0 - RD2 Receive Data Input

TK0 - TK2 Transmit Clock I/O

RK0 - RK2 Receive Clock I/O

TF0 - TF2 Transmit Frame Sync I/O

RF0 - RF2 Receive Frame Sync I/O

Timer/Counter

TCLK0 - TCLK5 External Clock Input Input

TIOA0 - TIOA5 I/O Line A I/O

TIOB0 - TIOB5 I/O Line B I/O

Table 3-1. Signal Description by Peripheral

Pin Name Function Type
Active
Level Comments

8
1768I–ATARM–09-Jul-09

AT91RM9200

4. Package and Pinout
The AT91RM9200 is available in two packages:

• 208-pin PQFP, 31.2 x 31.2 mm, 0.5 mm pitch

• 256-ball BGA, 15 x 15 mm, 0.8 mm ball pitch

The product features of the 256-ball BGA package are extended compared to the 208-lead
PQFP package. The features that are available only with the 256-ball BGA package are:

• Parallel I/O Controller D

• ETM™ port with outputs multiplexed on the PIO Controller D

• a second USB Host transceiver, opening the Hub capabilities of the embedded USB Host.

4.1 208-pin PQFP Package Outline
Figure 4-1 shows the orientation of the 208-pin PQFP package.

A detailed mechanical description is given in the section “AT91RM9200 Mechanical Characteris-
tics” of the product datasheet.

Figure 4-1. 208-pin PQFP Package (Top View)

SPI

MISO Master In Slave Out I/O

MOSI Master Out Slave In I/O

SPCK SPI Serial Clock I/O

NPCS0 SPI Peripheral Chip Select 0 I/O Low

NPCS1 - NPCS3 SPI Peripheral Chip Select Output Low

Two-Wire Interface

TWD Two-wire Serial Data I/O

TWCK Two-wire Serial Clock I/O

Table 3-1. Signal Description by Peripheral

Pin Name Function Type
Active
Level Comments

1 52

53

104

105156

157

208

9
1768I–ATARM–09-Jul-09

AT91RM9200

4.2 208-pin PQFP Package Pinout

Table 4-1. AT91RM9200 Pinout for 208-pin PQFP Package

Pin
Number Signal Name

Pin
Number Signal Name

Pin
Number Signal Name

Pin
Number Signal Name

1 PC24 37 VDDPLL 73 PA27 109 TMS

2 PC25 38 PLLRCB 74 PA28 110 NTRST

3 PC26 39 GNDPLL 75 VDDIOP 111 VDDIOP

4 PC27 40 VDDIOP 76 GND 112 GND

5 PC28 41 GND 77 PA29 113 TST0

6 PC29 42 PA0 78 PA30 114 TST1

7 VDDIOM 43 PA1 79 PA31/BMS 115 NRST

8 GND 44 PA2 80 PB0 116 VDDCORE

9 PC30 45 PA3 81 PB1 117 GND

10 PC31 46 PA4 82 PB2 118 PB23

11 PC10 47 PA5 83 PB3 119 PB24

12 PC11 48 PA6 84 PB4 120 PB25

13 PC12 49 PA7 85 PB5 121 PB26

14 PC13 50 PA8 86 PB6 122 PB27

15 PC14 51 PA9 87 PB7 123 PB28

16 PC15 52 PA10 88 PB8 124 PB29

17 PC0 53 PA11 89 PB9 125 HDMA

18 PC1 54 PA12 90 PB10 126 HDPA

19 VDDCORE 55 PA13 91 PB11 127 DDM

20 GND 56 VDDIOP 92 PB12 128 DDP

21 PC2 57 GND 93 VDDIOP 129 VDDIOP

22 PC3 58 PA14 94 GND 130 GND

23 PC4 59 PA15 95 PB13 131 VDDIOM

24 PC5 60 PA16 96 PB14 132 GND

25 PC6 61 PA17 97 PB15 133 A0/NBS0

26 VDDIOM 62 VDDCORE 98 PB16 134 A1/NBS2/NWR2

27 GND 63 GND 99 PB17 135 A2

28 VDDPLL 64 PA18 100 PB18 136 A3

29 PLLRCA 65 PA19 101 PB19 137 A4

30 GNDPLL 66 PA20 102 PB20 138 A5

31 XOUT 67 PA21 103 PB21 139 A6

32 XIN 68 PA22 104 PB22 140 A7

33 VDDOSC 69 PA23 105 JTAGSEL 141 A8

34 GNDOSC 70 PA24 106 TDI 142 A9

35 XOUT32 71 PA25 107 TDO 143 A10

36 XIN32 72 PA26 108 TCK 144 SDA10

10
1768I–ATARM–09-Jul-09

AT91RM9200

Note: 1. Shaded cells define the pins powered by VDDIOM.

4.3 256-ball BGA Package Outline
Figure 4-2 shows the orientation of the 256-ball LFBGA package.

A detailed mechanical description is given in the section “AT91RM9200 Mechanical Characteris-
tics” of the product datasheet.

Figure 4-2. 256-ball LFBGA Package (Top View)

145 A11 161 PC7 177 CAS 193 D10

146 VDDIOM 162 PC8 178 SDWE 194 D11

147 GND 163 PC9 179 D0 195 D12

148 A12 164 VDDIOM 180 D1 196 D13

149 A13 165 GND 181 D2 197 D14

150 A14 166 NCS0/BFCS 182 D3 198 D15

151 A15 167 NCS1/SDCS 183 VDDIOM 199 VDDIOM

152 VDDCORE 168 NCS2 184 GND 200 GND

153 GND 169 NCS3/SMCS 185 D4 201 PC16

154 A16/BA0 170 NRD/NOE/CFOE 186 D5 202 PC17

155 A17/BA1 171 NWR0/NWE/CFWE 187 D6 203 PC18

156 A18 172 NWR1/NBS1/CFIOR 188 VDDCORE 204 PC19

157 A19 173 NWR3/NBS3/CFIOW 189 GND 205 PC20

158 A20 174 SDCK 190 D7 206 PC21

159 A21 175 SDCKE 191 D8 207 PC22

160 A22 176 RAS 192 D9 208 PC23

Table 4-1. AT91RM9200 Pinout for 208-pin PQFP Package (Continued)

Pin
Number Signal Name

Pin
Number Signal Name

Pin
Number Signal Name

Pin
Number Signal Name

1

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

2

A B C D E F G H J K L M N P R T U
BALL A1

11
1768I–ATARM–09-Jul-09

AT91RM9200

4.4 256-ball BGA Package Pinout

Table 4-2. AT91RM9200 Pinout for 256-ball BGA Package

Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name

A1 TDI C3 PD14 E5 TCK G14 PA1

A2 JTAGSEL C4 PB22 E6 GND G15 PA2

A3 PB20 C5 PB19 E7 PB15 G16 PA3

A4 PB17 C6 PD10 E8 GND G17 XIN32

A5 PD11 C7 PB13 E9 PB7 H1 PD23

A6 PD8 C8 PB12 E10 PB3 H2 PD20

A7 VDDIOP C9 PB6 E11 PA29 H3 PD22

A8 PB9 C10 PB1 E12 PA26 H4 PD21

A9 PB4 C11 GND E13 PA25 H5 VDDIOP

A10 PA31/BMS C12 PA20 E14 PA9 H13 VDDPLL

A11 VDDIOP C13 PA18 E15 PA6 H14 VDDIOP

A12 PA23 C14 VDDCORE E16 PD3 H15 GNDPLL

A13 PA19 C15 GND E17 PD0 H16 GND

A14 GND C16 PA8 F1 PD16 H17 XOUT32

A15 PA14 C17 PD5 F2 GND J1 PD25

A16 VDDIOP D1 TST1 F3 PB23 J2 PD27

A17 PA13 D2 VDDIOP F4 PB25 J3 PD24

B1 TDO D3 VDDIOP F5 PB24 J4 PD26

B2 PD13 D4 GND F6 VDDCORE J5 PB28

B3 PB18 D5 VDDIOP F7 PB16 J6 PB29

B4 PB21 D6 PD7 F9 PB11 J12 GND

B5 PD12 D7 PB14 F11 PA30 J13 GNDOSC

B6 PD9 D8 VDDIOP F12 PA28 J14 VDDOSC

B7 GND D9 PB8 F13 PA4 J15 VDDPLL

B8 PB10 D10 PB2 F14 PD2 J16 GNDPLL

B9 PB5 D11 GND F15 PD1 J17 XIN

B10 PB0 D12 PA22 F16 PA5 K1 HDPA

B11 VDDIOP D13 PA21 F17 PLLRCB K2 DDM

B12 PA24 D14 PA16 G1 PD19 K3 HDMA

B13 PA17 D15 PA10 G2 PD17 K4 VDDIOP

B14 PA15 D16 PD6 G3 GND K5 DDP

B15 PA11 D17 PD4 G4 PB26 K13 PC5

B16 PA12 E1 NRST G5 PD18 K14 PC4

B17 PA7 E2 NTRST G6 PB27 K15 PC6

C1 TMS E3 GND G12 PA27 K16 VDDIOM

C2 PD15 E4 TST0 G13 PA0 K17 XOUT

12
1768I–ATARM–09-Jul-09

AT91RM9200

Note: 1. Shaded cells define the balls powered by VDDIOM.

L1 GND N2 A5 P13 D15 T7
NWR1/NBS1/
CFIOR

L2 HDPB N3 A9 P14 PC26 T8 SDWE

L3 HDMB N4 A4 P15 PC27 T9 GND

L4 A6 N5 A14 P16 VDDIOM T10 VDDCORE

L5 GND N6 SDA10 P17 GND T11 D9

L6 VDDIOP N7 A8 R1 GND T12 D12

L12 PC10 N8 A21 R2 GND T13 GND

L13 PC15 N9 NRD/NOE/CFOE R3 A18 T14 PC19

L14 PC2 N10 RAS R4 A20 T15 PC21

L15 PC3 N11 D2 R5 PC8 T16 PC23

L16 VDDCORE N12 GND R6 VDDIOM T17 PC25

L17 PLLRCA N13 PC28 R7 NCS3/SMCS U1 VDDCORE

M1 VDDIOM N14 PC31 R8
NWR3/NBS3/
CFIOW

U2 GND

M2 GND N15 PC30 R9 D0 U3 A16/BA0

M3 A3 N16 PC11 R10 VDDIOM U4 A19

M4 A1/NBS2/NWR2 N17 PC12 R11 D8 U5 GND

M5 A10 P1 A7 R12 D13 U6 NCS0/BFCS

M6 A2 P2 A13 R13 PC17 U7 SDCK

M7 GND P3 A12 R14 VDDIOM U8 CAS

M9 NCS1/SDCS P4 VDDIOM R15 PC24 U9 D3

M11 D4 P5 A11 R16 PC29 U10 D6

M12 GND P6 A22 R17 VDDIOM U11 D7

M13 PC13 P7 PC9 T1 A15 U12 D11

M14 PC1 P8 NWR0/NWE/CFWE T2 VDDCORE U13 D14

M15 PC0 P9 SDCKE T3 A17/BA1 U14 PC16

M16 GND P10 D1 T4 PC7 U15 PC18

M17 PC14 P11 D5 T5 VDDIOM U16 PC20

N1 A0/NBS0 P12 D10 T6 NCS2 U17 PC22

Table 4-2. AT91RM9200 Pinout for 256-ball BGA Package (Continued)

Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name

13
1768I–ATARM–09-Jul-09

AT91RM9200

5. Power Considerations

5.1 Power Supplies
The AT91RM9200 has five types of power supply pins:

• VDDCORE pins. They power the core, including processor, memories and peripherals;
voltage ranges from 1.65V to 1.95V, 1.8V nominal.

• VDDIOM pins. They power the External Bus Interface I/O lines; voltage ranges from 3.0V to
3.6V, 3V or 3.3V nominal.

• VDDIOP pins. They power the Peripheral I/O lines and the USB transceivers; voltage ranges
from 3.0V to 3.6V, 3V or 3.3V nominal.

• VDDPLL pins. They power the PLL cells; voltage ranges from 1.65V to 1.95V, 1.8V nominal.

• VDDOSC pin. They power both oscillators; voltage ranges from 1.65V to 1.95V, 1.8V
nominal.

The double power supplies VDDIOM and VDDIOP are identified in Table 4-1 on page 9 and
Table 4-2 on page 11. These supplies enable the user to power the device differently for inter-
facing with memories and for interfacing with peripherals.

Ground pins are common to all power supplies, except VDDPLL and VDDOSC pins. For these
pins, GNDPLL and GNDOSC are provided, respectively.

5.2 Power Consumption
The AT91RM9200 consumes about 500 µA of static current on VDDCORE at 25⋅ C. For
dynamic power consumption, the AT91RM9200 consumes a maximum of 25 mA on VDDCORE
at maximum speed in typical conditions (1.8V, 25⋅ C), processor running full-performance
algorithm.

6. I/O Considerations

6.1 JTAG Port Pins
TMS and TDI are Schmitt trigger inputs and integrate internal pull-up resistors of 15 kOhm typi-
cal. TCK is a Schmitt trigger input without internal pull-up resistor.

TDO is a tri-state output. The JTAGSEL pin is used to select the JTAG boundary scan when
asserted at a high level. The NTRST pin is used to initialize the EmbeddedICE™ TAP Controller.

6.2 Test Pin
The TST0 and TST1 pins are used for manufacturing test purposes when asserted high. As they
do not integrate a pull-down resistor, they must be tied low during normal operations. Driving this
line at a high level leads to unpredictable results.

6.3 Reset Pin
NRST is a Schmitt trigger without pull-up resistor. The NRST signal is inserted in the Boundary
Scan.

14
1768I–ATARM–09-Jul-09

AT91RM9200

6.4 PIO Controller A, B, C and D Lines
All the I/O lines PA0 to PA31, PB0 to PB29, PC0 to PC31 and PD0 to PD27 integrate a program-
mable pull-up resistor of 15 kOhm typical. Programming of this pull-up resistor is performed
independently for each I/O line through the PIO Controllers.

After reset, all the I/O lines default as inputs with pull-up resistors enabled, except those which
are multiplexed with the External Bus Interface signals that must be enabled as peripherals at
reset. This is explicitly indicated in the column "Reset State" of the PIO Controller multiplexing
tables.

7. Processor and Architecture

7.1 ARM920T Processor
• ARM9TDMI™-based on ARM Architecture v4T

• Two instruction sets

– ARM High-performance 32-bit Instruction Set

– Thumb High Code Density 16-bit Instruction Set

• 5-Stage Pipeline Architecture:

– Instruction Fetch (F)

– Instruction Decode (D)

– Execute (E)

– Data Memory (M)

– Register Write (W)

• 16-Kbyte Data Cache, 16-Kbyte Instruction Cache

– Virtually-addressed 64-way Associative Cache

– 8 words per line

– Write-though and write-back operation

– Pseudo-random or Round-robin replacement

– Low-power CAM RAM implementation

• Write Buffer

– 16-word Data Buffer

– 4-address Address Buffer

– Software Control Drain

• Standard ARMv4 Memory Management Unit (MMU)

– Access permission for sections

– Access permission for large pages and small pages can be specified separately for
each quarter of the pages

– 16 embedded domains

– 64 Entry Instruction TLB and 64 Entry Data TLB

8-, 16-, 32-bit Data Bus for Instructions and Data

7.2 Debug and Test
• Integrated EmbeddedICE

15
1768I–ATARM–09-Jul-09

AT91RM9200

• Debug Unit

– Two-pin UART

– Debug Communication Channel

– Chip ID Register

• Embedded Trace Macrocell: ETM9™ Rev2a

– Medium Level Implementation

– Half-rate Clock Mode

– Four Pairs of Address Comparators

– Two Data Comparators

– Eight Memory Map Decoder Inputs

– Two Counters

– One Sequencer

– One 18-byte FIFO

• IEEE1149.1 JTAG Boundary Scan on all Digital Pins

7.3 Boot Program
• Default Boot Program stored in ROM-based products

• Downloads and runs an application from external storage media into internal SRAM

• Downloaded code size depends on embedded SRAM size

• Automatic detection of valid application

• Bootloader supporting a wide range of non-volatile memories

– SPI DataFlash® connected on SPI NPCS0

– Two-wire EEPROM

– 8-bit parallel memories on NCS0

• Boot Uploader in case no valid program is detected in external NVM and supporting several
communication media

• Serial communication on a DBGU (XModem protocol)

• USB Device Port (DFU Protocol)

7.4 Embedded Software Services
• Compliant with ATPCS

• Compliant with AINSI/ISO Standard C

• Compiled in ARM/Thumb Interworking

• ROM Entry Service

• Tempo, Xmodem and DataFlash services

• CRC and Sine tables

7.5 Memory Controller
• Programmable Bus Arbiter handling four Masters

– Internal Bus is shared by ARM920T, PDC, USB Host Port and Ethernet MAC
Masters

– Each Master can be assigned a priority between 0 and 7

16
1768I–ATARM–09-Jul-09

AT91RM9200

• Address Decoder provides selection for

– Eight external 256-Mbyte memory areas

– Four internal 1-Mbyte memory areas

– One 256-Mbyte embedded peripheral area

• Boot Mode Select Option

– Non-volatile Boot Memory can be internal or external

– Selection is made by BMS pin sampled at reset

• Abort Status Registers

– Source, Type and all parameters of the access leading to an abort are saved

• Misalignment Detector

– Alignment checking of all data accesses

– Abort generation in case of misalignment

• Remap command

– Provides remapping of an internal SRAM in place of the boot NVM

17
1768I–ATARM–09-Jul-09

AT91RM9200

8. Memories

Figure 8-1. AT91RM9200 Memory Mapping

16K Bytes

0xFFFC 0000

16K Bytes

0xFFFC 4000

USART2

16K Bytes

0xFFFC 8000

16K Bytes

16K Bytes

16K Bytes

0xFFFA 4000

TCO, TC1, TC2

0xFFFA 8000

0xFFFB 4000

MCI

0xFFFB C000

TWI

0xFFFA 0000

0xFFFB 0000

UDP

16K Bytes

16K Bytes

16K Bytes

0xFFFB 8000

16K Bytes

16K Bytes

EMAC

256M Bytes

0x1000 0000

0x0000 0000

0x0FFF FFFF

0xF000 0000
0xEFFF FFFF

Address Memory Space

Internal Peripherals

Internal Memories

EBI
Chip Select 0 /

BFC

EBI
Chip Select 1 /

SDRAMC

EBI
Chip Select 2

EBI
Chip Select 3 /

NANDFlash Logic

EBI
Chip Select 4 /

CF Logic

EBI
Chip Select 5 /

CF Logic

EBI
Chip Select 6 /

CF Logic

EBI
Chip Select 7

Undefined
(Abort)

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

1,518M Bytes

0x2000 0000
0x1FFF FFFF

0x3000 0000
0x2FFF FFFF

0x4000 0000
0x3FFF FFFF

0x6FFF FFFF

0x6000 0000
0x5FFF FFFF

0x5000 0000
0x4FFF FFFF

0x7000 0000

0x7FFF FFFF
0x8000 0000

0x8FFF FFFF
0x9000 0000

256M Bytes

0xFFFF FC00

0xFFFF FA00

0xFFFF F800

0xFFFF F600

0xFFFF F400

0xFFFF F200

256 Bytes

512 bytes

512 Bytes

512 Bytes

PMC

PIOC

PIOB

PIOA

DBGU

ST

0xFFFF F000

512 Bytes

AIC 512 Bytes

RTC

MC256M Bytes

1 MBytes

0x0020 0000

SRAM

0x0030 0000

0x0010 0000

0x0040 0000

ROM

0x0FFF FFFF

User Peripheral Mapping

Internal Memory Mapping

Boot Memory (1)

0x0000 0000

(1) Can be SRAM, ROM or Flash depending
on BMS and the REMAP Command

Notes :

0xFFFE 0000

16K BytesSPI

0xFFFF FFFF0xFFFF FFFF

System Peripheral Mapping

USB Host
User Interface

Undefined
(Abort)

USART0

USART1

USART3

1 MBytes

1 MBytes

248 MBytes

0xFFFF FFFF

Reserved
0xF000 0000

16K BytesSSC0

0xFFFD 8000 512 bytesPIOD

1 MBytes

0xFFFE 4000

Reserved

256 Bytes

256 Bytes

256 Bytes

0xFFFF FD00

0xFFFF FE00

0xFFFF FF00

TC3, TC4, TC5

Reserved

0xFFFD 0000

16K BytesSSC1
0xFFFD 4000

16K BytesSSC2

Reserved

Reserved

0xFFFC C000

0xFFFD C000

0xFFFE 4000

18
1768I–ATARM–09-Jul-09

AT91RM9200

A first level of address decoding is performed by the Memory Controller, i.e., by the implementa-
tion of the Advanced System Bus (ASB) with additional features.

Decoding splits the 4G bytes of address space into 16 areas of 256M bytes. The areas 1 to 8 are
directed to the EBI that associates these areas to the external chip selects NC0 to NCS7. The
area 0 is reserved for the addressing of the internal memories, and a second level of decoding
provides 1M bytes of internal memory area. The area 15 is reserved for the peripherals and pro-
vides access to the Advanced Peripheral Bus (APB).

Other areas are unused and performing an access within them provides an abort to the master
requesting such an access.

8.1 Embedded Memories

8.1.1 Internal Memory Mapping

8.1.1.1 Internal RAM
The AT91RM9200 integrates a high-speed, 16-Kbyte internal SRAM. After reset and until the
Remap Command is performed, the SRAM is only accessible at address 0x20 0000. After
Remap, the SRAM is also available at address 0x0.

8.1.1.2 Internal ROM
The AT91RM9200 integrates a 128-Kbyte Internal ROM. At any time, the ROM is mapped at
address 0x10 0000. It is also accessible at address 0x0 after reset and before the Remap Com-
mand if the BMS is tied high during reset.

8.1.1.3 USB Host Port
The AT91RM9200 integrates a USB Host Port Open Host Controller Interface (OHCI). The reg-
isters of this interface are directly accessible on the ASB Bus and are mapped like a standard
internal memory at address 0x30 0000.

19
1768I–ATARM–09-Jul-09

AT91RM9200

9. System Peripherals
A complete memory map is shown in Figure 8-1 on page 17.

9.1 Reset Controller
• Two reset input lines (NRST and NTRST) providing, respectively:

• Initialization of the User Interface registers (defined in the user interface of each peripheral)
and:

– Sample the signals needed at bootup

– Compel the processor to fetch the next instruction at address zero

• Initialization of the embedded ICE TAP controller

9.2 Advanced Interrupt Controller
• Controls the interrupt lines (nIRQ and nFIQ) of an ARM Processor

• Thirty-two individually maskable and vectored interrupt sources

– Source 0 is reserved for the Fast Interrupt Input (FIQ)

– Source 1 is reserved for system peripherals (ST, RTC, PMC, DBGU…)

– Source 2 to Source 31 control thirty embedded peripheral interrupts or external
interrupts

– Programmable Edge-triggered or Level-sensitive Internal Sources

– Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive
External Sources

• 8-level Priority Controller

– Drives the Normal Interrupt of the processor

– Handles priority of the interrupt sources 1 to 31

– Higher priority interrupts can be served during service of lower priority interrupt

• Vectoring

– Optimizes Interrupt Service Routine Branch and Execution

– One 32-bit Vector Register per interrupt source

– Interrupt Vector Register reads the corresponding current Interrupt Vector

• Protect Mode

– Easy debugging by preventing automatic operations

• General Interrupt Mask

– Provides processor synchronization on events without triggering an interrupt

9.3 Power Management Controller
• Optimizes the power consumption of the whole system

• Embeds and controls:

– One Main Oscillator and One Slow Clock Oscillator (32.768Hz)

– Two Phase Locked Loops (PLLs) and Dividers

– Clock Prescalers

• Provides:

– the Processor Clock PCK

20
1768I–ATARM–09-Jul-09

AT91RM9200

– the Master Clock MCK

– the USB Clocks, UHPCK and UDPCK, respectively for the USB Host Port and the
USB Device Port

– Programmable automatic PLL switch-off in USB Device suspend conditions

– up to thirty peripheral clocks

– four programmable clock outputs PCK0 to PCK3

• Four operating modes:

– Normal Mode, Idle Mode, Slow Clock Mode, Standby Mode

9.4 Debug Unit
• System peripheral to facilitate debug of Atmel’s ARM-based systems

• Composed of the following functions

– Two-pin UART

– Debug Communication Channel (DCC) support

– Chip ID Registers

• Two-pin UART

– Implemented features are 100% compatible with the standard Atmel USART

– Independent receiver and transmitter with a common programmable Baud Rate
Generator

– Even, Odd, Mark or Space Parity Generation

– Parity, Framing and Overrun Error Detection

– Automatic Echo, Local Loopback and Remote Loopback Channel Modes

– Interrupt generation

– Support for two PDC channels with connection to receiver and transmitter

• Debug Communication Channel Support

– Offers visibility of COMMRX and COMMTX signals from the ARM Processor

– Interrupt generation

• Chip ID Registers

– Identification of the device revision, sizes of the embedded memories, set of
peripherals

9.5 PIO Controller
• Up to 32 programmable I/O Lines

• Fully programmable through Set/Clear Registers

• Multiplexing of two peripheral functions per I/O Line

• For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)

– Input change interrupt

– Glitch filter

– Multi-drive option enables driving in open drain

– Programmable pull-up on each I/O line

– Pin data status register, supplies visibility of the level on the pin at any time

21
1768I–ATARM–09-Jul-09

AT91RM9200

• Synchronous output, provides Set and Clear of several I/O lines in a single write

10. User Peripherals

10.1 User Interface
The User Peripherals are mapped in the upper 256M bytes of the address space, between the
addresses 0xFFFA 0000 and 0xFFFE 3FFF. Each peripheral has a 16-Kbyte address space.

A complete memory map is presented in Figure 8-1 on page 17.

10.2 Peripheral Identifiers
The AT91RM9200 embeds a wide range of peripherals. Table 10-1 defines the peripheral iden-
tifiers of the AT91RM9200. A peripheral identifier is required for the control of the peripheral
interrupt with the Advanced Interrupt Controller and for the control of the peripheral clock with
the Power Management Controller.

Table 10-1. Peripheral Identifiers

Peripheral

ID

Peripheral

Mnemonic

Peripheral

Name

External

Interrupt

0 AIC Advanced Interrupt Controller FIQ

1 SYSIRQ

2 PIOA Parallel I/O Controller A

3 PIOB Parallel I/O Controller B

4 PIOC Parallel I/O Controller C

5 PIOD Parallel I/O Controller D

6 US0 USART 0

7 US1 USART 1

8 US2 USART 2

9 US3 USART 3

10 MCI Multimedia Card Interface

11 UDP USB Device Port

12 TWI Two-wire Interface

13 SPI Serial Peripheral Interface

14 SSC0 Synchronous Serial Controller 0

15 SSC1 Synchronous Serial Controller 1

16 SSC2 Synchronous Serial Controller 2

17 TC0 Timer/Counter 0

18 TC1 Timer/Counter 1

19 TC2 Timer/Counter 2

20 TC3 Timer/Counter 3

21 TC4 Timer/Counter 4

22 TC5 Timer/Counter 5

23 UHP USB Host Port

22
1768I–ATARM–09-Jul-09

AT91RM9200

10.3 Peripheral Multiplexing on PIO Lines
The AT91RM9200 features four PIO controllers:

• PIOA and PIOB, multiplexing I/O lines of the peripheral set

• PIOC, multiplexing the data bus bits 16 to 31 and several External Bus Interface control
signals. Using PIOC pins increases the number of general-purpose I/O lines available but
prevents 32-bit memory access

• PIOD, available in the 256-ball BGA package option only, multiplexing outputs of the
peripheral set and the ETM port

Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral
functions, A or B. The tables in the following paragraphs define how the I/O lines of the peripher-
als A and B are multiplexed on the PIO Controllers A, B, C and D. The two columns “Function”
and “Comments” have been inserted for the user’s own comments; they may be used to track
how pins are defined in an application.

The column “Reset State” indicates whether the PIO line resets in I/O mode or in peripheral
mode. If equal to “I/O”, the PIO line resets in input with the pull-up enabled so that the device is
maintained in a static state as soon as the NRST pin is asserted. As a result, the bit correspond-
ing to the PIO line in the register PIO_PSR (Peripheral Status Register) resets low.

If a signal name is in the “Reset State” column, the PIO line is assigned to this function and the
corresponding bit in PIO_PSR resets high. This is the case for pins controlling memories, either
address lines or chip selects, and that require the pin to be driven as soon as NRST raises. Note
that the pull-up resistor is also enabled in this case.

See Table 10-2 on page 23, Table 10-3 on page 24, Table 10-4 on page 25 and Table 10-5 on
page 26.

24 EMAC Ethernet MAC

25 AIC Advanced Interrupt Controller IRQ0

26 AIC Advanced Interrupt Controller IRQ1

27 AIC Advanced Interrupt Controller IRQ2

28 AIC Advanced Interrupt Controller IRQ3

29 AIC Advanced Interrupt Controller IRQ4

30 AIC Advanced Interrupt Controller IRQ5

31 AIC Advanced Interrupt Controller IRQ6

Table 10-1. Peripheral Identifiers (Continued)

Peripheral

ID

Peripheral

Mnemonic

Peripheral

Name

External

Interrupt

23
1768I–ATARM–09-Jul-09

AT91RM9200

10.3.1 PIO Controller A Multiplexing

Table 10-2. Multiplexing on PIO Controller A

PIO Controller A Application Usage

I/O Line Peripheral A Peripheral B
Reset
State Function Comments

PA0 MISO PCK3 I/O

PA1 MOSI PCK0 I/O

PA2 SPCK IRQ4 I/O

PA3 NPCS0 IRQ5 I/O

PA4 NPCS1 PCK1 I/O

PA5 NPCS2 TXD3 I/O

PA6 NPCS3 RXD3 I/O

PA7 ETXCK/EREFCK PCK2 I/O

PA8 ETXEN MCCDB I/O

PA9 ETX0 MCDB0 I/O

PA10 ETX1 MCDB1 I/O

PA11 ECRS/ECRSDV MCDB2 I/O

PA12 ERX0 MCDB3 I/O

PA13 ERX1 TCLK0 I/O

PA14 ERXER TCLK1 I/O

PA15 EMDC TCLK2 I/O

PA16 EMDIO IRQ6 I/O

PA17 TXD0 TIOA0 I/O

PA18 RXD0 TIOB0 I/O

PA19 SCK0 TIOA1 I/O

PA20 CTS0 TIOB1 I/O

PA21 RTS0 TIOA2 I/O

PA22 RXD2 TIOB2 I/O

PA23 TXD2 IRQ3 I/O

PA24 SCK2 PCK1 I/O

PA25 TWD IRQ2 I/O

PA26 TWCK IRQ1 I/O

PA27 MCCK TCLK3 I/O

PA28 MCCDA TCLK4 I/O

PA29 MCDA0 TCLK5 I/O

PA30 DRXD CTS2 I/O

PA31 DTXD RTS2 I/O

24
1768I–ATARM–09-Jul-09

AT91RM9200

10.3.2 PIO Controller B Multiplexing

Table 10-3. Multiplexing on PIO Controller B

PIO Controller B Application Usage

I/O Line Peripheral A Peripheral B
Reset
State Function Comments

PB0 TF0 RTS3 I/O

PB1 TK0 CTS3 I/O

PB2 TD0 SCK3 I/O

PB3 RD0 MCDA1 I/O

PB4 RK0 MCDA2 I/O

PB5 RF0 MCDA3 I/O

PB6 TF1 TIOA3 I/O

PB7 TK1 TIOB3 I/O

PB8 TD1 TIOA4 I/O

PB9 RD1 TIOB4 I/O

PB10 RK1 TIOA5 I/O

PB11 RF1 TIOB5 I/O

PB12 TF2 ETX2 I/O

PB13 TK2 ETX3 I/O

PB14 TD2 ETXER I/O

PB15 RD2 ERX2 I/O

PB16 RK2 ERX3 I/O

PB17 RF2 ERXDV I/O

PB18 RI1 ECOL I/O

PB19 DTR1 ERXCK I/O

PB20 TXD1 I/O

PB21 RXD1 I/O

PB22 SCK1 I/O

PB23 DCD1 I/O

PB24 CTS1 I/O

PB25 DSR1 EF100 I/O

PB26 RTS1 I/O

PB27 PCK0 I/O

PB28 FIQ I/O

PB29 IRQ0 I/O

25
1768I–ATARM–09-Jul-09

AT91RM9200

10.3.3 PIO Controller C Multiplexing
The PIO Controller C has no multiplexing and only peripheral A lines are used. Selecting Peripheral B on the PIO Controller
C has no effect.

Table 10-4. Multiplexing on PIO Controller C

PIO Controller C Application Usage

I/O Line Peripheral A Peripheral B
Reset
State Function Comments

PC0 BFCK I/O

PC1 BFRDY/SMOE I/O

PC2 BFAVD I/O

PC3 BFBAA/SMWE I/O

PC4 BFOE I/O

PC5 BFWE I/O

PC6 NWAIT I/O

PC7 A23 A23

PC8 A24 A24

PC9 A25/CFRNW A25

PC10 NCS4/CFCS NCS4

PC11 NCS5/CFCE1 NCS5

PC12 NCS6/CFCE2 NCS6

PC13 NCS7 NCS7

PC14 I/O

PC15 I/O

PC16 D16 I/O

PC17 D17 I/O

PC18 D18 I/O

PC19 D19 I/O

PC20 D20 I/O

PC21 D21 I/O

PC22 D22 I/O

PC23 D23 I/O

PC24 D24 I/O

PC25 D25 I/O

PC26 D26 I/O

PC27 D27 I/O

PC28 D28 I/O

PC29 D29 I/O

PC30 D30 I/O

PC31 D31 I/O

26
1768I–ATARM–09-Jul-09

AT91RM9200

10.3.4 PIO Controller D Multiplexing
The PIO Controller D multiplexes pure output signals on peripheral A connections, in particular from the EMAC MII inter-
face and the ETM Port on the peripheral B connections.

The PIO Controller D is available only in the 256-ball BGA package option of the AT91RM9200.

Table 10-5. Multiplexing on PIO Controller D

PIO Controller D Application Usage

I/O Line Peripheral A Peripheral B
Reset
State Function Comments

PD0 ETX0 I/O

PD1 ETX1 I/O

PD2 ETX2 I/O

PD3 ETX3 I/O

PD4 ETXEN I/O

PD5 ETXER I/O

PD6 DTXD I/O

PD7 PCK0 TSYNC I/O

PD8 PCK1 TCLK I/O

PD9 PCK2 TPS0 I/O

PD10 PCK3 TPS1 I/O

PD11 TPS2 I/O

PD12 TPK0 I/O

PD13 TPK1 I/O

PD14 TPK2 I/O

PD15 TD0 TPK3 I/O

PD16 TD1 TPK4 I/O

PD17 TD2 TPK5 I/O

PD18 NPCS1 TPK6 I/O

PD19 NPCS2 TPK7 I/O

PD20 NPCS3 TPK8 I/O

PD21 RTS0 TPK9 I/O

PD22 RTS1 TPK10 I/O

PD23 RTS2 TPK11 I/O

PD24 RTS3 TPK12 I/O

PD25 DTR1 TPK13 I/O

PD26 TPK14 I/O

PD27 TPK15 I/O

27
1768I–ATARM–09-Jul-09

AT91RM9200

10.3.5 System Interrupt
The System Interrupt is the wired-OR of the interrupt signals coming from:

• the Memory Controller

• the Debug Unit

• the System Timer

• the Real-Time Clock

• the Power Management Controller

The clock of these peripherals cannot be controlled and the Peripheral ID 1 can only be used
within the Advanced Interrupt Controller.

10.3.6 External Interrupts
All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signals IRQ0 to
IRQ6, use a dedicated Peripheral ID. However, there is no clock control associated with these
peripheral IDs.

10.4 External Bus Interface
• Integrates three External Memory Controllers:

– Static Memory Controller

– SDRAM Controller

– Burst Flash Controller

• Additional logic for NAND Flash/SmartMedia and CompactFlash support

• Optimized External Bus:

– 16- or 32-bit Data Bus

– Up to 26-bit Address Bus, up to 64-Mbytes addressable

– Up to 8 Chip Selects, each reserved to one of the eight Memory Areas

– Optimized pin multiplexing to reduce latencies on External Memories

• Configurable Chip Select Assignment:

– Burst Flash Controller or Static Memory Controller on NCS0

– SDRAM Controller or Static Memory Controller on NCS1

– Static Memory Controller on NCS3, Optional NAND Flash/SmartMedia Support

– Static Memory Controller on NCS4 - NCS6, Optional CompactFlash Support

– Static Memory Controller on NCS7

10.5 Static Memory Controller
• External memory mapping, 512-Mbyte address space

• Up to 8 Chip Select Lines

• 8- or 16-bit Data Bus

• Remap of Boot Memory

• Multiple Access Modes supported

– Byte Write or Byte Select Lines

– Two different Read Protocols for each Memory Bank

• Multiple device adaptability

28
1768I–ATARM–09-Jul-09

AT91RM9200

– Compliant with LCD Module

– Programmable Setup Time Read/Write

– Programmable Hold Time Read/Write

• Multiple Wait State Management

– Programmable Wait State Generation

– External Wait Request

– Programmable Data Float Time

10.6 SDRAM Controller
• Numerous configurations supported

– 2K, 4K, 8K Row Address Memory Parts

– SDRAM with two or four Internal Banks

– SDRAM with 16- or 32-bit Data Path

• Programming facilities

– Word, half-word, byte access

– Automatic page break when Memory Boundary has been reached

– Multibank Ping-pong Access

– Timing parameters specified by software

– Automatic refresh operation, refresh rate is programmable

• Energy-saving capabilities

– Self-refresh and Low-power Modes supported

• Error detection

– Refresh Error Interrupt

• SDRAM Power-up Initialization by software

• Latency is set to two clocks (CAS Latency of 1, 3 Not Supported)

• Auto Precharge Command not used

10.7 Burst Flash Controller
• Multiple Access Modes supported

– Asynchronous or Burst Mode Byte, Half-word or Word Read Accesses

– Asynchronous Mode Half-word Write Accesses

• Adaptability to different device speed grades

– Programmable Burst Flash Clock Rate

– Programmable Data Access Time

– Programmable Latency after Output Enable

• Adaptability to different device access protocols and bus interfaces

– Two Burst Read Protocols: Clock Control Address Advance or Signal Controlled
Address Advance

– Multiplexed or separate address and data buses

– Continuous Burst and Page Mode Accesses supported

29
1768I–ATARM–09-Jul-09

AT91RM9200

10.8 Peripheral DMA Controller (PDC)
• Generates transfers to/from peripherals such as DBGU, USART, SSC, SPI and MCI

• Twenty channels

• One Master Clock cycle needed for a transfer from memory to peripheral

• Two Master Clock cycles needed for a transfer from peripheral to memory

10.9 System Timer
• One Period Interval Timer, 16-bit programmable counter

• One Watchdog Timer, 16-bit programmable counter

• One Real-time Timer, 20-bit free-running counter

• Interrupt Generation on event

10.10 Real-time Clock
• Low power consumption

• Full asynchronous design

• Two hundred year calendar

• Programmable Periodic Interrupt

• Alarm and update parallel load

• Control of alarm and update Time/Calendar Data In

10.11 USB Host Port
• Compliance with Open HCI Rev 1.0 specification

• Compliance with USB V2.0 Full-speed and Low-speed Specification

• Supports both Low-speed 1.5 Mbps and Full-speed 12 Mbps USB devices

• Root hub integrated with two downstream USB ports

• Two embedded USB transceivers

• Supports power management

• Operates as a master on the Memory Controller

10.12 USB Device Port
• USB V2.0 full-speed compliant, 12 Mbits per second

• Embedded USB V2.0 full-speed transceiver

• Embedded dual-port RAM for endpoints

• Suspend/Resume logic

• Ping-pong mode (two memory banks) for isochronous and bulk endpoints

• Six general-purpose endpoints

– Endpoint 0, Endpoint 3: 8 bytes, no ping-pong mode

– Endpoint 1, Endpoint 2: 64 bytes, ping-pong mode

– Endpoint 4, Endpoint 5: 256 bytes, ping-pong mode

10.13 Ethernet MAC
• Compatibility with IEEE Standard 802.3

30
1768I–ATARM–09-Jul-09

AT91RM9200

• 10 and 100 Mbits per second data throughput capability

• Full- and half-duplex operation

• MII or RMII interface to the physical layer

• Register interface to address, status and control registers

• DMA interface, operating as a master on the Memory Controller

• Interrupt generation to signal receive and transmit completion

• 28-byte transmit and 28-byte receive FIFOs

• Automatic pad and CRC generation on transmitted frames

• Address checking logic to recognize four 48-bit addresses

• Supports promiscuous mode where all valid frames are copied to memory

• Supports physical layer management through MDIO interface

10.14 Serial Peripheral Interface
• Supports communication with serial external devices

– Four chip selects with external decoder support allow communication with up to 15
peripherals

– Serial memories, such as DataFlash and 3-wire EEPROMs

– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and
Sensors

– External co-processors

• Master or slave serial peripheral bus interface

– 8- to 16-bit programmable data length per chip select

– Programmable phase and polarity per chip select

– Programmable transfer delays between consecutive transfers and between clock
and data per chip select

– Programmable delay between consecutive transfers

– Selectable mode fault detection

• Connection to PDC channel optimizes data transfers

– One channel for the receiver, one channel for the transmitter

– Next buffer support

10.15 Two-wire Interface
• Compatibility with standard two-wire serial memory

• One, two or three bytes for slave address

• Sequential Read/Write operations

10.16 USART
• Programmable Baud Rate Generator

• 5- to 9-bit full-duplex synchronous or asynchronous serial communications

– 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode

– Parity generation and error detection

– Framing error detection, overrun error detection

31
1768I–ATARM–09-Jul-09

AT91RM9200

– MSB- or LSB-first

– Optional break generation and detection

– By 8 or by-16 over-sampling receiver frequency

– Optional hardware handshaking RTS-CTS

– Optional modem signal management DTR-DSR-DCD-RI

– Receiver time-out and transmitter timeguard

– Optional Multi-drop Mode with address generation and detection

• RS485 with driver control signal

• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards

– NACK handling, error counter with repetition and iteration limit

• IrDA modulation and demodulation

– Communication at up to 115.2 Kbps

• Test Modes

– Remote Loopback, Local Loopback, Automatic Echo

• Connection of two Peripheral DMA Controller (PDC) channels

– Offers buffer transfer without processor intervention

The USART describes features allowing management of the Modem Signals DTR, DSR, DCD
and RI. For details, see “Modem Mode” on page 434.

In the AT91RM9200, only the USART1 implements these signals, named DTR1, DSR1, DCD1
and RI1.

The USART0, USART2 and USART3 do not implement all the modem signals. Only RTS and
CTS (RTS0 and CTS0, RTS2 and CTS2, RTS3 and CTS3, respectively) are implemented in
these USARTs for other features.

Thus, programming the USART0, USART2 or the USART3 in Modem Mode may lead to unpre-
dictable results. In these USARTs, the commands relating to the Modem Mode have no effect
and the status bits relating the status of the modem signals are never activated.

10.17 Serial Synchronous Controller
• Provides serial synchronous communication links used in audio and telecom applications

• Contains an independent receiver and transmitter and a common clock divider

• Interfaced with two PDC channels to reduce processor overhead

• Offers a configurable frame sync and data length

• Receiver and transmitter can be programmed to start automatically or on detection of
different event on the frame sync signal

• Receiver and transmitter include a data signal, a clock signal and a frame synchronization
signal

10.18 Timer Counter
• Three 16-bit Timer Counter Channels

• Wide range of functions including:

– Frequency Measurement

– Event Counting

32
1768I–ATARM–09-Jul-09

AT91RM9200

– Interval Measurement

– Pulse Generation

– Delay Timing

– Pulse Width Modulation

– Up/down Capabilities

• Each channel is user-configurable and contains:

– Three external clock inputs

– Five internal clock inputs

– Two multi-purpose input/output signals

• Internal interrupt signal

• Two global registers that act on all three TC Channels

• The Timer Counter 0 to 5 are described with five generic clock inputs, TIMER_CLOCK1 to
TIMER_CLOCK5. In the AT91RM9200, these clock inputs are connected to the Master Clock
(MCK), to the Slow Clock (SLCK) and to divisions of the Master Clock. For details, see “Clock
Control” on page 488.
Table 10-6 gives the correspondence between the Timer Counter clock inputs and clocks in
the AT91RM9200. Each Timer Counter 0 to 5 displays the same configuration.

10.19 MultiMedia Card Interface
• Compatibility with MultiMedia Card Specification Version 2.2

• Compatibility with SD Memory Card Specification Version 1.0

• Cards clock rate up to Master Clock divided by 2

• Embedded power management to slow down clock rate when not used

• Supports two slots

– One slot for one MultiMedia Card bus (up to 30 cards) or one SD Memory Card

• Support for stream, block and multi-block data read and write

• Connection to a Peripheral DMA Controller (PDC) channel

– Minimizes processor intervention for large buffer transfers

Table 10-6. Timer Counter Clocks Assignment

TC Clock Input Clock

TIMER_CLOCK1 MCK/2

TIMER_CLOCK2 MCK/8

TIMER_CLOCK3 MCK/32

TIMER_CLOCK4 MCK/128

TIMER_CLOCK5 SLCK

33
1768I–ATARM–09-Jul-09

AT91RM9200

11. ARM920T Processor Overview

11.1 Overview
The ARM920T cached processor is a member of the ARM9™ Thumb family of high-performance
32-bit system-on-a-chip processors. It provides a complete high performance CPU subsystem
including:

• ARM9TDMI RISC integer CPU

• 16-Kbyte instruction and 16-Kbyte data caches

• Instruction and data memory management units (MMUs)

• Write buffer

• AMBA™ (Advanced Microprocessor Bus Architecture) bus interface

• Embedded Trace Macrocell (ETM) interface

The ARM9TDMI core within the ARM920T executes both the 32-bit ARM and 16-bit Thumb
instruction sets. The ARM9TDMI processor is a Harvard architecture device, implementing a
five-stage pipeline consisting of Fetch, Decode, Execute, Memory and Write stages.

The ARM920T processor incorporates two coprocessors:

• CP14 - Controls software access to the debug communication channel

• CP15 - System Control Processor, providing 16 additional registers that are used to configure
and control the caches, the MMU, protection system, clocking mode and other system
options

The main features of the ARM920T processor are:

• ARM9TDMI-based, ARM Architecture v4T

• Two Instruction Sets

– ARM High-performance 32-bit Instruction Set

– Thumb High Code Density 16-bit Instruction Set

• 5-Stage Pipeline Architecture

– Instruction Fetch (F)

– Instruction Decode (D)

– Execute (E)

– Data Memory Access (M)

– Register Write (W)

• 16-Kbyte Data Cache, 16-Kbyte Instruction Cache

– Virtually-addressed 64-way Associative Cache

– 8 Words per Line

– Write-though and Write-back Operation

– Pseudo-random or Round-robin Replacement

– Low-power CAM RAM Implementation

• Write Buffer

– 16-word Data Buffer

– 4-address Address Buffer

– Software Control Drain

34
1768I–ATARM–09-Jul-09

AT91RM9200

• Standard ARMv4 Memory Management Unit (MMU)

– Access Permission for Sections

– Access Permission for Large Pages and Small Pages Can be Specified Separately
for Each Quarter of the Pages

– 16 Embedded Domains

– 64-entry Instruction TLB and 64-entry Data TLB

• 8-, 16-, 32-bit Data Bus for Instructions and Data

35
1768I–ATARM–09-Jul-09

AT91RM9200

11.2 Block Diagram

Figure 11-1. ARM920T Internal Functional Block Diagram

R13

CP15

Instruction
Cache

Instruction
MMU

Write
Buffer

Write Back
PA TAG RAM

Data
MMU

Data
Cache

ICE ARM9TDMI

ICE
Interface

Data
Virtual

Address
Bus

Data
Bus

Data
Modified
Virtual

Address
Bus

Bus
Interface

Memory
Controller

Data
Physical
Address

Bus

Data Index Bus

R13

Instruction
Modified
Virtual

Address
Bus

Instruction
Bus

Instruction
Virtual

Address
Bus

Write Back
Physical
Address

Bus

Instruction
Physical
Address

Bus

ARM920T

36
1768I–ATARM–09-Jul-09

AT91RM9200

11.3 ARM9TDMI Processor

11.3.1 Instruction Type
Instructions are either 32 bits (in ARM state) or 16 bits (in Thumb state).

11.3.2 Data Types
ARM9TDMI supports byte (8-bit), half-word (16-bit) and word (32-bit) data types. Words must be
aligned to four-byte boundaries and half-words to two-byte boundaries.

Unaligned data access behavior depends on which instruction is used in a particular location.

11.3.3 ARM9TDMI Operating Modes
The ARM9TDMI, based on ARM architecture v4T, supports seven processor modes:

• User: Standard ARM program execution state

• FIQ: Designed to support high-speed data transfer or channel processes

• IRQ: Used for general-purpose interrupt handling

• Supervisor: Protected mode for the operating system

• Abort mode: Implements virtual memory and/or memory protection

• System: A privileged user mode for the operating system

• Undefined: Supports software emulation of hardware coprocessors

Mode changes may be made under software control, or may be brought about by external inter-
rupts or exception processing. Most application programs will execute in User Mode. The non-
user modes, known as privileged modes, are entered in order to service interrupts or exceptions
or to access protected resources.

11.3.4 ARM9TDMI Registers
The ARM9TDMI processor core consists of a 32-bit datapath and associated control logic. That
datapath contains 31 general-purpose registers, coupled to a full shifter, Arithmetic Logic Unit
and multiplier.

At any one time, 16 registers are visible to the user. The remainder are synonyms used to speed
up exception processing.

Register 15 is the Program Counter (PC) and can be used in all instructions to reference data
relative to the current instruction.

R14 holds the return address after a subroutine call.

R13 is used (by software convention) as a stack pointer.

Table 11-1. ARM9TDMI Modes and Register Layout

User and
System
Mode

Supervisor
Mode Abort Mode

Undefined
Mode

Interrupt
Mode

Fast
Interrupt

Mode

R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

37
1768I–ATARM–09-Jul-09

AT91RM9200

Registers R0 to R7 are unbanked registers, thus each of them refers to the same 32-bit physical
register in all processor modes. They are general-purpose registers, with no special uses man-
aged by the architecture, and can be used wherever an instruction allows a general-purpose
register to be specified.

Registers R8 to R14 are banked registers. This means that each of them depends of the current
processor mode.

For further details, see the ARM Architecture Reference Manual, Rev. DDI0100E.

11.3.4.1 Modes and Exception Handling
All exceptions have banked registers for R14 and R13.

After an exception, R14 holds the return address for exception processing. This address is used
both to return after the exception is processed and to address the instruction that caused the
exception.

R13 is banked across exception modes to provide each exception handler with a private stack
pointer.

The fast interrupt mode also banks registers 8 to 12 so that interrupt processing can begin with-
out the need to save these registers.

R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8 R8_FIQ

R9 R9 R9 R9 R9 R9_FIQ

R10 R10 R10 R10 R10 R10_FIQ

R11 R11 R11 R11 R11 R11_FIQ

R12 R12 R12 R12 R12 R12_FIQ

R13 R13_SVC R13_ABORT R13_UNDEF R13_IRQ R13_FIQ

R14 R14_SVC R14_ABORT R14_UNDEF R14_IRQ R14_FIQ

PC PC PC PC PC PC

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_SVC
SPSR_ABO

RT
SPSR_UND

EF
SPSR_IRQ SPSR_FIQ

Mode-specific banked
registers

Table 11-1. ARM9TDMI Modes and Register Layout (Continued)

User and
System
Mode

Supervisor
Mode Abort Mode

Undefined
Mode

Interrupt
Mode

Fast
Interrupt

Mode

38
1768I–ATARM–09-Jul-09

AT91RM9200

A seventh processing mode, System Mode, does not have any banked registers. It uses the
User Mode registers. System Mode runs tasks that require a privileged processor mode and
allows them to invoke all classes of exceptions.

11.3.4.2 Status Registers
All other processor states are held in status registers. The current operating processor status is
in the Current Program Status Register (CPSR). The CPSR holds:

• four ALU flags (Negative, Zero, Carry, and Overflow),

• two interrupt disable bits (one for each type of interrupt),

• one bit to indicate ARM or Thumb execution

• five bits to encode the current processor mode

All five exception modes also have a Saved Program Status Register (SPSR) which holds the
CPSR of the task immediately before the exception occurred.

11.3.4.3 Exception Types
The ARM9TDMI supports five types of exceptions and a privileged processing mode for each
type. The types of exceptions are:

• fast interrupt (FIQ)

• normal interrupt (IRQ)

• memory aborts (used to implement memory protection or virtual memory)

• attempted execution of an undefined instruction

• software interrupt (SWIs)

Exceptions are generated by internal and external sources.

More than one exception can occur at the same time.

When an exception occurs, the banked version of R14 and the SPSR for the exception mode
are used to save the state.

To return after handling the exception, the SPSR is moved to the CPSR and R14 is moved to the
PC. This can be done in two ways:

• use of a data-processing instruction with the S-bit set, and the PC as the destination

• use of the Load Multiple with Restore CPSR instruction (LDM)

11.3.5 ARM Instruction Set Overview
The ARM instruction set is divided into:

• Branch instructions

• Data processing instructions

• Status register transfer instructions

• Load and Store instructions

• Coprocessor instructions

• Exception-generating instructions

ARM instructions can be executed conditionally. Every instruction contains a 4-bit condition
code field (bits[31:28]).

For further details, see the ARM920T Technical Reference Manual, Rev. DDI0151C.

39
1768I–ATARM–09-Jul-09

AT91RM9200

Table 11-2 gives the ARM instruction mnemonic list.

11.3.6 Thumb Instruction Set Overview
The Thumb instruction set is a re-encoded subset of the ARM instruction set.

The Thumb instruction set is divided into:

• Branch instructions

• Data processing instructions

• Load and Store instructions

• Load and Store multiple instructions

• Exception-generating instruction

In Thumb mode, eight general-purpose registers are available, R0 to R7, that are the same
physical registers as R0 to R7 when executing ARM instructions. Some Thumb instructions also
access the Program Counter (ARM Register 15), the Link Register (ARM Register 14) and the

Table 11-2. ARM Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation

MOV Move CDP Coprocessor Data Processing

ADD Add MVN Move Not

SUB Subtract ADC Add with Carry

RSB Reverse Subtract SBC Subtract with Carry

CMP Compare RSC Reverse Subtract with Carry

TST Test CMN Compare Negated

AND Logical AND TEQ Test Equivalence

EOR Logical Exclusive OR BIC Bit Clear

MUL Multiply ORR Logical (inclusive) OR

SMULL Sign Long Multiply MLA Multiply Accumulate

SMLAL Signed Long Multiply Accumulate UMULL Unsigned Long Multiply

MSR Move to Status Register UMLAL Unsigned Long Multiply Accumulate

B Branch MRS Move From Status Register

BX Branch and Exchange BL Branch and Link

LDR Load Word SWI Software Interrupt

LDRSH Load Signed Halfword STR Store Word

LDRSB Load Signed Byte STRH Store Half Word

LDRH Load Half Word STRB Store Byte

LDRB Load Byte STRBT Store Register Byte with Translation

LDRBT Load Register Byte with Translation STRT Store Register with Translation

LDRT Load Register with Translation STM Store Multiple

LDM Load Multiple SWPB Swap Byte

SWP Swap Word MRC Move From Coprocessor

MCR Move To Coprocessor STC Store From Coprocessor

LDC Load To Coprocessor

40
1768I–ATARM–09-Jul-09

AT91RM9200

Stack Pointer (ARM Register 13). Further instructions allow limited access to the ARM register 8
to 15.

For further details, see the ARM920T Technical Reference Manual, Rev. DDI0151C.

Table 11-3 gives the Thumb instruction mnemonic list.

Table 11-3. Thumb Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation

MOV Move MVN Move Not

ADD Add ADC Add with Carry

SUB Subtract SBC Subtract with Carry

CMP Compare CMN Compare Negated

TST Test NEG Negate

AND Logical AND BIC Bit Clear

EOR Logical Exclusive OR ORR Logical (inclusive) OR

LSL Logical Shift Left LSR Logical Shift Right

ASR Arithmetic Shift Right ROR Rotate Right

MUL Multiply

B Branch BL Branch and Link

BX Branch and Exchange SWI Software Interrupt

LDR Load Word STR Store Word

LDRH Load Half Word STRH Store Half Word

LDRB Load Byte STRB Store Byte

LDRSH Load Signed Halfword LDRSB Load Signed Byte

LDMIA Load Multiple STMIA Store Multiple

PUSH Push Register to stack POP Pop Register from stack

41
1768I–ATARM–09-Jul-09

AT91RM9200

11.4 CP15 Coprocessor
Coprocessor 15, or System Control Coprocessor CP15, is used when special features are used
with the ARM9TDMI such as:

• On-chip Memory Management Unit (MMU)

• Instruction and/or Data Cache

• Write buffer

To control these features, CP15 provides 16 additional registers. See Table 11-4.

Notes: 1. TLB: Translation Lookaside Buffer

2. FCSE PID: Fast Context Switch Extension Process Identifier

11.4.1 CP15 Register Access
CP15 registers can only be accessed in privileged mode by:

• MCR (Move to Coprocessor from ARM Register) instruction

• MRC (Move to ARM Register from Coprocessor) instruction

Other instructions (CDP, LDC, STC) cause an undefined instruction exception.

The MCR instruction is used to write an ARM register to CP15.

The MRC instruction is used to read the value of CP15 to an ARM register.

The assembler code for these instructions is:

MCR/MRC{cond} p15, opcode_1, Rd, CRn, CRm, opcode_2.

Table 11-4. CP15 Registers

Register Name Access

0 ID Register Read-only

1 Control Read/Write

2 Translation Table Base Read/Write

3 Domain Access Control Read/Write

4 Reserved None

5 Fault Status Read/Write

6 Fault Address Read/Write

7 Cache Operations Write-only

8 TLB(1) Operations Write-only

9 cache lockdown Read/Write

10 TLB lockdown Read/Write

11 Reserved None

12 Reserved None

13 FCSE PID(2) Read/Write

14 Reserved None

15 Test configuration None

42
1768I–ATARM–09-Jul-09

AT91RM9200

The MCR, MRC instructions bit pattern is shown below:

• CRm[3:0]: Specified Coprocessor Action
Determines specific coprocessor action. Its value is dependent on the CP15 register used. For details, refer to CP15 spe-
cific register behavior.

• opcode_2[7:5]
Determines specific coprocessor operation code. By default, set to 0.

• Rd[15:12]: ARM Register
Defines the ARM register whose value is transferred to the coprocessor. If R15 is chosen, the result is unpredictable.

• CRn[19:16]: Coprocessor Register
Determines the destination coprocessor register.

• opcode_1[23:20]: Coprocessor Code
Defines the coprocessor specific code. Value is c15 for CP15.

• L: Instruction Bit
0 = MCR instruction

1 = MRC instruction

• Cond [31:28]: Condition

31 30 29 28 27 26 25 24

Cond 1 1 1 0

23 22 21 20 19 18 17 16

opcode_1 L CRn

15 14 13 12 11 10 9 8

Rd 1 1 1 1

7 6 5 4 3 2 1 0

opcode_2 1 CRm

43
1768I–ATARM–09-Jul-09

AT91RM9200

11.5 Memory Management Unit (MMU)
The ARM920T processor implements an enhanced ARM architecture v4 MMU to provide trans-
lation and access permission checks for the instruction and data address ports of the
ARM9TDMI core. The MMU is controlled from a single set of two-level page tables stored in the
main memory, providing a single address and translation protection scheme. Independently,
instruction and data TLBs in the MMU can be locked and flushed.

11.5.1 Domain
A domain is a collection of sections and pages. The ARM920T supports 16 domains. Access to
the domains is controlled by the Domain Access Control register. For details, refer to “CP15
Register 3, Domain Access Control Register” on page 50.

11.5.2 MMU Faults
The MMU generates alignment faults, translation faults, domain faults and permission faults.
Alignment fault checking is not affected by whether the MMU is enabled or not.

The access controls of the MMU detect the conditions that produce these faults. If the fault is a
result of memory access, the MMU aborts the access and signals the fault to the CPU core.The
MMU stores the status and address fault in the FSR and FAR registers (only for faults generated
by data access).

The MMU does not store fault information about faults generated by an instruction fetch.

The memory system can abort during line fetches, memory accesses and translation table
access.

Table 11-5. Mapping Details

Mapping Name Mapping Size Access Permission By Subpage Size

Section 1M byte Section -

Large Page 64K bytes 4 separated subpages 16K bytes

Small Page 4K bytes 4 separated subpages 1K byte

Tiny Page 1K byte Tiny Page -

44
1768I–ATARM–09-Jul-09

AT91RM9200

11.6 Caches, Write Buffers and Physical Address
The ARM920T includes an Instruction Cache (ICache), a Data Cache (DCache), a write buffer
and a Physical Address (PA) TAG RAM to reduce the effect on main memory bandwidth and
latency performance.

The ARM920T implements separate 16-Kbyte Instruction and 16-Kbyte Data Caches.

The caches and the write buffer are controlled by the CP15 Register 1 (Control), CP15 Register
7 (Cache Operations) and CP15 Register 9 (Cache Lockdown).

11.6.1 Instruction Cache (ICache)
The ARM920T includes a 16-Kbyte Instruction Cache (ICache). The ICache has 512 lines of 32
bytes, arranged as a 64-way set associative cache.

Instruction access is subject to MMU permission and translation checks.

If the ICache is enabled with the MMU disabled, all instructions fetched as threats are cachable.
No protection checks are made and the physical address is flat-mapped to the modified virtual
address.

When the ICache is disabled, the cache contents are ignored and all instruction fetches appear
on the AMBA bus.

On reset, the ICache entries are invalidated and the ICache is disabled. For best performance,
ICache should be enabled as soon as possible after reset.

The ICache is enabled by writing 1 to I bit of the CP15 Register 1 and disabled by writing 0 to
this bit. For more details, see “CP15 Register 1, Control” on page 48.

The ICache is organized as eight segments, each containing 64 lines with each line made up of
8 words.The position of the line within the segment is called the index and is numbered from 0 to
63.

A line in the cache is identified by the index and segment. The index is independent of the MVA
(Modified Virtual Address), and the segment is the bit[7:5] of the MVA.

11.6.2 Data Cache (DCache) and Write Buffer
The ARM920T includes a 16-Kbyte data cache (DCache). The DCache has 512 lines of 32
bytes, arranged as a 64-way set associative cache, and uses MVAs translated by CP15 Regis-
ter 13 from the ARM9DTMI core.

11.6.2.1 DCache
The DCache is organized as eight segments, each containing 64 lines with each line made up of
eight words.The position of the line within the segment is called the index and is a number from
0 to 63.

The Write Buffer can hold up to 16 words of data and four separate addresses.

DCache and Write Buffer operations are closely connected as their configuration is set in each
section by the page descriptor in the MMU translation table.

All data accesses are subject to MMU permission and translation checks. Data accesses
aborted by the MMU cannot cause linefill or data access via the AMBA ASB interface.

Write-though Operation When a cache hit occurs for a data access, the cache line that contains the data is updated to
contains its value. The new data is also immediately written to the main memory.

45
1768I–ATARM–09-Jul-09

AT91RM9200

Write-back Operation When a cache hit occurs for a data access, the cache line is marked as dirty, meaning that its
contents are not up-to-date with those in the main memory.

11.6.2.2 Write Buffer
The ARM920T incorporates a 16-entry write buffer to avoid stalling the processor when writes to
external memory are performed. When a store occurs, its data, address and other details are
written to the write buffer at high speed. The write buffer then completes the store at the main
memory speed (typically slower than the ARM speed). In parallel, the ARM9TDMI processor can
execute further instructions at full speed.

11.6.2.3 Physical Address Tag RAM (PA TAG RAM)
The ARM920T implements Physical Address Tag RAM (PA TAG RAM) to perform write-backs
from the data cache. The physical address of all the lines held in the data cache is stored in the
PA TAG memory, removing the need for address translation when evicting a line from the cache.

When a line is written into the data cache, the physical address TAG is written into the PA TAG
RAM. If this line has to be written back to the main memory, the PA TAG RAM is read and the
physical address is used by the AMBA ASB interface to perform the write-back.

For a 16-Kbyte DCache, the PA TAG RAM is organized by eight segments with:

• 64 rows per segments

• 26 bits per rows

• be

46
1768I–ATARM–09-Jul-09

AT91RM9200

11.7 ARM920T User Interface

11.7.1 CP15 Register 0, ID Code and Cache Type
Access: Read-only

The CP Register 0 contains specific hardware information. The contents of the read accesses are determined by the
opcode_2 field value. Writing to Register 0 is unpredictable.

11.7.1.1 ID Code
The ID code register is accessed by reading the register 0 with the opcode_2 field set to 0.

The contents of the ID code is shown below:

• LayoutRev[3:0]: Revision
Contains the processor revision number

• PNumber[15:4]: Processor Part Number
0x920 value for ARM920T processor.

• archi[19:16]: Architecture
Details the implementor architecture code.

0x2 value means ARMv4T architecture.

• SRev[23:20]: Specification Revision Number
0x1 value; specification revision number used to distinguished two variants of the same primary part.

• imp[31:24]: Implementor Code
0x41 (= A); means ARM Ltd.

31 30 29 28 27 26 25 24

imp

23 22 21 20 19 18 17 16

SRev archi

15 14 13 12 11 10 9 8

PNumber

7 6 5 4 3 2 1 0

Layout Rev

47
1768I–ATARM–09-Jul-09

AT91RM9200

11.7.1.2 Cache Type
The Cache Type register is accessed by reading the register 0 with the opcode_2 field set to 1.

The Cache Type register contains information about the size and architecture of the caches.

• ISize[11:0]: Instruction Cache Size
Indicates the size, line length and associativity of the instruction cache.

• DSize[23:12]: Data Cache Size
Indicates the size, line length and associativity of the data cache.

• S[24]: Cache
Indicates if the cache is unified or has separate instruction and data caches.

Set to 1, this field indicates separate Instruction and Data caches.

• ctype[28:25]: Cache Type
Defines the cache type.

For details on bits DSize and ISize, refer to the ARM920T Technical Reference Manual, Rev. DDI0151C.

31 30 29 28 27 26 25 24

0 0 0 ctype S

23 22 21 20 19 18 17 16

DSize

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

ISize

48
1768I–ATARM–09-Jul-09

AT91RM9200

11.7.2 CP15 Register 1, Control
Access: Read/Write

The CP15 Register 1, or Control Register, contains the control bits of the ARM920T.

• M[0]: MMU Enable
0 = MMU disabled.

1 = MMU enabled.

• A[1]: Alignment Fault Enable
0 = Fault checking disabled.

1 = Fault checking enabled.

• C[2]: DCache Enable
0 = DCache disabled.

1 = DCache enabled.

• B[7]: Endianness
0 = Little endian mode.

1 = Big endian mode.

• S[8]: System Protection
Modifies the MMU protection system.

For further details, see the ARM920T Technical Reference Manual, Rev. DDI0151C.

• R[9]: ROM Protection
Modifies the MMU protection system.

For further details, see the ARM920T Technical Reference Manual, Rev. DDI0151C.

• I[12]: ICache Control
0 = ICache disabled.

1 = ICache enabled.

31 30 29 28 27 26 25 24

iA nF - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- RR V I 0 0 R S

7 6 5 4 3 2 1 0

B 1 1 1 1 C A M

49
1768I–ATARM–09-Jul-09

AT91RM9200

• V[13]: Base Location of Exception Register
0 = Low address means 0x00000000.

1 = High address means 0xFFFF0000.

• RR[14]: Round Robin Replacement
0 = Random replacement.

1 = Round robin replacement.

• Clocking Mode[31:30] (iA and nF bits)

11.7.3 CP15 Register 2, TTB
Access: Read/Write

The CP15 Register 2, or Translation Table Base (TTB) Register, defines the first-level translation table.

• Pointer[31:14]
Points to the first-level translation table base. Read returns the currently active first-level translation table. Write sets the
pointer to the first-level table to the written value.

The non-defined bits should be zero when written and are unpredictable when read.

iA nF Clocking mode

0 0 Fast Bus

0 1 Synchronous

1 0 Reserved

1 1 Asynchronous

31 30 29 28 27 26 25 24

Pointer

23 22 21 20 19 18 17 16

Pointer

15 14 13 12 11 10 9 8

Pointer - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - -

50
1768I–ATARM–09-Jul-09

AT91RM9200

11.7.4 CP15 Register 3, Domain Access Control Register
Access: Read/Write

The CP 15 Register 3, or Domain Access Control Register, defines the domain’s access permission.

MMU accesses are priory controlled through the use of 16 domains.

Each field of Register 3 is associated with one domain.

• D15 to D0: Named Domain Access
The 2-bit field value allows domain access as described in the table below.

11.7.5 CP15 Register 4, Reserved
Any access (Read or Write) to this register causes unpredictable behavior.

31 30 29 28 27 26 25 24

D15 D14 D13 D12

23 22 21 20 19 18 17 16

D11 D10 D9 D8
D

15 14 13 12 11 10 9 8

D7 D6 D5 D4

7 6 5 4 3 2 1 0

D3 D2 D1 D0

Value Access Description

0 0 No access Any access generates a domain fault

0 1 Client
The Users of domain (execute programs, access data), the domain access
permission controlled the domain access.

1 0 Reserved Reserved

1 1 Manager
Controls the behavior of the domain, no checking of the domain access
permission is done

51
1768I–ATARM–09-Jul-09

AT91RM9200

11.7.6 CP15 Register 5, Fault Status Register
Access: Read/Write

Reading the CP 15 Register 5, or Fault Status Register (FSR), returns the source of the last data fault, indicating the
domain and type of access being attempted when the data abort occurred.

In addition, the virtual address which caused the data abort is written into the Fault Address Register (CP15 Register 6).

Writing the CP 15 Register 5, or Fault Status Register (FSR), sets the FSR to the value of the data written. This is useful for
a debugger to restore the value of the FSR.

• Status[3:0]: Fault Type
Indicates the fault type. The status field is encoded by the MMU when a data abort occurs. The interpretation of the Status
field is dependant on the domain field and the MVA associated with the data abort (stored in the FAR).

• Domain[7:4]: Domain
Indicates the domain (D15 - D0) being accessed when the fault occurred.

The non-defined bits should be zero when written and are unpredictable when read.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -
D

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

Domain Status

52
1768I–ATARM–09-Jul-09

AT91RM9200

11.7.7 CP15 Register 6, Fault Address Register
Access: Read/Write

The CP 15 Register 6, or Fault Address Register (FAR), contains the MVA (Modified Virtual Address) of the access being
attempted when the last fault occurred. The FAR is only updated for data faults, not for prefetch faults.

The ability to write to the FAR is provided to allow a debugger to restore a previous state.

• FAR[31:0]: Fault Address
On reading: returns the value of the FAR. The FAR holds the virtual address of the access which was attempted when fault
occurred.

On writing: sets the FAR to the value of the written data. This is useful for a debugger to restore the value of the FAR.

11.7.8 CP15 Register 7, Cache Operation Register
Access: Write-only

The CP15 Register 7, or Cache Operation Register, is used to manage the Instruction Cache (ICache) and the Data Cache
(DCache).

The function of each cache operation is selected by the opcode_2 and CRm fields in the MCR instruction used to write
CP15 Register 7.

31 30 29 28 27 26 25 24

FAR

23 22 21 20 19 18 17 16

FAR
D

15 14 13 12 11 10 9 8

FAR

7 6 5 4 3 2 1 0

FAR

Table 11-6. Cache Functions

Function Data CRm opcode_2

Wait for Interrupt SBZ c0 4

Invalidate ICache SBZ c5 0

Invalidate ICache single entry (using MVA) MVA format c5 1

Invalidate DCache SBZ c6 0

Invalidate DCache single entry (using MVA) MVA format c6 1

Invalidate ICache and DCache SBZ c7 0

Clean DCache singe entry (using MVA) MVA format c10 1

Clean DCache single entry (using index) Index format c10 2

Drain write buffer SBZ c10 4

Prefetch ICache line (using MVA) MVA format c13 1

Clean and Invalidate DCache entry (using MVA) MVA format c14 1

Clean and Invalidate DCache entry (using index) Index format c14 2

53
1768I–ATARM–09-Jul-09

AT91RM9200

Function Details

• Wait for interrupt

Stops execution in low-power state until an interrupt occurs.

• Invalidate

The cache line (or lines) is marked as invalid, so no cache hits occur in that line until it is re-allocated to an address.

• Clean

Applies to write-back data caches. If the cache line contains stored data that has not yet been written out to the main mem-
ory, it is written to main memory immediately.

• Drain write buffer

Stops the execution until all data in the write buffer has been stored in the main memory.

• Prefetch

The memory cache line at the specified virtual address is loaded into the cache.

The operation carried out on a single cache line identifies the line using the data transferred in the MCR instruction.

The data is interpreted as using one of the two formats:

– MVA format
– index format

Below are the details of CP15 Register 7, or Cache Function Register, in MVA format.

• mva[31:5]: Modified Virtual Address
The non-defined bits should be zero when written and are unpredictable when read.

31 30 29 28 27 26 25 24

mva

23 22 21 20 19 18 17 16

mva

15 14 13 12 11 10 9 8

mva

7 6 5 4 3 2 1 0

mva - - - - -

54
1768I–ATARM–09-Jul-09

AT91RM9200

Below the details of CP15 Register 7, or Cache Function Register, in Index format:

• index[31:26]: Line
Determines the cache line.

• set[7:5]: Segment
Determines the cache segment.

The non-defined bits should be zero when written and are unpredictable when read.

Writing other opcode_2 values or CRm values is unpredictable.

Reading from CP15 Register 7 is unpredictable.

31 30 29 28 27 26 25 24

index - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

set - - - - -

55
1768I–ATARM–09-Jul-09

AT91RM9200

11.7.9 CP15 Register 8, TLB Operations Register
Access: Write-only

The CP15 Register 8, or Translation Lookaside Buffer (TLB) Operations Register, is used to manage instruction TLBs and
data TLBs.

The TLB operation is selected by opcode_2 and CRm fields in the MCR instruction used to write CP15 Register 8.

Below are details of the CP15 Register 8 for TLB operation on MVA format and one single entry.

• mva[31:10]: Modified Virtual Address
The non-defined bits should be zero when written and are unpredictable when read.

Writing other opcode_2 values or CRm values is unpredictable.

Reading from CP15 Register 8 is unpredictable.

Table 11-7. TLB Operations

Function Data CRm opcode_2

Invalidate I TLB SBZ 5 0

Invalidate I TLB single entry (using MVA) MVA format 5 1

Invalidate D TLB SBZ 6 0

Invalidate D TLB single entry (using MVA) MVA format 6 1

Invalidate both Instruction and Data TLB SBZ 7

31 30 29 28 27 26 25 24

mva

23 22 21 20 19 18 17 16

mva

15 14 13 12 11 10 9 8

mva - -

7 6 5 4 3 2 1 0

- - - - - - - -

56
1768I–ATARM–09-Jul-09

AT91RM9200

11.7.10 CP15 Register 9, Cache Lockdown Register
Access: Read/Write

The CP15 Register 9, or Cache Lockdown Register, is 0x0 on reset. The Cache Lockdown Register allows software to con-
trol which cache line in the ICache or DCache is loaded for a linefill. It prevents lines in the ICache or DCache from being
evicted during a linefill, locking them into the cache.

Reading from the CP15 Register 9 returns the value of the Cache Lockdown Register that is the base pointer for all cache
segments.

Only the bits[31:26] are returned; others are unpredictable.

Writing to the CP15 Register 9 updates the Cache Lockdown Register with both the base and the current victim pointers for
all cache segments.

• index[31:26]: Victim Pointer
Current victim pointer that specifies the cache line to be used as victim for the next linefill.

The non-defined bits should be zero when written and are unpredictable when read.

Table 11-8. Cache Lockdown Functions

Function Data CRm opcode_2

Read DCache lockdown base Base 0 0

Write DCache victim and lockdown base Victim = Base 0 0

Read ICache lockdown base Base 0 1

Write ICache victim and lockdown base Victim = Base 0 1

31 30 29 28 27 26 25 24

index - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - -

57
1768I–ATARM–09-Jul-09

AT91RM9200

11.7.11 CP15 Register 10, TLB Lockdown Register
Access: Read/Write

The CP15 Register 10, or TLB Lockdown Register, is 0x0 on reset. There is a TLSB Lockdown Register for each of the
TLBs; the value of opcode_2 determines which TLB register to access:

• opcode_2 = 0x0 for D TLB register

• opcode_2 = 0x1 for I TLB register

• Base[31:26]: Base
The TLB replacement strategy only uses the TLB entries numbered from base to 63. The Victim field provided is in that
range.

• Victim[25:20]: Victim Counter
Specifies the TLB entry (line) being overwritten.

• P[0]: Preserved
If 0, the TLB entry can be invalidated.

If 1, the TLB entry is protected. It cannot be invalidated during the Invalidate All instruction. Refer to “CP15 Register 8, TLB
Operations Register” on page 55.

The non-defined bits should be zero when written and are unpredictable when read.

11.7.12 CP15 Registers 11, 12, Reserved
Any access (Read or Write) to these registers causes unpredictable behavior.

Table 11-9. TLB Lockdown Functions

Function Data CRm Opcode_2

Read D TLB lockdown TLB lockdown 0 0

Write D TLB lockdown TLB lockdown 0 0

Read I TLB lockdown TLB lockdown 0 1

Write I TLB lockdown TLB lockdown 0 1

31 30 29 28 27 26 25 24

Base

23 22 21 20 19 18 17 16

Victim - - - -
D

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - P

58
1768I–ATARM–09-Jul-09

AT91RM9200

11.7.13 CP15 Register 13, FCSE PID Register
Access: Read/Write

The CP15 Register 13, or Fast Context Switch Extension (FCSE) Process Identifier (PID) Register, is set to 0x0 on reset.

Reading from CP15 Register 13 returns the FCSE PID value.

Writing to CP15 Register 13 sets the FCSE PID.

The FCSE PID sets the mapping between the ARM9TDMI and the MMU of the cache memories.

The addresses issued by the ARM9TDMI are in the range of 0 to 32 Mbytes and are translated via the FCSE PID.

• FCSEPID[31:25]: FCSE PID
The FCSE PID modifies the behavior of the of the ARM920T memory system. This modification allows multiple programs to
run on the ARM.

The 4-GB virtual address is divided into 128 process blocks of 32 Mbytes each. Each process block can contain a program
that has been compiled to use the address range 0x00000000 to 0x01FFFFFF. For each i = 0 to 127 process blocks, i runs
from address i*0x20000000 to address i*0x20000000 + 0x01FFFFFF.

For further details, see the ARM920T Technical Reference Manual, Rev. DDI0151C.

The non-defined bits should be zero when written and are unpredictable when read.

11.7.14 CP15 Register 14, Reserved
Any access (Read or Write) of these registers causes unpredictable behavior.

11.7.15 CP15 Register 15, Test Configuration Register
CP15 Register 15, or Test Configuration Register, is used for test purposed. Any access (write or read) to this register
causes unpredictable behavior.

31 30 29 28 27 26 25 24

FCSEPID -

23 22 21 20 19 18 17 16

- - - - - - - -
D

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - -

59
1768I–ATARM–09-Jul-09

AT91RM9200

12. Debug and Test Features (DBG Test)

12.1 Overview
The AT91RM9200 features a number of complementary debug and test capabilities. A common
JTAG/ICE (In-Circuit Emulator) port is used for standard debugging functions such as download-
ing code and single-stepping through programs. An ETM (Embedded Trace Macrocell) provides
more sophisticated debug features such as address and data comparators, half-rate clock
mode, counters, sequencer and FIFO. The Debug Unit provides a two-pin UART that can be
used to upload an application into internal SRAM. It manages the interrupt handling of the inter-
nal COMMTX and COMMRX signals that trace the activity of the Debug Communication
Channel.

A set of dedicated debug and test input/output pins give direct access to these capabilities from
a PC-based test environment.

Features of Debug and Test Features are:

• Integrated Embedded In-Circuit-Emulator

• Debug Unit

– Two-pin UART

– Debug Communication Channel

– Chip ID Register

• Embedded Trace Macrocell: ETM9 Rev2a

– Medium Level Implementation

– Half-rate Clock Mode

– Four Pairs of Address Comparators

– Two Data Comparators

– Eight Memory Map Decoder Inputs

– Two Counters

– One Sequencer

– One 18-byte FIFO

• IEEE1149.1 JTAG Boundary Scan on all Digital Pins

60
1768I–ATARM–09-Jul-09

AT91RM9200

12.2 Block Diagram

Figure 12-1. AT91RM9200 Debug and Test Block Diagram

2

ETMICEARM9TDMI

PDC DBGU

P
IO

DRXD

DTXD

TPK0-TPK15

TPS0-TPS2

TSYNC

TCLK

TMS

TCK

TDI

NTRST

JTAGSEL

TDO

TST0-TST1

NRST

Reset
and
Test

TAP: Test Access Port

Boundary
Port

ICE/JTAG
TAP

ARM920T

61
1768I–ATARM–09-Jul-09

AT91RM9200

12.3 Application Examples

12.3.1 Debug Environment
Figure 12-2 on page 61 shows a complete debug environment example. The ICE/JTAG inter-
face is used for standard debugging functions such as downloading code and single-stepping
through the program. The Trace Port interface is used for tracing information. A software debug-
ger running on a personal computer provides the user interface for configuring a Trace Port
interface utilizing the ICE/JTAG interface.

Figure 12-2. AT91RM9200-based Application Debug and Trace Environment Example

12.4 Test Environment
Figure 12-3 below shows a test environment example. Test vectors are sent and interpreted by
the tester. In this example, the “board under test” is designed using many JTAG compliant
devices. These devices can be connected together to form a single scan chain.

AT91RM9200-based Application Board

ICE/JTAG
Interface

Trace Port
Interface

ICE/JTAG
Connector

AT91RM9200 Terminal

Trace
Connector

RS232
Connector

Host Debugger

62
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 12-3. AT91RM9200-based Application IEEE1149.1 Test Environment Example

12.5 Debug and Test Pin Description

JTAG
Interface

AT91RM920

ICE/JTAG
Connector

AT91RM9200-based Application Board Under Test

Test Adaptor Tester

Chip n Chip 2

Chip 1

Table 12-1. Debug and Test Pin List

Pin Name Function Type Active Level

Reset/Test

NRST Microcontroller Reset Input Low

TST0 Test Mode Select Input

TST1 Test Mode Select Input

ICE and JTAG

TCK Test Clock Input

TDI Test Data In Input

TDO Test Data Out Output

TMS Test Mode Select Input

NTRST Test Reset Signal Input Low

JTAGSEL JTAG Selection Input

ETM (available only in BGA package)

TSYNC Trace Synchronization Signal Output

TCLK Trace Clock Output

TPS0- TPS2 Trace ARM Pipeline Status Output

TPK0 - TPK15 Trace Packet Port Output

Debug Unit

DRXD Debug Receive Data Input DRXD

DTXD Debug Transmit Data Output DTXD

63
1768I–ATARM–09-Jul-09

AT91RM9200

12.6 Functional Description

12.6.1 Test Mode Pins
Two dedicated pins (TST1, TST0) are used to define the test mode of the device. The user must
make sure that these pins are both tied at low level to ensure normal operating conditions. Other
values associated to these pins are manufacturing test reserved.

12.6.2 Embedded In-Circuit Emulator
The ARM9TDMI Embedded In-Circuit Emulator is supported via the ICE/JTAG port. It is con-
nected to a host computer via an ICE interface. Debug support is implemented using an
ARM9TDMI core embedded within the ARM920T. The internal state of the ARM920T is exam-
ined through an ICE/JTAG port which allows instructions to be serially inserted into the pipeline
of the core without using the external data bus. Therefore, when in debug state, a store-multiple
(STM) can be inserted into the instruction pipeline. This exports the contents of the ARM9TDMI
registers. This data can be serially shifted out without affecting the rest of the system.

There are six scan chains inside the ARM920T processor which support testing, debugging, and
programming of the Embedded ICE. The scan chains are controlled by the ICE/JTAG port.

Embedded ICE mode is selected when JTAGSEL is low. It is not possible to switch directly
between ICE and JTAG operations. A chip reset must be performed (NRST and NTRST) after
JTAGSEL is changed. The test reset input to the embedded ICE (NTRST) is provided separately
to facilitate debug of the boot program.

For further details on the Embedded In-Circuit-Emulator, see the ARM920T Technical Refer-
ence Manual, ARM Ltd, - DDI 0151C.

12.6.3 Debug Unit
The Debug Unit provides a two-pin (DXRD and TXRD) UART that can be used for several
debug and trace purposes and offers an ideal means for in-situ programming solutions and
debug monitor communication. Moreover, the link with two Peripheral DMA Controller channels
provides packet handling of these tasks with processor time reduced to a minimum.

The Debug Unit also manages the interrupt handling of the COMMTX and COMMRX signals
that come from the ICE and trace the activity of the Debug Communication Channel.

The Debug Unit can be used to upload an application into internal SRAM. It is activated by the
boot program when no valid application is detected.

A specific register, the Debug Unit Chip ID Register, informs about the product version and its
internal configuration.

The AT91RM9200 Debug Unit Chip ID value is: 0x09290781, on 32-bit width.

For further details on the Debug Unit, see “Debug Unit (DBGU)” on page 321.

For further details on the Debug Unit and the Boot program, see “Boot Program” on page 83.

12.6.4 Embedded Trace Macrocell
The AT91RM9200 features an Embedded Trace Macrocell (ETM), which is closely connected to
the ARM9TDMI Processor. The Embedded Trace is a standard mid-level implementation and
contains the following resources:

• Four pairs of address comparators

• Two data comparators

64
1768I–ATARM–09-Jul-09

AT91RM9200

• Eight memory map decoder inputs

• Two counters

• One sequencer

• Four external inputs

• One external output

• One 18-byte FIFO

The Embedded Trace Macrocell of the AT91RM9200 works in half-rate clock mode and thus
integrates a clock divider. This assures that the maximum frequency of all the trace port signals
do not exceed one half of the ARM920T clock speed.

The Embedded Trace Macrocell input and output resources are not used in the AT91RM9200.

The Embedded Trace is a real-time trace module with the capability of tracing the ARM9TDMI
instruction and data.

The Embedded Trace debug features are only accessible in the AT91RM9200 BGA package.

For further details on Embedded Trace Macrocell, see the ETM9 (Rev2a) Technical Reference
Manual, ARM Ltd. -DDI 0157E.

12.6.4.1 Trace Port
The Trace Port is made up of the following pins:

• TSYNC - the synchronization signal (Indicates the start of a branch sequence on the trace
packet port.)

• TCLK - the Trace Port clock, half-rate of the ARM920T processor clock.

• TPS0 to TPS2 - indicate the processor state at each trace clock edge.

• TPK0 to TPK15 - the Trace Packet data value.

The trace packet information (address, data) is associated with the processor state indicated by
TPS. Some processor states have no additional data associated with the Trace Packet Port (i.e.
failed condition code of an instruction). The packet is 8-bits wide, and up to two packets can be
output per cycle.

65
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 12-4. ETM9 Block

12.6.4.2 Implementation Details
This section gives an overview of the Embedded Trace resources. For further details, see the
Embedded Trace Macrocell Specification, ARM Ltd. -IHI 0014H.

Three-state Sequencer

The sequencer has three possible next states (one dedicated to itself and two others) and can
change on every clock cycle. The sate transition is controlled with internal events. If the user
needs multiple-stage trigger schemes, the trigger event is based on a sequencer state.

Address Comparator

In single mode, address comparators compare either the instruction address or the data address
against the user-programmed address.

In range mode, the address comparators are arranged in pairs to form a virtual address range
resource.

Details of the address comparator programming are:

• The first comparator is programmed with the range start address.

• The second comparator is programmed with the range end address.

• The resource matches if the address is within the following range:

– (address > = range start address) AND (address < range end address)

• Unpredictable behavior occurs if the two address comparators are not configured in the same
way.

Data Comparator

Each full address comparator is associated with a specific data comparator. A data comparator
is used to observe the data bus only when load and store operations occur.

A data comparator has both a value register and a mask register, therefore it is possible to com-
pare only certain bits of a preprogrammed value against the data bus.

ARM920T
Bus Tracker

T
M

S

T
C

K

T
D

I

T
D

O
Scan Chain 6

TAP
Controller

Trace
Control

Trigger, Sequencer, Counters

FIFO

Trace Enable, View Data

TPS-TPS0

TPK15-TPK0

TSYNC

ETM9

66
1768I–ATARM–09-Jul-09

AT91RM9200

Memory Decoder Inputs

The eight memory map decoder inputs are connected to custom address decoders. The
address decoders divide the memory into regions of on-chip SRAM, on-chip ROM, and peripher-
als. The address decoders also optimize the ETM9 trace trigger.

FIFO

An 18-byte FIFO is used to store data tracing. The FIFO is used to separate the pipeline status
from the trace packet. So, the FIFO can be used to buffer trace packets.

A FIFO overflow is detected by the embedded trace macrocell when the FIFO is full or when the
FIFO has less bytes than the user-programmed number.

For further details, see the ETM9 (Rev2a) Technical Reference Manual, ARM Ltd. DDI 0157E.

Half-rate Clocking Mode

The ETM9 is implemented in half-rate mode that allows both rising and falling edge data tracing
of the trace clock.

The half-rate mode is implemented to maintain the signal clock integrity of high speed systems
(up to 100 Mhz).

Figure 12-5. Half-rate Clocking Mode

Care must be taken on the choice of the trace capture system as it needs to support half-rate
clock functionality.

Table 12-2. ETM Memory Map Inputs Layout

Description Region Access type start_address end_address

SRAM Internal Data 0x00000000 0x000FFFFF

SRAM Internal Fetch 0x00000000 0x000FFFFF

ROM Internal Data 0x00100000 0x001FFFFF

ROM Internal Fetch 0x00100000 0x001FFFFF

NCS0-NCS7 External Data 0x10000000 0x8FFFFFFF

NCS0-NCS7 External Fetch 0x10000000 0x8FFFFFFF

User Peripheral Internal Data 0xF0000000 0xFFFFEFFF

System
Peripheral

Internal Data 0xFFFFF000 0xFFFFFFFF

Half-rate Clocking Mode

Trace Clock

TraceData

ARM920T Clock

67
1768I–ATARM–09-Jul-09

AT91RM9200

12.6.4.3 Application Board Restriction
The TCLK signal needs to be set with care, some timing parameters are required.

Refer to AT91RM9200 “JTAG/ICE Timings” on page 657 and “ETM Timings” on page 660.

The specified target system connector is the AMP Mictor connector.

The connector must be oriented on the application board as described below in Figure 12-6. The
view of the PCB is shown from above with the trace connector mounted near the edge of the
board. This allows the Trace Port Analyzer to minimize the physical intrusiveness of the inter-
connected target.

Figure 12-6. AMP Mictor Connector Orientation

12.6.5 IEEE 1149.1 JTAG Boundary Scan
IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging
technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when JTAGSEL is high. The SAMPLE, EXTEST
and BYPASS functions are implemented. In ICE debug mode, the ARM processor responds
with a non-JTAG chip ID that identifies the processor to the ICE system. This is not IEEE 1149.1
JTAG-compliant.

It is not possible to switch directly between JTAG and ICE operations. A chip reset must be per-
formed (NRST and NTRST) after JTAGSEL is changed.

Two Boundary Scan Descriptor Language (BSDL) files are provided to set up testing. Each
BSDL file is dedicated to a specific packaging.

12.6.5.1 JTAG Boundary Scan Register
The Boundary Scan Register (BSR) contains 449 bits which correspond to active pins and asso-
ciated control signals.

Each AT91RM9200 input pin has a corresponding bit in the Boundary Scan Register for
observability.

Each AT91RM9200 output pin has a corresponding 2-bit register in the BSR. The OUTPUT bit
contains data which can be forced on the pad. The CTRL bit can put the pad into high
impedance.

38 37

2 1

Pin 1Chamfer

AT91RM9200-based
Application Board

68
1768I–ATARM–09-Jul-09

AT91RM9200

Each AT91RM9200 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT
bit contains data that can be forced on the pad. The INPUT bit facilitates the observability of data
applied to the pad. The CTRL bit selects the direction of the pad.

Table 12-3. JTAG Boundary Scan Register

Bit
Number Pin Name Pin Type

Associated BSR
Cells

449 A19 Output OUTPUT

448 A[19:16]/BA0/BA1 Output CTRL

447 A20 Output OUTPUT

446 A[22:20]/NWE/NWR0 Output CTRL

445 A21 Output OUTPUT

444 A22 Output OUTPUT

443

PC7/A23 I/O

INPUT

442 OUTPUT

441 CTRL

440

PC8/A24 I/O

INPUT

439 OUTPUT

438 CTRL

437

PC9/A25/CFRNW I/O

INPUT

436 OUTPUT

435 CTRL

434 NCS0/BFCS Output OUTPUT

433
NCS[1:0]/NOE/NRD/NUB/

NWR1/NBS1/BFCS/SDCS
Output CTRL

432 NCS1/SDCS Output OUTPUT

431 NCS2 Output OUTPUT

430 NCS[2:3]/NBS3 Output CTRL

429 NCS3 Output OUTPUT

428 NOE/NRD Output OUTPUT

427
NWE/NWR0 Output

INPUT

426 OUTPUT

425
NUB/NWR1/NBS1 Output

INPUT

424 OUTPUT

423 NBS3 Output OUTPUT

422 SDCKE Output OUTPUT

421 SDCKE/RAS/CAS/WE/SDA10 Output CTRL

420 RAS Output OUTPUT

419 CAS Output OUTPUT

418 WE Output OUTPUT

69
1768I–ATARM–09-Jul-09

AT91RM9200

417
D0 I/O

INPUT

416 OUTPUT

415 D[3:0] I/O CTRL

414
D1 I/O

INPUT

413 OUTPUT

412
D2 I/O

INPUT

411 OUTPUT

410
D3 I/O

INPUT

409 OUTPUT

408
D4 I/O

INPUT

407 OUTPUT

406 D[7:4] I/O CTRL

405
D5 I/O

INPUT

404 OUTPUT

403
D6 I/O

INPUT

402 OUTPUT

401
D7 I/O

INPUT

400 OUTPUT

399
D8 I/O

INPUT

398 OUTPUT

397 D[11:8] I/O CTRL

396
D9 I/O

INPUT

395 OUTPUT

394
D10 I/O

INPUT

393 OUTPUT

392
D11 I/O

INPUT

391 OUTPUT

390
D12 I/O

INPUT

389 OUTPUT

388 D[15:12] I/O CTRL

387
D13 I/O

INPUT

386 OUTPUT

385
D14 I/O

INPUT

384 OUTPUT

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

70
1768I–ATARM–09-Jul-09

AT91RM9200

383
D15 I/O

INPUT

382 OUTPUT

381

PC16/D16 I/O

INPUT

380 OUTPUT

379 CTRL

378

PC17D17 I/O

INPUT

377 OUTPUT

376 CTRL

375

PC18/D18 I/O

INPUT

374 OUTPUT

373 CTRL

372

PC19/D19 I/O

INPUT

371 OUTPUT

370 CTRL

369

PC20/D20 I/O

INPUT

368 OUTPUT

367 CTRL

366

PC21/D21 I/O

INPUT

365 OUTPUT

364 CTRL

363

PC22/D22 I/O

INPUT

362 OUTPUT

361 CTRL

360

PC23/D23 I/O

INPUT

359 OUTPUT

358 CTRL

357

PC24/D24 I/O

INPUT

356 OUTPUT

355 CTRL

354

PC25/D25 I/O

INPUT

353 OUTPUT

352 CTRL

351

PC26/D26 I/O

INPUT

350 OUTPUT

349 CTRL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

71
1768I–ATARM–09-Jul-09

AT91RM9200

348

PC27/D27 I/O

INPUT

347 OUTPUT

346 CTRL

345

PC28/D28 I/O

INPUT

344 OUTPUT

343 CTRL

342

PC29/D29 I/O

INPUT

341 OUTPUT

340 CTRL

339

PC30/D30 I/O

INPUT

338 OUTPUT

337 CTRL

336

PC31/D31 I/O

INPUT

335 OUTPUT

334 CTRL

333

PC10/NCS4/CFCS I/O

INPUT

332 OUTPUT

331 CTRL

330

PC11/NCS5/CFCE1 I/O

INPUT

329 OUTPUT

328 CTRL

327

PC12/NCS6/CFCE2 I/O

INPUT

326 OUTPUT

325 CTRL

324

PC13/NCS7 I/O

INPUT

323 OUTPUT

322 CTRL

321

PC14 I/O

INPUT

320 OUTPUT

319 CTRL

318

PC15 I/O

INPUT

317 OUTPUT

316 CTRL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

72
1768I–ATARM–09-Jul-09

AT91RM9200

315

PC0/BCFK I/O

INPUT

314 OUTPUT

313 CTRL

312

PC1/BFRDY/SMOE I/O

INPUT

311 OUTPUT

310 CTRL

309

PC2/BFAVD I/O

INPUT

308 OUTPUT

307 CTRL

306

PC3/BFBAA/SMWE I/O

INPUT

305 OUTPUT

304 CTRL

303

PC4/BFOE I/O

INPUT

302 OUTPUT

301 CTRL

300

PC5/BFWE I/O

INPUT

299 OUTPUT

298 CTRL

297

PC6/NWAIT I/O

INPUT

296 OUTPUT

295 CTRL

294

PA0/MISO/PCK3 I/O

INPUT

293 OUTPUT

292 CTRL

291

PA1/MOSI/PCK0 I/O

INPUT

290 OUTPUT

289 CTRL

288

PA2/SPCK/IRQ4 I/O

INPUT

287 OUTPUT

286 CTRL

285

PA3/NPCS0/IRQ5 I/O

INPUT

284 OUTPUT

283 CTRL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

73
1768I–ATARM–09-Jul-09

AT91RM9200

282

PA4/NPCS1/PCK1 I/O

INPUT

281 OUTPUT

280 CTRL

279

PA5/NPCS2/TXD3 I/O

INPUT

278 OUTPUT

277 CTRL

276

PD0/ETX0 I/O

INPUT

275 OUTPUT

274 CTRL

273

PD1/ETX1 I/O

INPUT

272 OUTPUT

271 CTRL

270

PD2/ETX2 I/O

INPUT

269 OUTPUT

268 CTRL

267

PD3/ETX3 I/O

INPUT

266 OUTPUT

265 CTRL

264

PD4/ETXEN I/O

INPUT

263 OUTPUT

262 CTRL

261

PD5/ETXER I/O

INPUT

260 OUTPUT

259 CTRL

258

PD6/DTXD I/O

INPUT

257 OUTPUT

256 CTRL

255

PA6/NPCS3/RXD3 I/O

INPUT

254 OUTPUT

253 CTRL

252

PA7/ETXCK/EREFCK/PCK2 I/O

INPUT

251 OUTPUT

250 CTRL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

74
1768I–ATARM–09-Jul-09

AT91RM9200

249

PA8/ETXEN/MCCDB I/O

INPUT

248 OUTPUT

247 CTRL

246

PA9/ETX0/MCDB0 I/O

INPUT

245 OUTPUT

244 CTRL

243

PA10/ETX1/MCDB1 I/O

INPUT

242 OUTPUT

241 CTRL

240

PA11/ECRS/ECRSDV/MCDB2 I/O

INPUT

239 OUTPUT

238 CTRL

237

PA12/ERX0/MCDB3 I/O

INPUT

236 OUTPUT

235 CTRL

234

PA13/ERX1/TCLK0 I/O

INPUT

233 OUTPUT

232 CTRL

231

PA14/ERXER/TCLK1 I/O

INPUT

230 OUTPUT

229 CTRL

228

PA15/EMDC/TCLK2 I/O

INPUT

227 OUTPUT

226 CTRL

225

PA16/EMDIO/IRQ6 I/O

INPUT

224 OUTPUT

223 CTRL

222

PA17/TXD0/TIOA0 I/O

INPUT

221 OUTPUT

220 CTRL

219

PA18/RXD0/TIOB0 I/O

INPUT

218 OUTPUT

217 CTRL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

75
1768I–ATARM–09-Jul-09

AT91RM9200

216

PA19/SCK0/TIOA1 I/O

INPUT

215 OUTPUT

214 CTRL

213

PA20/CTS0/TIOB1 I/O

INPUT

212 OUTPUT

211 CTRL

210

PA21/RTS0/TIOA2 I/O

INPUT

209 OUTPUT

208 CTRL

207

PA22/RXD2/TIOB2 I/O

INPUT

206 OUTPUT

205 CTRL

204

PA23/TXD2/IRQ3 I/O

INPUT

203 OUTPUT

202 CTRL

201

PA24/SCK2/PCK1 I/O

INPUT

200 OUTPUT

199 CTRL

198

PA25/TWD/IRQ2 I/O

INPUT

197 OUTPUT

196 CTRL

195

PA26/TWCK/IRQ1 I/O

INPUT

194 OUTPUT

193 CTRL

192

PA27/MCCK/TCLK3 I/O

INPUT

191 OUTPUT

190 CTRL

189

PA28/MCCDA/TCLK4 I/O

INPUT

188 OUTPUT

187 CTRL

186

PA29/MCDA0/TCLK5 I/O

INPUT

185 OUTPUT

184 CTRL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

76
1768I–ATARM–09-Jul-09

AT91RM9200

183

PA30/DRXD/CTS2 I/O

INPUT

182 OUTPUT

181 CTRL

180

PA31/DTXD/RTS2 I/O

INPUT

179 OUTPUT

178 CTRL

177

PB0/TF0/RTS3 I/O

INPUT

176 OUTPUT

175 CTRL

174

PB1/TK0/CTS3 I/O

INPUT

173 OUTPUT

172 CTRL

171

PB2/TD0/SCK3 I/O

INPUT

170 OUTPUT

169 CTRL

168

PB3/RD0/MCDA1 I/O

INPUT

167 OUTPUT

166 CTRL

165

PB4/RK0/MCDA2 I/O

INPUT

164 OUTPUT

163 CTRL

162

PB5/RF0/MCDA3 I/O

INPUT

161 OUTPUT

160 CTRL

159

PB6/TF1/TIOA3 I/O

INPUT

158 OUTPUT

157 CTRL

156

PB7/TK1/TIOB3 I/O

INPUT

155 OUTPUT

154 CTRL

153

PB8/TD1/TIOA4 I/O

INPUT

152 OUTPUT

151 CTRL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

77
1768I–ATARM–09-Jul-09

AT91RM9200

150

PB9/RD1/TIOB4 I/O

INPUT

149 OUTPUT

148 CTRL

147

PB10/RK1/TIOA5 I/O

INPUT

146 OUTPUT

145 CTRL

144

PB11/RF1/TIOB5 I/O

INPUT

143 OUTPUT

142 CTRL

141

PB12/TF2/ETX2 I/O

INPUT

140 OUTPUT

139 CTRL

138

PB13/TK2/ETX3 I/O

INPUT

137 OUTPUT

136 CTRL

135

PB14/TD2/ETXER I/O

INPUT

134 OUTPUT

133 CTRL

132

PB15/RD2/ERX2 I/O

INPUT

131 OUTPUT

130 CTRL

129

PB16/RK2/ERX3 I/O

INPUT

128 OUTPUT

127 CTRL

126

PD7/PCK0/TSYNC I/O

INPUT

125 OUTPUT

124 CTRL

123

PD8/PCK1/TCLK I/O

INPUT

122 OUTPUT

121 CTRL

120

PD9/PCK2/TPS0 I/O

INPUT

119 OUTPUT

118 CTRL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

78
1768I–ATARM–09-Jul-09

AT91RM9200

117

PD10/PCK3/TPS1 I/O

INPUT

116 OUTPUT

115 CTRL

114

PD11/TPS2 I/O

INPUT

113 OUTPUT

112 CTRL

111

PD12/TPK0 I/O

INPUT

110 OUTPUT

109 CTRL

108

PB17/RF2/ERXDV I/O

INPUT

107 OUTPUT

106 CTRL

105

PB18/RI1/ECOL I/O

INPUT

104 OUTPUT

103 CTRL

102

PB19/DTR1/ERXCK I/O

INPUT

101 OUTPUT

100 CTRL

99

PB20/TXD1 I/O

INPUT

98 OUTPUT

97 CTRL

96

PB21/RXD1 I/O

INPUT

95 OUTPUT

94 CTRL

93

PB22/SCK1 I/O

INPUT

92 OUTPUT

91 CTRL

90

PD13/TPK1 I/O

INPUT

89 OUTPUT

88 CTRL

87

PD14/TPK2 I/O

INPUT

86 OUTPUT

85 CTRL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

79
1768I–ATARM–09-Jul-09

AT91RM9200

84

PD15/TD0/TPK3 I/O

INPUT

83 OUTPUT

82 CTRL

81

PB23/DCD1 I/O

INPUT

80 OUTPUT

79 CTRL

78

PB24/CTS1 I/O

INPUT

77 OUTPUT

76 CTRL

75

PB25/DSR1/EF100 I/O

INPUT

74 OUTPUT

73 CTRL

72

PB26/RTS1 I/O

INPUT

71 OUTPUT

70 CTRL

69

PB27/PCK0 I/O

INPUT

68 OUTPUT

67 CTRL

66

PD16/TD1/TPK4 I/O

INPUT

65 OUTPUT

64 CTRL

63

PD17/TD2/TPK5 I/O

INPUT

62 OUTPUT

61 CTRL

60

PD18/NPCS1/TPK6 I/O

INPUT

59 OUTPUT

58 CTRL

57

PD19/NPCS2/TPK7 I/O

INPUT

56 OUTPUT

55 CTRL

54

PD20/NPCS3/TPK8 I/O

INPUT

53 OUTPUT

52 CTRL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

80
1768I–ATARM–09-Jul-09

AT91RM9200

51

PD21/RTS0/TPK9 I/O

INPUT

50 OUTPUT

49 CTRL

48

PD22/RTS1/TPK10 I/O

INPUT

47 OUTPUT

46 CTRL

45

PD23/RTS2/TPK11 I/O

INPUT

44 OUTPUT

43 CTRL

42

PD24/RTS3/TPK12 I/O

INPUT

41 OUTPUT

40 CTRL

39

PD25/DTR1/TPK13 I/O

INPUT

38 OUTPUT

37 CTRL

36

PD26/TPK14 I/O

INPUT

35 OUTPUT

34 CTRL

33

PD27/TPK15 I/O

INPUT

32 OUTPUT

31 CTRL

30

PB28/FIQ I/O

INPUT

29 OUTPUT

28 CTRL

27

PB29/IRQ0 I/O

INPUT

26 OUTPUT

25 CTRL

24 A0/NLB/NBS0 Output OUPUT

23
A[3:0]/NLB/NWR2/NBS0

/NBS2
Output CTRL

22 A1/NWR2/NBS2 Output OUTPUT

21 A2 Output OUTPUT

20 A3 Output OUTPUT

19 A4 Output OUTPUT

18 A[7:4] Output CTRL

17 A5 Output OUTPUT

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

81
1768I–ATARM–09-Jul-09

AT91RM9200

16 A6 Output OUTPUT

15 A7 Output OUTPUT

14 A8 Output OUTPUT

13 A[11:8] Output CTRL

12 A9 Output OUTPUT

11 A10 Output OUTPUT

10 SDA10 Output OUTPUT

9 A11 Output OUTPUT

8 A12 Output OUTPUT

7 A[15:12] Output CTRL

6 A13 Output OUTPUT

5 A14 Output OUTPUT

4 A15 Output OUTPUT

3 A16/BA0 Output OUTPUT

2 A17/BA1 Output OUTPUT

1 A18 Output OUTPUT

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells

82
1768I–ATARM–09-Jul-09

AT91RM9200

12.6.6 AT91RM9200 ID Code Register
Access: Read-only

• VERSION[31:28]: Product Version Number
Set to 0x0 = JTAGSEL is low.

Set to 0x1 = JTAGSEL is high.

• PART NUMBER[27:14]: Product Part Number
Set to 0x5b02.

• MANUFACTURER IDENTITY[11:1]
Set to 0x01f.

• Bit [0]: Required by IEEE Std. 1149.1
Set to 1.

The AT91RM9200 ID Code value is 0x15b0203f (JTAGSEL is High).

The AT91RM9200 ID Code value is 0x05b0203f (JTAGSEL is Low).

31 30 29 28 27 26 25 24

VERSION PART NUMBER

23 22 21 20 19 18 17 16

PART NUMBER

15 14 13 12 11 10 9 8

PART NUMBER MANUFACTURER IDENTITY

7 6 5 4 3 2 1 0

MANUFACTURER IDENTITY 1

83
1768I–ATARM–09-Jul-09

AT91RM9200

13. Boot Program

13.1 Overview
The Boot Program is capable of downloading an application in an AT91RM9200-based system.
It integrates a Bootloader and a boot Uploader to assure correct information download.

The Bootloader is activated first. It looks for a sequence of eight valid ARM exception vectors in
a DataFlash connected to the SPI, an EEPROM connected to the Two-wire Interface (TWI) or
an 8-bit memory device connected to the external bus interface (EBI). All these vectors must be
Bbranch or LDR load register instructions except for the sixth instruction. This vector is used to
store information, such as the size of the image to download and the type of DataFlash device.

If a valid sequence is found, code is downloaded into the internal SRAM. This is followed by a
remap and a jump to the first address of the SRAM.

If no valid ARM vector sequence is found, the boot Uploader is started. It initializes the Debug
Unit serial port (DBGU) and the USB Device Port. It then waits for any transaction and down-
loads a piece of code into the internal SRAM via a Device Firmware Upgrade (DFU) protocol for
USB and XMODEM protocol for the DBGU. After the end of the download, it branches to the
application entry point at the first address of the SRAM.

The main features of the Boot Program are:

• Default Boot Program stored in ROM-based products

• Downloads and runs an application from external storage media into internal SRAM

• Downloaded code size depends on embedded SRAM size

• Automatic detection of valid application

• Bootloader supporting a wide range of non-volatile memories

– SPI DataFlash connected on SPI NPCS0

– Two-wire EEPROM

– 8-bit parallel memories on NCS0

• Boot Uploader in case no valid program is detected in external NVM and supporting several
communication media

• Serial communication on a DBGU (XModem protocol)

• USB Device Port (DFU Protocol)

84
1768I–ATARM–09-Jul-09

AT91RM9200

13.2 Flow Diagram
The Boot Program implements the algorithm presented in Figure 13-1.

Figure 13-1. Boot Program Algorithm Flow Diagram

Timeout 10 ms

Timeout 40 ms

Device
Setup

Parallel
Boot

SPI DataFlash
Boot

TWI
EEPROM Boot

Download from
DataFlash

Download from
EEPROM

Download from
8-bit Device

DBGU Serial
Download

Run

Run

Run

Run

Run

OR

Yes

Yes

Yes

*DFU = Device Firmware Upgrade

Bootloader

Boot Uploader

USB Download
DFU* protocol

85
1768I–ATARM–09-Jul-09

AT91RM9200

13.3 Bootloader
The Boot Program is started from address 0x0000_0000 (ARM reset vector) when the on-chip
boot mode is selected (BMS high during the reset, only on devices with EBI integrated). The first
operation is the search for a valid program in the off-chip non-volatile memories. If a valid appli-
cation is found, this application is loaded into internal SRAM and executed by branching at
address 0x0000_0000 after remap. This application may be the application code or a second-
level Bootloader.

To optimize the downloaded application code size, the Boot Program embeds several functions
that can be reused by the application. The Boot Program is linked at address 0x0010_0000 but
the internal ROM is mapped at both 0x0000_0000 and 0x0010_0000 after reset. All the call to
functions is PC relative and does not use absolute addresses. The ARM vectors are present at
both addresses, 0x0000_0000 and 0x0010_0000.

To access the functions in ROM, a structure containing chip descriptor and function entry points
is defined at a fixed address in ROM.

If no valid application is detected, the debug serial port or the USB device port must be con-
nected to allow the upload. A specific application provided by Atmel (DFU uploader) loads the
application into internal SRAM through the USB. To load the application through the debug
serial port, a terminal application (HyperTerminal) running the Xmodem protocol is required.

Figure 13-2. Remap Action after Download Completion

After reset, the code in internal ROM is mapped at both addresses 0x0000_0000 and
0x0010_0000:

100000 ea00000b B 0x2c00ea00000bB0x2c

100004 e59ff014 LDR PC,[PC,20]04e59ff014LDRPC,[PC,20]

100008 e59ff014 LDR PC,[PC,20]08e59ff014LDRPC,[PC,20]

10000c e59ff014 LDR PC,[PC,20]0ce59ff014LDRPC,[PC,20]

100010 e59ff014 LDR PC,[PC,20]10e59ff014LDRPC,[PC,20]

100014 00001234 LDR PC,[PC,20]1400001234LDRPC,[PC,20]

100018 e51fff20 LDR PC,[PC,-0xf20]18e51fff20LDRPC,[PC,-0xf20]

10001c e51fff20 LDR PC,[PC,-0xf20]1ce51fff20LDRPC,[PC,-0xf20]

REMAP

Internal
SRAM

Internal
ROM

Internal
ROM

Internal
SRAM

0x0020_0000

0x0000_0000

0x0010_0000

0x0000_0000

86
1768I–ATARM–09-Jul-09

AT91RM9200

13.3.1 Valid Image Detection
The Bootloader software looks for a valid application by analyzing the first 32 bytes correspond-
ing to the ARM exception vectors. These bytes must implement ARM instructions for either
branch or load PC with PC relative addressing. The sixth vector, at offset 0x14, contains the size
of the image to download and the DataFlash parameters.

The user must replace this vector with his own vector.

Figure 13-3. LDR Opcode

Figure 13-4. B Opcode

Unconditional instruction: 0xE for bits 31 to 28

Load PC with PC relative addressing instruction:

– Rn = Rd = PC = 0xF

– I==1

– P==1

– U offset added (U==1) or subtracted (U==0)

– W==1

13.3.1.1 Example
An example of valid vectors:

00 ea00000b B 0x2c

004 e59ff014 LDR PC, [PC,20]

08 e59ff014 LDR PC, [PC,20]

0c e59ff014 LDR PC, [PC,20]

10 e59ff014 LDR PC, [PC,20]

14 00001234 <- Code size = 4660 bytes
18 e51fff20 LDR PC, [PC,-0xf20]

1c e51fff20 LDR PC, [PC,-0xf20]

In download mode (DataFlash, EEPROM or 8-bit memory in device with EBI integrated), the
size of the image to load into SRAM is contained in the location of the sixth ARM vector. Thus
the user must replace this vector by the correct vector for his application.

31 28 27 24 23 20 19 16 15 12 11 0

1 1 1 0 0 1 I P U 0 W 1 Rn Rd

31 28 27 24 23 0

1 1 1 0 1 0 1 0 Offset (24 bits)

87
1768I–ATARM–09-Jul-09

AT91RM9200

13.3.2 Structure of ARM Vector 6
The ARM exception vector 6 is used to store information needed by the Boot ROM downloader.
This information is described below.

Figure 13-5. Structure of the ARM vector 6

The first eight bits contain the number of blocks to download. The size of a block is 512 bytes,
allowing download of up to 128K bytes.

The bits 13 to 16 determine the DataFlash page number.

– DataFlash page number = 2(Nb of pages)

The last 15 bits contain the DataFlash page size.

13.3.2.1 Example
The following vector contains the information to describe a AT45DB642 DataFlash which con-
tains 11776 bytes to download.

Vector 6 is 0x0841A017 (00001000010000011010000000010111b):

Size to download: 0x17 * 512 bytes = 11776 bytes

Number pages (1101b): 13 ==> Number of DataFlash pages = 213 = 8192

DataFlash page size(000010000100000b) = 1056

For download in the EEPROM or 8-bit external memory, only the size to be downloaded is
decoded.

31 17 16 13 12 8 7 0

Number of
pages

Reserved Nb of 512 bytes blocks to
download

DataFlash page size

Table 13-1. DataFlash Device

Device Density Page Size (bytes) Number of pages

AT45DB011B 1 Mbit 264 512

AT45DB021B 2 Mbits 264 1024

AT45DB041B 4 Mbits 264 2048

AT45DB081B 8 Mbits 264 4096

AT45DB161B 16 Mbits 528 4096

AT45DB321B 32 Mbits 528 8192

AT45DB642 64 Mbits 1056 8192

AT45DB1282 128 Mbits 1056 16384

88
1768I–ATARM–09-Jul-09

AT91RM9200

13.3.3 Bootloader Sequence
The Boot Program performs device initialization followed by the download procedure. If unsuc-
cessful, the upload is done via the USB or debug serial port.

13.3.3.1 Device Initialization
Initialization follows the steps described below:

1. PLL setup

– PLLB is initialized to generate a 48 MHz clock necessary to use the USB Device. A
register located in the Power Management Controller (PMC) determines the
frequency of the main oscillator and thus the correct factor for the PLLB.
Table 13-2 defines the crystals supported by the Boot Program.

2. Stacks setup for each ARM mode

3. Main oscillator frequency detection

4. Interrupt controller setup

5. C variables initialization

6. Branch main function

13.3.3.2 Download Procedure
The download procedure checks for a valid boot on several devices. The first device checked is
a serial DataFlash connected to the NPCS0 of the SPI, followed by the serial EEPROM con-
nected to the TWI and by an 8-bit parallel memory connected on NCS0 of the External Bus
Interface.

Table 13-2. Crystals Supported by Software Auto-detection (MHz)

3.0 3.2768 3.6864 3.84 4.0

4.433619 4.9152 5.0 5.24288 6.0

6.144 6.4 6.5536 7.159090 7.3728

7.864320 8.0 9.8304 10.0 11.05920

12.0 12.288 13.56 14.31818 14.7456

16.0 17.734470 18.432 20.0

89
1768I–ATARM–09-Jul-09

AT91RM9200

13.3.3.3 Serial DataFlash Download
The Boot Program supports all Atmel DataFlash devices. Table 13-1 summarizes the parame-
ters to include in the ARM vector 6 for all devices.

The DataFlash has a Status Register that determines all the parameters required to access the
device.

Thus, to be compatible with the future design of the DataFlash, parameters are coded in the
ARM vector 6.

Figure 13-6. Serial DataFlash Download

Send status command

8 vectors
(except vector 6) are LDR

or Branch instruction ?

Yes

Start

Is status ok ? Serial DataFlash
Download

No

No

Read the first 8 instructions (32 bytes).
Decode the sixth ARM vector

Yes

Read the DataFlash into the internal SRAM.
(code size to read in vector 6)

Restore the reset value for the peripherals.
Set the PC to 0 and perform the REMAP

to jump to the downloaded application

End

90
1768I–ATARM–09-Jul-09

AT91RM9200

13.3.3.4 Serial Two-wire EEPROM Download
Generally, serial EEPROMs have no identification code. The bootloader checks for an acknowl-
edgment on the first read. The device address on the two-wire bus must be 0x0. The bootloader
supports the devices listed in Table 13-3.

Figure 13-7. Serial Two-Wire EEPROM Download

Table 13-3. Supported EEPROM Devices

Device Size Organization

AT24C16A 16 Kbits 16 bytes page write

AT24C164 16 Kbits 16 bytes page write

AT24C32 32 Kbits 32 bytes page write

AT24C64 64 Kbits 32 bytes page write

AT24C128 128 Kbits 64 bytes page write

AT24C256 256 Kbits 64 bytes page write

AT24C512 528 Kbits 128 bytes page write

End

Memory Uploader
Only for Device without

EBI integrated

Read the first 8 instructions (32 bytes).
Decode the sixth ARM vector

Yes

Read the Two-Wire EEPROM into the
internal SRAM

(code size to read in vector 6)

Restore the reset value for the peripherals.
Set the PC to 0 and perform the REMAP

to jump to the downloaded application

Send Read command

8 vectors
(except vector 6) are LDR

or Branch instruction ?

Yes

Start

Device ACK ?

8-bits parallel memory
Download

Only for Device with EBI integrated
No

No

91
1768I–ATARM–09-Jul-09

AT91RM9200

13.3.3.5 8-bit Parallel Flash Download (Applicable to Devices with EBI)
Eight-bit parallel Flash download is supported if the product integrates an External Bus Interface
(EBI).

All 8-bit memory devices supported by the EBI when NCS0 is configured in 8-bit data bus width
are supported by the bootloader.

Figure 13-8. 8-bit Parallel Flash Download

End

Read the external memory into the
internal SRAM

(code size to read in vector 6)

Restore the reset value for the peripherals.
Set the PC to 0 and perform the REMAP

to jump to the downloaded application

Setup memory controller

8 vectors
(except vector 6) are LDR

or Branch instruction ?

Yes

Start

Memory uploaderNo

Read the first 8 instructions (32 bytes).
Read the size in sixth ARM vector

92
1768I–ATARM–09-Jul-09

AT91RM9200

13.4 Boot Uploader
If no valid boot device has been found during the Bootloader sequence, initialization of serial
communication devices (DBGU and USB device ports) is performed.

– Initialization of the DBGU serial port (115200 bauds, 8, N, 1) and Xmodem protocol
start

– Initialization of the USB Device Port and DFU protocol start

– Download of the application

The boot Uploader performs the DFU and Xmodem protocols to upload the application into inter-
nal SRAM at address 0x0020_0000.

The Boot Program uses a piece of internal SRAM for variables and stacks. To prevent any
upload error, the size of the application to upload must be less than the SRAM size minus 3K
bytes.

After the download, the peripheral registers are reset, the interrupts are disabled and the remap
is performed. After the remap, the internal SRAM is at address 0x0000_0000 and the internal
ROM at address 0x0010_0000. The instruction setting the PC to 0 is the one just after the remap
command. This instruction is fetched in the pipe before doing the remap and executed just after.
This fetch cycle executes the downloaded image.

13.4.1 External Communication Channels

13.4.1.1 DBGU Serial Port
The upload is performed through the DBGU serial port initialized to 115200 Baud, 8, n, 1.

The DBGU sends the character ‘C’ (0x43) to start an Xmodem protocol. Any terminal performing
this protocol can be used to send the application file to the target. The size of the binary file to
send depends on the SRAM size embedded in the product (Refer to the microcontroller
datasheet to determine SRAM size embedded in the microcontroller). In all cases, the size of the
binary file must be lower than SRAM size because the Xmodem protocol requires some SRAM
memory to work.

13.4.1.2 Xmodem Protocol
The Xmodem protocol supported is the 128-byte length block. This protocol uses a two charac-
ter CRC-16 to guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report successful
transmission. Each block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:

– <SOH> = 01 hex

– <blk #> = binary number, starts at 01, increments by 1, and wraps 0FFH to 00H (not
to 01)

– <255-blk #> = 1’s complement of the blk#.

– <checksum> = 2 bytes CRC16

Figure 13-9 shows a transmission using this protocol.

93
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 13-9. Xmodem Transfer Example

13.4.1.3 USB Device Port
A 48 MHz USB clock is necessary to use USB Device port. It has been programmed earlier in
the device initialization with PLLB configuration.

13.4.1.4 DFU Protocol
The DFU allows upgrade of the firmware of USB devices. The DFU algorithm is a part of the
USB specification. For more details, refer to “USB Device Firmware Upgrade Specification, Rev.
1.0”.

There are four distinct steps when carrying out a firmware upgrade:

1. Enumeration: The device informs the host of its capabilities.

2. Reconfiguration: The host and the device agree to initiate a firmware upgrade.

3. Transfer: The host transfers the firmware image to the device. Status requests are
employed to maintain synchronization between the host and the device.

4. Manifestation: Once the device reports to the host that it has completed the reprogram-
ming operations, the host issues a reset and the device executes the upgraded
firmware.

Figure 13-10. DFU Protocol

Host Device

SOH 01 FE Data[128] CRC CRC

C

ACK

SOH 02 FD Data[128] CRC CRC

ACK

SOH 03 FC Data[100] CRC CRC

ACK

EOT

ACK

Host Device

Prepare for an upgrade

USB reset

DFU mode activated

Download this firmware

Prepare to exit DFU mode

USB reset

94
1768I–ATARM–09-Jul-09

AT91RM9200

13.5 Hardware and Software Constraints
The software limitations of the Boot Program are:

• The downloaded code size is less than the SRAM size -4K embedded in the product.

• The device address of the EEPROM must be 0 on the TWI bus.

• The code is always downloaded from the device address 0x0000_0000 (DataFlash,
EEPROM) to the address 0x0000_0000 of the internal SRAM (after remap).

• The downloaded code must be position-independent or linked at address 0x0000_0000.

The hardware limitations of the Boot Program are:

• The DataFlash must be connected to NPCS0 of the SPI.

• The 8-bit parallel Flash must be connected to NCS0 of the EBI.

• The Boot Program initializes the DBGU pins multiplexed on the PIO common to both the 208-
lead PQFP and 256-ball BGA packages, in this case meaning PIOA.

• Using an external clock source on the XIN pin is not possible as the main oscillator is enabled
by the Boot ROM.

The SPI and TWI drivers use several PIOs in alternate functions to communicate with devices.
Care must be taken when these PIOs are used by the application. The devices connected could
be unintentionally driven at boot time, and electrical conflicts between SPI or TWI output pins
and the connected devices may appear.

To assure correct functionality, it is recommended to plug in critical devices to other pins or to
boot on an external 16-bit parallel memory by setting bit BMS.

Table 13-4 contains a list of pins that are driven during the Boot Program execution. These pins
are driven during the boot sequence for a period of about 6 ms if no correct boot program is
found. The download through the TWI takes about 5 sec for 64K bytes due to the TWI bit rate
(100 Kbits/s).

For the DataFlash driven by SPCK signal at 12 MHz, the time to download 64K bytes is reduced
to 66 ms.

Before performing the jump to the application in internal SRAM, all the PIOs and peripherals
used in the Boot Program are set to their reset state.

Note: 1. See Section 10.3 “Peripheral Multiplexing on PIO Lines” on page 22.

Table 13-4. Pins Driven during Boot Program Execution

Pin Used SPI (DataFlash) TWI (EEPROM)

MOSI(1) O X

SPCK(1) O X

NPCS0(1) O X

TWD(1) X I/O

TWCK(1) X O

95
1768I–ATARM–09-Jul-09

AT91RM9200

14. Embedded Software Services

14.1 Overview
An embedded software service is an independent software object that drives device resources
for frequently implemented tasks. The object-oriented approach of the software provides an
easy way to access services to build applications.

An AT91 service has several purposes:

• It gives software examples dedicated to the AT91 devices.

• It can be used on several AT91 device families.

• It offers an interface to the software stored in the ROM.

The main features of the software services are:

• Compliant with ATPCS

• Compliant with ANSI/ISO Standard C

• Compiled in ARM/Thumb Interworking

• ROM Entry Service

• Tempo, Xmodem and DataFlash services

• CRC and Sine tables

14.2 Service Definition

14.2.1 Service Structure

14.2.1.1 Structure Definition
A service structure is defined in C header files.

This structure is composed of data members and pointers to functions (methods) and is similar
to a class definition. There is no protection of data access or methods access. However, some
functions can be used by the customer application or other services and so be considered as
public methods. Similarly, other functions are not invoked by them. They can be considered as
private methods. This is also valid for data.

14.2.1.2 Methods
In the service structure, pointers to functions are supposed to be initialized by default to the stan-
dard functions. Only the default standard functions reside in ROM. Default methods can be
overloaded by custom application methods.

Methods do not declare any static variables nor invoke global variables. All methods are invoked
with a pointer to the service structure. A method can access and update service data without
restrictions.

Similarly, there is no polling in the methods. In fact, there is a method to start the functionality (a
read to give an example), a method to get the status (is the read achieved?), and a callback, ini-
tialized by the start method. Thus, using service, the client application carries out a synchronous
read by starting the read and polling the status, or an asynchronous read specifying a callback
when starting the read operation.

96
1768I–ATARM–09-Jul-09

AT91RM9200

14.2.1.3 Service Entry Point
Each AT91 service, except for the ROM Entry Service (see 14.3.2 “ROM Entry Service” on
page 99), defines a function named AT91F_Open_<Service>. It is the only entry point defined
for a service. Even if the functions AT91F_Open_<Service> may be compared with object
constructors, they do not act as constructors in that they initiate the service structure but they do
not allocate it. Thus the customer application must allocate it.

Example

// Allocation of the service structure

AT91S_Pipe pipe;

// Opening of the service

AT91PS_Pipe pPipe = AT91F_OpenPipe(&pipe, …);

Method pointers in the service structure are initialized to the default methods defined in the
AT91 service. Other fields in the service structure are initialized to default values or with the
arguments of the function AT91F_Open_<Service>.

In summary, an application must know what the service structure is and where the function
AT91F_Open_<Service> is.

The default function AT91F_Open_<Service> may be redefined by the application or com-
prised in an application-defined function.

14.2.2 Using a Service

14.2.2.1 Opening a Service
The entry point to a service is established by initializing the service structure. An open function is
associated with each service structure, except for the ROM Entry Service (see 14.3.2 “ROM
Entry Service” on page 99). Thus, only the functions AT91F_Open_<service> are visible from
the user side. Access to the service methods is made via function pointers in the service
structure.

The function AT91F_Open_<service> has at least one argument: a pointer to the service
structure that must be allocated elsewhere. It returns a pointer to the base service structure or a
pointer to this service structure.

The function AT91F_Open_<service> initializes all data members and method pointers. All
function pointers in the service structure are set to the service’s functions.

The advantage of this method is to offer a single entry point for a service. The methods of a ser-
vice are initialized by the open function and each member can be overloaded.

14.2.2.2 Overloading a Method
Default methods are defined for all services provided in ROM. These methods may not be
adapted to a project requirement. It is possible to overload default methods by methods defined
in the project.

A method is a po in ter to a funct ion. Th is po in ter is in i t ia l ized by the funct ion
AT91F_Open_<Service>. To overload one or several methods in a service, the function
pointer must be updated to the new method.

It is possible to overload just one method of a service or all the methods of a service. In this latter
case, the functionality of the service is user-defined, but still works on the same data structure.

97
1768I–ATARM–09-Jul-09

AT91RM9200

Note: Calling the default function AT91F_Open_<Service> ensures that all methods and data are
initialized.

This can be done by writing a new function My_OpenService(). This new Open function must
call the library-defined function AT91F_Open_<Service>, and then update one or several
function pointers:

Table 14-1. Overloading a Method with the Overloading of the Open Service Function

Default service behavior in ROM Overloading AT91F_ChildMethod by My_ChildMethod

// Defined in embedded_services.h

typedef struct _AT91S_Service {

char data;

char (*MainMethod) ();

char (*ChildMethod) ();

} AT91S_Service, * AT91PS_Service;

// Defined in obj_service.c (in ROM)

char AT91F_MainMethod ()

{

}

char AT91F_ChildMethod ()

{

}

// Init the service with default methods

AT91PS_Service AT91F_OpenService(

AT91PS_Service pService)

{

pService->data = 0;

pService->MainMethod =AT91F_MainMethod;

pService->ChildMethod=AT91F_ChildMethod;

return pService;

}

// My_ChildMethod will replace
AT91F_ChildMethod

char My_ChildMethod ()

{

}

// Overloading Open Service Method

AT91PS_Service My_OpenService(

AT91PS_Service pService)

{

AT91F_OpenService(pService);

// Overloading ChildMethod default value

pService->ChildMethod= My_ChildMethod;

return pService;

}

// Allocation of the service structure

AT91S_Service service;

// Opening of the service

AT91PS_Service pService =
My_OpenService(&service);

98
1768I–ATARM–09-Jul-09

AT91RM9200

This also can be done directly by overloading the method after the use of AT91F_Open_<Ser-
vice> method:

Table 14-2. Overloading a Method without the Overloading of the Open Service Function.

Default service behavior in ROM Overloading AT91F_ChildMethod by My_ChildMethod

// Defined in embedded_services.h

typedef struct _AT91S_Service {

char data;

char (*MainMethod) ();

char (*ChildMethod) ();

} AT91S_Service, * AT91PS_Service;

// Defined in obj_service.c (in ROM)

char AT91F_MainMethod ()

{

}

char AT91F_ChildMethod ()

{

}

// Init the service with default methods

AT91PS_Service AT91F_OpenService(

AT91PS_Service pService)

{

pService->data = 0;

pService->MainMethod =AT91F_MainMethod;

pService->ChildMethod=AT91F_ChildMethod;

return pService;

}

// My_ChildMethod will replace
AT91F_ChildMethod

char My_ChildMethod ()

{

}

// Allocation of the service structure

AT91S_Service service;

// Opening of the service

AT91PS_Service pService =
AT91F_OpenService(&service);

// Overloading ChildMethod default value

pService->ChildMethod= My_ChildMethod;

99
1768I–ATARM–09-Jul-09

AT91RM9200

14.3 Embedded Software Services

14.3.1 Definition
Several AT91 products embed ROM. In most cases, the ROM integrates a bootloader and sev-
eral services that may speed up the application and reduce the application code size.

When software is fixed in the ROM, the address of each object (function, constant, table, etc.)
must be related to a customer application. This is done by providing an address table to the
linker. For each version of ROM, a new address table must be provided and all client applica-
tions must be recompiled.

The Embedded Software Services offer another solution to access objects stored in ROM. For
each embedded service, the customer application requires only the address of the Service Entry
Point (see 14.2.1.3 “Service Entry Point” on page 96).

Even if these services have only one entry point (AT91F_Open_<Service> function), they must
be specified to the linker. The Embedded Software Services solve this problem by providing a
dedicated service: the ROM Entry Service.

The goal of this product-dedicated service is to provide just one address to access all ROM
functionalities.

14.3.2 ROM Entry Service
The ROM Entry Service of a product is a structure named AT91S_RomBoot. Some members of
this structure point to the open functions of al l services stored in ROM (function
AT91F_Open_<Service>) but also the CRC and Sine Arrays. Thus, only the address of the
AT91S_RomBoot has to be published.

The application obtains the address of the ROM Entry Service and initializes an instance of the
AT91S_RomBoot structure. To obtain the Open Service Method of another service stored in
ROM, the application uses the appropriate member of the AT91S_RomBoot structure.

The address of the AT91S_RomBoot can be found at the beginning of the ROM, after the excep-
tion vectors.

Table 14-3. Initialization of the ROM Entry Service and Use with an Open Service Method

Application Memory Space ROM Memory Space

// Init the ROM Entry Service

AT91S_RomBoot const *pAT91;

pAT91 = AT91C_ROM_BOOT_ADDRESS;

// Allocation of the service structure

AT91S_CtlTempo tempo;

// Call the Service Open method

pAT91->OpenCtlTempo(&tempo, ...);

// Use of tempo methods

tempo.CtlTempoCreate(&tempo, ...);

AT91S_TempoStatus AT91F_OpenCtlTempo(
AT91PS_CtlTempo pCtlTempo,

void const *pTempoTimer)

{

...

}

AT91S_TempoStatus AT91F_CtlTempoCreate (

AT91PS_CtlTempo pCtrl,
AT91PS_SvcTempo pTempo)

{

...

}

100
1768I–ATARM–09-Jul-09

AT91RM9200

14.3.3 Tempo Service

14.3.3.1 Presentation
The Tempo Service allows a single hardware system timer to support several software timers
running concurrently. This works as an object notifier.

There are two objects defined to control the Tempo Service: AT91S_CtlTempo and
AT91S_SvcTempo.

The application declares one instance of AT91S_CtlTempo associated with the hardware sys-
tem timer. Additionally, it controls a list of instances of AT91S_SvcTempo.

Each time the application requires another timer, it asks the AT91S_CtlTempo to create a new
instance of AT91S_SvcTempo , then the appl ication ini t ial izes al l the sett ings of
AT91S_SvcTempo.

14.3.3.2 Tempo Service Description

Table 14-4. Tempo Service Methods

Associated Function Pointers & Methods Used by Default Description

// Typical Use:

pAT91->OpenCtlTempo(...);

// Default Method:

AT91S_TempoStatus AT91F_OpenCtlTempo(
AT91PS_CtlTempo pCtlTempo,

void const *pTempoTimer)

Member of AT91S_RomBoot structure.
Corresponds to the Open Service Method for the Tempo
Service.
Input Parameters:

Pointer on a Control Tempo Object.

Pointer on a System Timer Descriptor Structure.
Output Parameters:

Returns 0 if OpenCtrlTempo successful.

Returns 1 if not.

// Typical Use:

AT91S_CtlTempo ctlTempo;

ctlTempo.CtlTempoStart(...);

// Default Method:

AT91S_TempoStatus AT91F_STStart(void *
pTimer)

Member of AT91S_CtlTempo structure.
Start of the Hardware System Timer associated.

Input Parameters:

Pointer on a Void Parameter corresponding to a System Timer
Descriptor Structure.

Output Parameters:
Returns 2.

// Typical Use:

AT91S_CtlTempo ctlTempo;

ctlTempo.CtlTempoIsStart(...);

// Default Method:

AT91S_TempoStatus AT91F_STIsStart(

AT91PS_CtlTempo pCtrl)

Member of AT91S_CtlTempo structure.
Input Parameters:

Pointer on a Control Tempo Object.

Output Parameters:
Returns the Status Register of the System Timer.

101
1768I–ATARM–09-Jul-09

AT91RM9200

Note: AT91S_TempoStatus corresponds to an unsigned int.

// Typical Use:

AT91S_CtlTempo ctlTempo;

ctlTempo.CtlTempoCreate(...);

// Default Method:

AT91S_TempoStatus AT91F_CtlTempoCreate (

AT91PS_CtlTempo pCtrl,

AT91PS_SvcTempo pTempo)

Member of AT91S_CtlTempo structure.

Insert a software timer in the AT91S_SvcTempo’s list.
Input Parameters:

Pointer on a Control Tempo Object.

Pointer on a Service Tempo Object to insert.

Output Parameters:
Returns 0 if the software tempo was created.

Returns 1 if not.

// Typical Use:

AT91S_CtlTempo ctlTempo;

ctlTempo.CtlTempoRemove(...);

// Default Method:

AT91S_TempoStatus AT91F_CtlTempoRemove
(AT91PS_CtlTempo pCtrl,

AT91PS_SvcTempo pTempo)

Member of AT91S_CtlTempo structure.

Remove a software timer in the list.

Input Parameters:
Pointer on a Control Tempo Object.

Pointer on a Service Tempo Object to remove.

Output Parameters:
Returns 0 if the tempo was created.

Returns 1 if not.

// Typical Use:

AT91S_CtlTempo ctlTempo;

ctlTempo.CtlTempoTick(...);

// Default Method:

AT91S_TempoStatus AT91F_CtlTempoTick
(AT91PS_CtlTempo pCtrl)

Member of AT91S_CtlTempo structure.

Refresh all the software timers in the list. Update their timeout
and check if callbacks have to be launched. So, for example, this
function has to be used when the hardware timer starts a new
periodic interrupt if period interval timer is used.

Input Parameters:
Pointer on a Control Tempo Object.

Output Parameters:

Returns 1.

// Typical Use:

AT91S_SvcTempo svcTempo;

svcTempo.Start(...);

// Default Method:

AT91S_TempoStatus AT91F_SvcTempoStart (

AT91PS_SvcTempo pSvc,

unsigned int timeout,

unsigned int reload,

void (*callback) (AT91S_TempoStatus, void *),

void *pData)

Member of AT91S_SvcTempo structure.
Start a software timer.

Input Parameters:

Pointer on a Service Tempo Object.
Timeout to apply.

Number of times to reload the tempo after timeout completed for
periodic execution.

Callback on a method to launch once the timeout completed.

Allows to have a hook on the current service.
Output Parameters:

Returns 1.

// Typical Use:

AT91S_SvcTempo svcTempo;

svcTempo.Stop(...);

// Default Method:

AT91S_TempoStatus AT91F_SvcTempoStop (

AT91PS_SvcTempo pSvc)

Member of AT91S_SvcTempo structure.

Force to stop a software timer.
Input Parameters:

Pointer on a Service Tempo Object.

Output Parameters:

Returns 1.

Table 14-4. Tempo Service Methods (Continued)

Associated Function Pointers & Methods Used by Default Description

102
1768I–ATARM–09-Jul-09

AT91RM9200

14.3.3.3 Using the Service
The first step is to find the address of the open service method AT91F_OpenCtlTempo using
the ROM Entry Service.

Allocate one instance of AT91S_CtlTempo and AT91S_SvcTempo in the application memory
space:

// Allocate the service and the control tempo

AT91S_CtlTempo ctlTempo;

AT91S_SvcTempo svcTempo1;

Initialize the AT91S_CtlTempo instance by calling the AT91F_OpenCtlTempo function:

// Initialize service

pAT91->OpenCtlTempo(&ctlTempo, (void *) &(pAT91->SYSTIMER_DESC));

At this stage, the application can use the AT91S_CtlTempo service members.

If the application wants to overload an object member, it can be done now. For example, if
AT91F_CtlTempoCreate(&ctlTempo, &svcTempo1) method is to be replaced by the application
defined as my_CtlTempoCreate(...), the procedure is as follows:

// Overload AT91F_CtlTempoCreate

ctlTempo.CtlTempoCreate = my_CtlTempoCreate;

In most cases, initialize the AT91S_SvcTempo object by calling the AT91F_CtlTempoCreate
method of the AT91S_CtlTempo service:

// Init the svcTempo1, link it to the AT91S_CtlTempo object

ctlTempo.CtlTempoCreate(&ctlTempo, &svcTempo1);

Start the timeout by calling Start method of the svcTempo1 object. Depending on the function
parameters, either a callback is started at the end of the countdown or the status of the timeout
is checked by reading the TickTempo member of the svcTempo1 object.

// Start the timeout

svcTempo1.Start(&svcTempo1,100,0,NULL,NULL);

// Wait for the timeout of 100 (unity depends on the timer programmation)

// No repetition and no callback.

while (svcTempo1.TickTempo);

When the application needs another software timer to control a timeout, it:

• Allocates one instance of AT91S_SvcTempo in the application memory space

// Allocate the service

AT91S_SvcTempo svcTempo2;

• Initializes the AT91S_SvcTempo object calling the AT91F_CtlTempoCreate method of the
AT91S_CtlTempo service:

// Init the svcTempo2, link it to the AT91S_CtlTempo object

ctlTempo.CtlTempoCreate(&ctlTempo, &svcTempo2);

103
1768I–ATARM–09-Jul-09

AT91RM9200

14.3.4 Xmodem Service

14.3.4.1 Presentation
The Xmodem service is an application of the communication pipe abstract layer. This layer is
media-independent (USART, USB, etc.) and gives entry points to carry out reads and writes on
an abstract media, the pipe.

Communication Pipe Service

The pipe communication structure is a virtual structure that contains all the functions required to
read and write a buffer, regardless of the communication media and the memory management.

The pipe structure defines:

• a pointer to a communication service structure AT91PS_SvcComm

• a pointer to a buffer manager structure AT91PS_Buffer

• pointers on read and write functions

• pointers to callback functions associated to the read and write functions

The following structure defines the pipe object:

typedef struct _AT91S_Pipe

{

// A pipe is linked with a peripheral and a buffer

AT91PS_SvcComm pSvcComm;

AT91PS_Buffer pBuffer;

// Callback functions with their arguments

void (*WriteCallback) (AT91S_PipeStatus, void *);

void (*ReadCallback) (AT91S_PipeStatus, void *);

void *pPrivateReadData;

void *pPrivateWriteData;

// Pipe methods

AT91S_PipeStatus (*Write) (

struct _AT91S_Pipe *pPipe,

char const * pData,

unsigned int size,

void (*callback) (AT91S_PipeStatus, void *),

void *privateData);

AT91S_PipeStatus (*Read) (

struct _AT91S_Pipe *pPipe,

char *pData,

unsigned int size,

void (*callback) (AT91S_PipeStatus, void *),

void *privateData);

AT91S_PipeStatus (*AbortWrite) (struct _AT91S_Pipe *pPipe);

AT91S_PipeStatus (*AbortRead) (struct _AT91S_Pipe *pPipe);

AT91S_PipeStatus (*Reset) (struct _AT91S_Pipe *pPipe);

104
1768I–ATARM–09-Jul-09

AT91RM9200

char (*IsWritten) (struct _AT91S_Pipe *pPipe,char const *pVoid);

char (*IsReceived) (struct _AT91S_Pipe *pPipe,char const *pVoid);

} AT91S_Pipe, *AT91PS_Pipe;

The Xmodem protocol implementation demonstrates how to use the communication pipe.

Description of the Buffer Structure

The AT91PS_Buffer is a pointer to the AT91S_Buffer structure manages the buffers. This struc-
ture embeds the following functions:

• pointers to functions that manage the read buffer

• pointers to functions that manage the write buffer

All the functions can be overloaded by the application to adapt buffer management.

A simple implementation of buffer management for the Xmodem Service is provided in the boot
ROM source code.

typedef struct _AT91S_Buffer

{

struct _AT91S_Pipe *pPipe;

void *pChild;

// Functions invoked by the pipe

AT91S_BufferStatus (*SetRdBuffer) (struct _AT91S_Buffer *pSBuffer,
char *pBuffer, unsigned int Size);

AT91S_BufferStatus (*SetWrBuffer) (struct _AT91S_Buffer *pSBuffer,
char const *pBuffer, unsigned int Size);

AT91S_BufferStatus (*RstRdBuffer) (struct _AT91S_Buffer *pSBuffer);

AT91S_BufferStatus (*RstWrBuffer) (struct _AT91S_Buffer *pSBuffer);

char (*MsgWritten) (struct _AT91S_Buffer *pSBuffer, char const
*pBuffer);

char (*MsgRead) (struct _AT91S_Buffer *pSBuffer, char const
*pBuffer);

// Functions invoked by the peripheral

AT91S_BufferStatus (*GetWrBuffer) (struct _AT91S_Buffer *pSBuffer,
char const **pData, unsigned int *pSize);

AT91S_BufferStatus (*GetRdBuffer) (struct _AT91S_Buffer *pSBuffer,
char **pData, unsigned int *pSize);

AT91S_BufferStatus (*EmptyWrBuffer) (struct _AT91S_Buffer *pSBuffer,
unsigned int size);

AT91S_BufferStatus (*FillRdBuffer) (struct _AT91S_Buffer *pSBuffer,
unsigned int size);

char (*IsWrEmpty) (struct _AT91S_Buffer *pSBuffer);

char (*IsRdFull) (struct _AT91S_Buffer *pSBuffer);

} AT91S_Buffer, *AT91PS_Buffer;

Description of the
SvcComm Structure

The SvcComm structure provides the interface between low-level functions and the pipe object.

It contains pointers of functions initialized to the lower level functions (e.g. SvcXmodem).

105
1768I–ATARM–09-Jul-09

AT91RM9200

The Xmodem Service implementation gives an example of SvcComm use.

typedef struct _AT91S_Service

{

// Methods:

AT91S_SvcCommStatus (*Reset) (struct _AT91S_Service *pService);

AT91S_SvcCommStatus (*StartTx)(struct _AT91S_Service *pService);

AT91S_SvcCommStatus (*StartRx)(struct _AT91S_Service *pService);

AT91S_SvcCommStatus (*StopTx) (struct _AT91S_Service *pService);

AT91S_SvcCommStatus (*StopRx) (struct _AT91S_Service *pService);

char (*TxReady)(struct _AT91S_Service *pService);

char (*RxReady)(struct _AT91S_Service *pService);

// Data:

struct _AT91S_Buffer *pBuffer; // Link to a buffer object

void *pChild;

} AT91S_SvcComm, *AT91PS_SvcComm;

Description of the
SvcXmodem Structure

The SvcXmodem service is a reusable implementation of the Xmodem protocol. It supports only
the 128-byte packet format and provides read and write functions. The SvcXmodem structure
defines:

• a pointer to a handler initialized to readHandler or writeHandler

• a pointer to a function that processes the xmodem packet crc

• a pointer to a function that checks the packet header

• a pointer to a function that checks data

With this structure, the Xmodem protocol can be used with all media (USART, USB, etc.). Only
private methods may be overloaded to adapt the Xmodem protocol to a new media.

The default implementation of the Xmodem uses a USART to send and receive packets. Read
and write functions implement Peripheral DMA Controller facilities to reduce interrupt overhead.
It assumes the USART is initialized, the memory buffer allocated and the interrupts
programmed.

A periodic timer is required by the service to manage timeouts and the periodic transmission of
the character “C” (Refer to Xmodem protocol). This feature is provided by the Tempo Service.

The following structure defines the Xmodem Service:

typedef struct _AT91PS_SvcXmodem {

// Public Methods:

AT91S_SvcCommStatus (*Handler) (struct _AT91PS_SvcXmodem *, unsigned int);

AT91S_SvcCommStatus (*StartTx) (struct _AT91PS_SvcXmodem *, unsigned int);

AT91S_SvcCommStatus (*StopTx) (struct _AT91PS_SvcXmodem *, unsigned int);

// Private Methods:

AT91S_SvcCommStatus (*ReadHandler) (struct _AT91PS_SvcXmodem *, unsigned
int csr);

106
1768I–ATARM–09-Jul-09

AT91RM9200

AT91S_SvcCommStatus (*WriteHandler) (struct _AT91PS_SvcXmodem *, unsigned
int csr);

unsigned short (*GetCrc) (char *ptr, unsigned int count);

char (*CheckHeader) (unsigned char currentPacket, char
*packet);

char (*CheckData) (struct _AT91PS_SvcXmodem *);

AT91S_SvcComm parent; // Base class

AT91PS_USART pUsart;

AT91S_SvcTempo tempo; // Link to a AT91S_Tempo object

char *pData;

unsigned int dataSize; // = XMODEM_DATA_STX or XMODEM_DATA_SOH

char packetDesc[AT91C_XMODEM_PACKET_SIZE];

unsigned char packetId; // Current packet

char packetStatus;

char isPacketDesc;

char eot; // end of transmition

} AT91S_SvcXmodem, *AT91PS_SvcXmodem

107
1768I–ATARM–09-Jul-09

AT91RM9200

14.3.4.2 Xmodem Service Description

14.3.4.3 Using the Service
The following steps show how to initialize and use the Xmodem Service in an application:

Variables definitions:

AT91S_RomBoot const *pAT91; // struct containing Openservice functions

AT91S_SBuffer sXmBuffer; // Xmodem Buffer allocation

AT91S_SvcXmodem svcXmodem; // Xmodem service structure allocation

AT91S_Pipe xmodemPipe;// xmodem pipe communication struct

AT91S_CtlTempo ctlTempo; // Tempo struct

AT91PS_Buffer pXmBuffer; // Pointer on a buffer structure

AT91PS_SvcComm pSvcXmodem; // Pointer on a Media Structure

Initialisations

// Call Open methods:

pAT91 = AT91C_ROM_BOOT_ADDRESS;

// OpenCtlTempo on the system timer

pAT91->OpenCtlTempo(&ctlTempo, (void *) &(pAT91->SYSTIMER_DESC));

ctlTempo.CtlTempoStart((void *) &(pAT91->SYSTIMER_DESC));

// Xmodem buffer initialisation

pXmBuffer = pAT91->OpenSBuffer(&sXmBuffer);

Table 14-5. Xmodem Service Methods

Associated Function Pointers & Methods Used by Default Description

// Typical Use:

pAT91->OpenSvcXmodem(...);

// Default Method:

AT91PS_SvcComm AT91F_OpenSvcXmodem(

AT91PS_SvcXmodem pSvcXmodem,

AT91PS_USART pUsart,

AT91PS_CtlTempo pCtlTempo)

Member of AT91S_RomBoot structure.
Corresponds to the Open Service Method for the Xmodem
Service.

Input Parameters:

Pointer on SvcXmodem structure.

Pointer on a USART structure.
Pointer on a CtlTempo structure.

Output Parameters:

Returns the Xmodem Service Pointer Structure.

// Typical Use:

AT91S_SvcXmodem svcXmodem;

svcXmodem.Handler(...);

// Default read handler:

AT91S_SvcCommStatus
AT91F_SvcXmodemReadHandler(AT91PS_SvcXmodem
pSvcXmodem, unsigned int csr)

// Default write handler:

AT91S_SvcCommStatus
AT91F_SvcXmodemWriteHandler(AT91PS_SvcXmodem
pSvcXmodem, unsigned int csr)

Member of AT91S_SvcXmodem structure.
interrupt handler for xmodem read or write functionnalities

Input Parameters:

Pointer on a Xmodem Service Structure.
csr: usart channel status register.

Output Parameters:

Status for xmodem read or write.

108
1768I–ATARM–09-Jul-09

AT91RM9200

pSvcXmodem = pAT91->OpenSvcXmodem(&svcXmodem, AT91C_BASE_DBGU, &ctlTempo);

// Open communication pipe on the xmodem service

pAT91->OpenPipe(&xmodemPipe, pSvcXmodem, pXmBuffer);

// Init the DBGU peripheral

// Open PIO for DBGU

AT91F_DBGU_CfgPIO();

// Configure DBGU

AT91F_US_Configure (

(AT91PS_USART) AT91C_BASE_DBGU, // DBGU base address

MCK, // Master Clock

AT91C_US_ASYNC_MODE, // mode Register to be programmed

BAUDRATE , // baudrate to be programmed

0); // timeguard to be programmed

// Enable Transmitter

AT91F_US_EnableTx((AT91PS_USART) AT91C_BASE_DBGU);

// Enable Receiver

AT91F_US_EnableRx((AT91PS_USART) AT91C_BASE_DBGU);

// Initialize the Interrupt for System Timer and DBGU (shared interrupt)

// Initialize the Interrupt Source 1 for SysTimer and DBGU

AT91F_AIC_ConfigureIt(AT91C_BASE_AIC,

 AT91C_ID_SYS,

 AT91C_AIC_PRIOR_HIGHEST,

 AT91C_AIC_SRCTYPE_INT_LEVEL_SENSITIVE,

 AT91F_ASM_ST_DBGU_Handler);

// Enable SysTimer and DBGU interrupt

AT91F_AIC_EnableIt(AT91C_BASE_AIC, AT91C_ID_SYS);

xmodemPipe.Read(&xmodemPipe, (char *) BASE_LOAD_ADDRESS, MEMORY_SIZE,
XmodemProtocol, (void *) BASE_LOAD_ADDRESS);

14.3.5 DataFlash Service

14.3.5.1 Presentation
The DataFlash Service allows the Serial Peripheral Interface (SPI) to support several Serial
DataFlash and DataFlash Cards for reading, programming and erasing operations.

This service is based on SPI interrupts that are managed by a specific handler. It also uses the
corresponding PDC registers.

For more information on the commands available in the DataFlash Service, refer to the relevant
DataFlash documentation.

109
1768I–ATARM–09-Jul-09

AT91RM9200

14.3.5.2 DataFlash Service Description

Table 14-6. DataFlash Service Methods

Associated Function Pointers & Methods Used by Default Description

// Typical Use:

pAT91->OpenSvcDataFlash(...);

// Default Method:

AT91PS_SvcDataFlash AT91F_OpenSvcDataFlash (

const AT91PS_PMC pApmc,

AT91PS_SvcDataFlash pSvcDataFlash)

Member of AT91S_RomBoot structure.

Corresponds to the Open Service Method for the DataFlash
Service.

Input Parameters:

Pointer on a PMC Register Description Structure.
Pointer on a DataFlash Service Structure.

Output Parameters:

Returns the DataFlash Service Pointer Structure.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.Handler(...);

// Default Method:

void AT91F_DataFlashHandler(

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned int status)

Member of AT91S_SvcDataFlash structure.

SPI Fixed Peripheral C interrupt handler.
Input Parameters:

Pointer on a DataFlash Service Structure.

Status: corresponds to the interruptions detected and validated
on SPI (SPI Status Register masked by SPI Mask Register).

Has to be put in the Interrupt handler for SPI.
Output Parameters:

None.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.Status(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_DataFlashGetStatus(AT91PS_DataflashDes
c pDesc)

Member of AT91S_SvcDataFlash structure.

Read the status register of the DataFlash.

Input Parameters:
Pointer on a DataFlash Descriptor Structure (member of the
service structure).
Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash is Ready.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.AbortCommand(...);

// Default Method:

void
AT91F_DataFlashAbortCommand(AT91PS_Dataflash
Desc pDesc)

Member of AT91S_SvcDataFlash structure

Allows to reset PDC & Interrupts.
Input Parameters:

Pointer on a DataFlash Descriptor Structure (member of the
service structure).

Output Parameters:

None.

110
1768I–ATARM–09-Jul-09

AT91RM9200

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.PageRead(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_DataFlashPageRead (

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned int src,

unsigned char *dataBuffer,

int sizeToRead)

Member of AT91S_SvcDataFlash structure

Read a Page in DataFlash.

Input Parameters:

Pointer on DataFlash Service Structure.
DataFlash address.

Data buffer destination pointer.

Number of bytes to read.
Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash Ready.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.ContinuousRead(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_DataFlashContinuousRead (

AT91PS_SvcDataFlash pSvcDataFlash,

int src,

unsigned char *dataBuffer,

int sizeToRead)

Member of AT91S_SvcDataFlash structure.
Continuous Stream Read.

Input Parameters:

Pointer on DataFlash Service Structure.
DataFlash address.

Data buffer destination pointer.

Number of bytes to read.
Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash is Ready.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.ReadBuffer(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_DataFlashReadBuffer (

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned char BufferCommand,

unsigned int bufferAddress,

unsigned char *dataBuffer,

int sizeToRead)

Member of AT91S_SvcDataFlash structure.

Read the Internal DataFlash SRAM Buffer 1 or 2.

Input Parameters:
Pointer on DataFlash Service Structure.

Choose Internal DataFlash Buffer 1 or 2 command.

DataFlash address.
Data buffer destination pointer.

Number of bytes to read.

Output Parameters:
Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash is Ready.

Returns 4 if DataFlash Bad Command.
Returns 5 if DataFlash Bad Address.

Table 14-6. DataFlash Service Methods (Continued)

Associated Function Pointers & Methods Used by Default Description

111
1768I–ATARM–09-Jul-09

AT91RM9200

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.MainMemoryToBufferTransfert(...
);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_MainMemoryToBufferTransfert(

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned char BufferCommand,

unsigned int page)

Member of AT91S_SvcDataFlash structure

Read a Page in the Internal SRAM Buffer 1 or 2.

Input Parameters:

Pointer on DataFlash Service Structure.
Choose Internal DataFlash Buffer 1 or 2 command.

Page to read.

Output Parameters:
Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash is Ready.

Returns 4 if DataFlash Bad Command.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.PagePgmBuf(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_DataFlashPagePgmBuf(

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned char BufferCommand,

unsigned char *src,

unsigned int dest,

unsigned int SizeToWrite)

Member of AT91S_SvcDataFlash structure
Page Program through Internal SRAM Buffer 1 or 2.

Input Parameters:

Pointer on DataFlash Service Structure.
Choose Internal DataFlash Buffer 1 or 2 command.

Source buffer.

DataFlash destination address.
Number of bytes to write.

Output Parameters:

Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash is Ready.

Returns 4 if DataFlash Bad Command.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.WriteBuffer(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_DataFlashWriteBuffer (

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned char BufferCommand,

unsigned char *dataBuffer,

unsigned int bufferAddress,

int SizeToWrite)

Member of AT91S_SvcDataFlash structure.
Write data to the Internal SRAM buffer 1 or 2.

Input Parameters:

Pointer on DataFlash Service Structure.
Choose Internal DataFlash Buffer 1 or 2 command.

Pointer on data buffer to write.

Address in the internal buffer.
Number of bytes to write.

Output Parameters:

Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash is Ready.

Returns 4 if DataFlash Bad Command.

Returns 5 if DataFlash Bad Address.

Table 14-6. DataFlash Service Methods (Continued)

Associated Function Pointers & Methods Used by Default Description

112
1768I–ATARM–09-Jul-09

AT91RM9200

Note: AT91S_SvcDataFlashStatus corresponds to an unsigned int.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.WriteBufferToMain(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_WriteBufferToMain (

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned char BufferCommand,

unsigned int dest)

Member of AT91S_SvcDataFlash structure.

Write Internal Buffer to the DataFlash Main Memory.
Input Parameters:

Pointer on DataFlash Service Structure.

Choose Internal DataFlash Buffer 1 or 2 command.

Main memory address on DataFlash.
Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash is Ready.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.PageErase(...);

// Default Method:

AT91S_SvcDataFlashStatus AT91F_PageErase (

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned int PageNumber)

Member of AT91S_SvcDataFlash structure.

Erase a page in DataFlash.
Input Parameters:

Pointer on a Service DataFlash Object.

Page to erase.
Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash Ready.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.BlockErase(...);

// Default Method:

AT91S_SvcDataFlashStatus AT91F_BlockErase (

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned int BlockNumber)

Member of AT91S_SvcDataFlash structure.

Erase a block of 8 pages.
Input Parameters:

Pointer on a Service DataFlash Object.

Block to erase.
Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash Ready.

// Typical Use:

AT91S_SvcDataFlash svcDataFlash;

svcDataFlash.MainMemoryToBufferCompare(...);

// Default Method:

AT91S_SvcDataFlashStatus
AT91F_MainMemoryToBufferCompare(

AT91PS_SvcDataFlash pSvcDataFlash,

unsigned char BufferCommand,

unsigned int page)

Member of AT91S_SvcDataFlash structure.

Compare the contents of a Page and one of the Internal SRAM
buffer.

Input Parameters:
Pointer on a Service DataFlash Object.

Internal SRAM DataFlash Buffer to compare command.

Page to compare.
Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash Ready.
Returns 4 if DataFlash Bad Command.

Table 14-6. DataFlash Service Methods (Continued)

Associated Function Pointers & Methods Used by Default Description

113
1768I–ATARM–09-Jul-09

AT91RM9200

14.3.5.3 Using the Service
The first step is to find the address of the open service method AT91F_OpenSvcDataFlash using
the ROM Entry Service.

1. Allocate one instance of AT91S_SvcDataFlash and AT91S_Dataflash in the application
memory space:

// Allocate the service and a device structure.

AT91S_SvcDataFlash svcDataFlash;

AT91S_Dataflash Device; // member of AT91S_SvcDataFlash service

Then initialize the AT91S_SvcDataFlash instance by calling the AT91F_OpenSvcDataFlash
function:

// Initialize service

pAT91->OpenSvcDataFlash (AT91C_BASE_PMC, &svcDataFlash);

2. Initialize the SPI Interrupt:
// Initialize the SPI Interrupt

at91_irq_open (AT91C_BASE_AIC,AT91C_ID_SPI,3,

AT91C_AIC_SRCTYPE_INT_LEVEL_SENSITIVE
,AT91F_spi_asm_handler);

3. Configure the DataFlash structure with its correct features and link it to the device
structure in the AT91S_SvcDataFlash service structure:

// Example with an ATMEL AT45DB321B DataFlash

Device.pages_number = 8192;

Device.pages_size = 528;

Device.page_offset = 10;

Device.byte_mask = 0x300;

// Link to the service structure

svcDataFlash.pDevice = &Device;

4. Now the different methods can be used. Following is an example of a Page Read of 528
bytes on page 50:

// Result of the read operation in RxBufferDataFlash

unsigned char RxBufferDataFlash[528];

svcDataFlash.PageRead(&svcDataFlash,
(50*528),RxBufferDataFlash,528);

114
1768I–ATARM–09-Jul-09

AT91RM9200

14.3.6 CRC Service

14.3.6.1 Presentation
This “service” differs from the preceding ones in that it is structured differently: it is composed of
an array and some methods directly accessible via the AT91S_RomBoot structure.

14.3.6.2 CRC Service Description

Table 14-7. CRC Service Description

Methods and Array Available Description

// Typical Use:

pAT91->CRC32(...);

// Default Method:

void CalculateCrc32(

const unsigned char *address,

unsigned int size,

unsigned int *crc)

This function provides a table driven 32bit CRC generation for
byte data. This CRC is known as the CCITT CRC32.

Input Parameters:
Pointer on the data buffer.

The size of this buffer.

A pointer on the result of the CRC.
Output Parameters:

None.

// Typical Use:

pAT91->CRC16(...);

// Default Method:

void CalculateCrc16(

const unsigned char *address,

unsigned int size,

unsigned short *crc)

This function provides a table driven 16bit CRC generation for
byte data. This CRC is calculated with the POLYNOME 0x8005

Input Parameters:
Pointer on the data buffer.

The size of this buffer.

A pointer on the result of the CRC.
Output Parameters:

None.

// Typical Use:

pAT91->CRCHDLC(...);

// Default Method:

void CalculateCrcHdlc(

const unsigned char *address,

unsigned int size,

unsigned short *crc)

This function provides a table driven 16bit CRC generation for
byte data. This CRC is known as the HDLC CRC.

Input Parameters:
Pointer on the data buffer.

The size of this buffer.

A pointer on the result of the CRC.
Output Parameters:

None.

// Typical Use:

pAT91->CRCCCITT(...);

// Default Method:

void CalculateCrc16ccitt(

const unsigned char *address,

unsigned int size,

unsigned short *crc)

This function provides a table driven 16bit CRC generation for
byte data. This CRC is known as the CCITT CRC16
(POLYNOME = 0x1021).
Input Parameters:

Pointer on the data buffer.

The size of this buffer.
A pointer on the result of the CRC.

Output Parameters:

None.

115
1768I–ATARM–09-Jul-09

AT91RM9200

14.3.6.3 Using the Service
Compute the CRC16 CCITT of a 256-byte buffer and save it in the crc16 variable:

// Compute CRC16 CCITT

unsigned char BufferToCompute[256];

short crc16;

... (BufferToCompute Treatment)

pAT91->CRCCCITT(&BufferToCompute,256,&crc16);

14.3.7 Sine Service

14.3.7.1 Presentation
This “service” differs from the preceding one in that it is structured differently: it is composed of
an array and a method directly accessible through the AT91S_RomBoot structure.

14.3.7.2 Sine Service Description

// Typical Use:

char reverse_byte;

reverse_byte = pAT91-
>Bit_Reverse_Array[...];

// Array Embedded:

const unsigned char bit_rev[256]

Bit Reverse Array: array which allows to reverse one octet.
Frequently used in mathematical algorithms.

Used for example in the CRC16 calculation.

Table 14-7. CRC Service Description (Continued)

Methods and Array Available Description

Table 14-8. Sine Service Description

Method and Array Available Description

// Typical Use:

pAT91->Sine(...);

// Default Method:

short AT91F_Sinus(int step)

This function returns the amplitude coded on 16 bits, of a sine
waveform for a given step.

Input Parameters:
Step of the sine. Corresponds to the precision of the amplitude
calculation. Depends on the Sine Array used. Here, the array has
256 values (thus 256 steps) of amplitude for 180 degrees.

Output Parameters:
Amplitude of the sine waveform.

// Typical Use:

short sinus;

sinus = pAT91->SineTab[...];

// Array Embedded:

const short AT91C_SINUS180_TAB[256]

Sine Array with a resolution of 256 values for 180 degrees.

116
1768I–ATARM–09-Jul-09

AT91RM9200

117
1768I–ATARM–09-Jul-09

AT91RM9200

15. AT91RM9200 Reset Controller

15.1 Overview
This chapter describes the AT91RM9200 reset signals and how to use them in order to assure
correct operation of the device.

The AT91RM9200 has two reset input lines called NRST and NTRST. Each line provides,
respectively:

• Initialization of the User Interface registers (defined in the user interface of each peripheral)
and:

– Sample the signals needed at bootup

– Compel the processor to fetch the next instruction at address zero.

• Initialization of the embedded ICE TAP controller.

The NRST signal must be considered as the System Reset signal and the reader must take care
when designing the logic to drive this reset signal. NTRST is typically used by the hardware
debug interface which uses the In-Circuit Emulator unit and Initializes it without affecting the nor-
mal operation of the ARM® processor. This line shall also be driven by an on board logic.

Both NRST and NTRST are active low signals that asynchronously reset the logic in the
AT91RM92000.

15.1.1 Reset Conditions

15.1.1.1 NRST Conditions
NRST is the active low reset input. When power is first applied to the system, a power-on reset
(also denominated as “cold” reset) must be applied to the AT91RM9200. During this transient
state, it is mandatory to hold the reset signal low long enough for the power supply to reach a
working nominal level and for the oscillator to reach a stable operating frequency. Typically,
these features are provided by every power supply supervisor which, under a threshold voltage
limit, the electrical environment is considered as not nominal. Power-up is not the only event to
be considered as power-down or a brownout are also occurrences that assert the NRST signal.
The threshold voltage must be selected according to the minimum operating voltage of the
AT91RM9200 power supply lines marked as VDD in Figure 15-1. (See Section 37.2 ”DC Char-
acteristics” on page 632.)

The choice of the reset holding delay depends on the start-up time of the low frequency oscilla-
tor as shown below in Figure 15-1. (See Section 37.4.1 ”32 kHz Oscillator Characteristics” on
page 633.)

Figure 15-1. Cold Reset and Oscillator Start-up relationship

Oscillator Stabilization
 after Power-Up

VDD
(1)

NRST

XIN32

VDD(min)

118
1768I–ATARM–09-Jul-09

AT91RM9200

Note: 1. VDD is applicable to VDDIOM, VDDIOP, VDDPLL, VDDOSC and VDDCORE

NRST can also be asserted in circumstances other than the power-up sequence, such as a
manual command. This assertion can be performed asynchronously, but exit from reset is syn-
chronized internally to the default active clock. During normal operation, NRST must be active
for a minimum delay time to ensure correct behavior. See Figure 15-2 and Table 15-1.

Figure 15-2. NRST assertion

15.1.1.2 NTRST Assertion
As with the NRST signal, at power-up, the NTRST signal must be valid while the power supply
has not obtained the minimum recommended working level. A clock on TCK is not required to
validate this reset request.

As with the NRST signal, NTRST can also be asserted in circumstances other than the power-
up sequence, such as a manual command or an ICE Interface action. This assertion and de-
assertion can be performed asynchronously but must be active for a minimum delay time. (See
Section 38.3 ”JTAG/ICE Timings” on page 657.)

15.1.2 Reset Management

15.1.2.1 System Reset
The system reset functionality is provided through the NRST signal.

This Reset signal is used to compel the microcontroller unit to assume a set of initial conditions:

• Sample the Boot Mode Select (BMS) logical state.

• Restore the default states (default values) of the user interface.

• Require the processor to perform the next instruction fetch from address zero.

With the exception of the program counter and the Current Program Status Register, the proces-
sor’s registers do not have defined reset states. When the microcontroller’s NRST input is
asserted, the processor immediately stops execution of the current instruction independently of
the clock.

The system reset circuitry must take two types of reset requests into account:

• The cold reset needed for the power-up sequence.

• The user reset request.

Both have the same effect but can have different assertion time requirements regarding the
NRST pin. In fact, the cold reset assertion has to overlap the start-up time of the system. The
user reset request requires a shorter assertion delay time than does cold reset.

15.1.2.2 Test Access Port (TAP) Reset
Test Access Port (TAP) reset functionality is provided through the NTRST signal.

Table 15-1. Reset Minimum Pulse Width

Symbol Parameter Min. Pulse Width Unit

RST1 NRST Minimum Pulse Width 92 µs

NRST

RST1

119
1768I–ATARM–09-Jul-09

AT91RM9200

The NTRST control pin initializes the selected TAP controller. The TAP controller involved in this
reset is determined according to the initial logical state applied on the JTAGSEL pin after the last
valid NRST.

In Boundary Scan Mode, after a NTRST assertion, the IDCODE instruction is set onto the output
of the instruction register in the Test-Logic-Reset controller state.

Otherwise, in ICE Mode, the reset action is as follows:

• The core exits from Debug Mode.

• The IDCORE instruction is requested.

In either Boundary Scan or ICE Mode a reset can be performed from the same or different cir-
cuitry, as shown in Figure 15-3 below, upon system reset at power-up or upon user request.

Figure 15-3. Separate or Common Reset Management

Notes: 1. NRST and NTRST handling in Debug Mode during development.

2. NRST and NTRST handling during production.

In order to benefit the most regarding the separation of NRST and NTRST during the Debug
phase of development, the user must independently manage both signals as shown in example
(1) of Figure 15-3 above. However, once Debug is completed, both signals are easily managed
together during production as shown in example (2) of Figure 15-3 above.

15.1.3 Required Features for the Reset Controller
The following table presents the features required of a reset controller in order to obtain an opti-
mal system with the AT91RM9200 processor.

NRST

NTRST

AT91RM9200

Reset
Controller

Reset
Controller

(1) (2)

NRST

NTRST

AT91RM9200

Reset
Controller

Table 15-2. Reset Controller Functions Synthesis

Feature Description

Power Supply Monitoring Overlaps the transient state of the system during power-up/down and brownout.

Reset Active Timeout
Period

Overlaps the start-up time of the boot-up oscillator by holding the reset signal during this delay.

Manual Reset Command
Asserts the reset signal from a logic command and holds the reset signal with a shorter delay than that
of the “Reset Active Timeout Period”.

120
1768I–ATARM–09-Jul-09

AT91RM9200

121
1768I–ATARM–09-Jul-09

AT91RM9200

16. Memory Controller(MC)

16.1 Overview
The Memory Controller (MC) manages the ASB bus and controls access by up to four masters.
It features a bus arbiter and an address decoder that splits the 4G bytes of address space into
areas to access the embedded SRAM and ROM, the embedded peripherals and the external
memories through the External Bus Interface (EBI). It also features an abort status and a mis-
alignment detector to assist in application debug.

The Memory Controller allows booting from the embedded ROM or from an external non-volatile
memory connected to the Chip Select 0 of the EBI. The Remap command switches addressing
of the ARM vectors (0x0 - 0x20) on the embedded SRAM.

Key Features of the AT91RM9200 Memory Controller are:

• Programmable Bus Arbiter Handling Four Masters

– Internal Bus is Shared by ARM920T, PDC, USB Host Port and Ethernet MAC
Masters

– Each Master Can Be Assigned a Priority Between 0 and 7

• Address Decoder Provides Selection For

– Eight External 256-Mbyte Memory Areas

– Four Internal 1-Mbyte Memory Areas

– One 256-Mbyte Embedded Peripheral Area

• Boot Mode Select Option

– Non-volatile Boot Memory Can Be Internal or External

– Selection is Made By BMS Pin Sampled at Reset

• Abort Status Registers

– Source, Type and All Parameters of the Access Leading to an Abort are Saved

• Misalignment Detector

– Alignment Checking of All Data Accesses

– Abort Generation in Case of Misalignment

• Remap Command

– Provides Remapping of an Internal SRAM in Place of the Boot NVM

122
1768I–ATARM–09-Jul-09

AT91RM9200

16.2 Block Diagram

Figure 16-1. Memory Controller Block Diagram

ARM920T
Processor

Bus
Arbiter

Peripheral
Data

Controller

Memory Controller

Abort

ASB

Abort
Status

Address
Decoder

User
Interface

Peripheral 0

Peripheral 1

Internal
Memories

APB

APB
Bridge

Misalignment
Detector

From Master
to Slave

Memory
Controller
Interrupt

Peripheral N

External
Bus

Interface

EMAC
DMA

UHP
DMA

BMS

AIC

123
1768I–ATARM–09-Jul-09

AT91RM9200

16.3 Functional Description
The Memory Controller (MC) handles the internal ASB bus and arbitrates the accesses of up to
four masters.

It is made up of:

• A bus arbiter

• An address decoder

• An abort status

• A misalignment detector

The Memory Controller handles only little-endian mode accesses. All masters must work in little-
endian mode only.

16.3.1 Bus Arbiter
The Memory Controller has a user-programmable bus arbiter. Each master can be assigned a
priority between 0 and 7, where 7 is the highest level. The bus arbiter is programmed in the reg-
ister MC_MPR (Master Priority Register).

The same priority level can be assigned to more than one master. If requests occur from two
masters having the same priority level, the following default priority is used by the bus arbiter to
determine the first to serve: Master 0, Master 1, Master 2, Master 3.

The masters are:

• the ARM920T as the Master 0

• the Peripheral DMA Controller as the Master 1

• the USB Host Port as the Master 2

• the Ethernet MAC as the Master 3

16.3.2 Address Decoder
The Memory Controller features an Address Decoder that first decodes the four highest bits of
the 32-bit address bus and defines 11 separate areas:

• One 256-Mbyte address space for the internal memories

• Eight 256-Mbyte address spaces, each assigned to one of the eight chip select lines of the
External Bus Interface

• One 256-Mbyte address space reserved for the embedded peripherals

• An undefined address space of 1536M bytes that returns an Abort if accessed

124
1768I–ATARM–09-Jul-09

AT91RM9200

16.3.2.1 External Memory Areas
Figure 16-2 shows the assignment of the 256-Mbyte memory areas.

Figure 16-2. External Memory Areas

16.3.2.2 Internal Memory Mapping
Within the Internal Memory address space, the Address Decoder of the Memory Controller
decodes eight more address bits to allocate 1-Mbyte address spaces for the embedded
memories.

The allocated memories are accessed all along the 1-Mbyte address space and so are repeated
n times within this address space, n equaling 1M byte divided by the size of the memory.

When the address of the access is undefined within the internal memory area, i.e. over the
address 0x0040 0000, the Address Decoder returns an Abort to the master.

0x0000 0000

0x0FFF FFFF

0x1000 0000

0x1FFF FFFF

0x2000 0000

0x2FFF FFFF

0x3000 0000

0x3FFF FFFF

0x4000 0000

0x4FFF FFFF

0x5000 0000

0x5FFF FFFF

0x6000 0000

0x6FFF FFFF

0x7000 0000

0x7FFF FFFF

0x8000 0000

0x8FFF FFFF

0x9000 0000

0xEFFF FFFF

0xF000 0000

0xFFFF FFFF

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

6 x 256M Bytes
1,536M Bytes

Internal Memories

Chip Select 0

Chip Select 1

Chip Select 2

Chip Select 3

Chip Select 4

Chip Select 5

Chip Select 6

Chip Select 7

Undefined
(Abort)

Peripherals

EBI
External

Bus
Interface

125
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 16-3. Internal Memory Mapping After Remap

16.3.2.3 Internal Memory Area 0
Depending on the BMS pin state at reset and as a function of the remap command, the memory
mapped at address 0x0 is different. Before execution of the remap command the on-chip ROM
(BMS = 1) or the 16-bit non-volatile memory connected to external chip select zero (BMS = 0) is
mapped into Internal Memory Area 0. After the remap command, the internal SRAM at address
0x0020 0000 is mapped into Internal Memory Area 0. The memory mapped into Internal Mem-
ory Area 0 is accessible in both its original location and at address 0x0.

The first 32 bytes of Internal Memory Area 0 contain the ARM processor exception vectors.

16.3.2.4 Boot Mode Select
The BMS pin state allows the device to boot out of an internal ROM or out of an external 16-bit
memory connected on the signal NCS0. The input level on the BMS pin during the last 2 clock
cycles before the reset selects the type of boot memory according to the following conditions:

• If high, the Internal ROM, which is generally mapped within the Internal Memory Area 1, is
also accessible through the Internal Memory Area 0

• If low, the External Memory Area 0, which is generally accessible from address 0x10000000,
is also accessible through the Internal Memory Area 0.

The BMS pin is multiplexed with an I/O line. After reset, this pin can be used as any standard
PIO line.

16.3.3 Remap Command
After execution, the Remap Command causes the Internal SRAM to be accessed through the
Internal Memory Area 0.

As the ARM vectors (Reset, Abort, Data Abort, Prefetch Abort, Undefined Instruction, Interrupt,
and Fast Interrupt) are mapped from address 0x0 to address 0x20, the Remap Command allows
the user to redefine dynamically these vectors under software control.

256M bytes

Internal Memory Area 0

Undefined Area
(Abort)

0x0000 0000

0x000F FFFF

0x0010 0000

0x001F FFFF

0x0020 0000

0x002F FFFF

0x0030 0000

0x0FFF FFFF

1M Byte

1M Byte

1M Byte

252M bytes

Internal Memory Area 1
Internal ROM

Internal Memory Area 2
Internal SRAM

Internal Memory Area 3
USB Host Port0x003F FFFF

0x0040 0000

1M Byte

Table 16-1. Internal Memory Area Depending on BMS and the Remap Command

BMS State

Before Remap After Remap

1 0 X

Internal Memory Area 0 Internal ROM External Memory Area 0 Internal SRAM

126
1768I–ATARM–09-Jul-09

AT91RM9200

The Remap Command is accessible through the Memory Controller User Interface by writing the
MC_RCR (Remap Control Register) RCB field to one.

The Remap Command can be cancelled by writing the MC_RCR RCB field to one, which acts as
a toggling command. This allows easy debug of the user-defined boot sequence by offering a
simple way to put the chip in the same configuration as just after a reset.

Table 16-1 on page 125 is provided to summarize the effect of these two key features on the
nature of the memory mapped to the address 0x0.

16.3.4 Abort Status
There are two reasons for an abort to occur:

• an access to an undefined address

• an access to a misaligned address.

When an abort occurs, a signal is sent back to all the masters, regardless of which one has gen-
erated the access. However, only the master having generated the access leading to the abort
takes this signal into account.

The abort signal generates directly an abort on the ARM9TDMI. Note that, from the processor
perspective, an abort can also be generated by the Memory Management Unit of the ARM920T,
but this is obviously not managed by the Memory Controller and not discussed in this section.

The Peripheral DMA Controller does not handle the abort input signal (and that’s why the con-
nection is not represented in Figure 16-1). The UHP reports an unrecoverable error in the
HcInterruptStatus register and resets its operations. The EMAC reports the Abort to the user
through the ABT bit in its Status Register, which might generate an interrupt.

To facilitate debug or for fault analysis by an operating system, the Memory Controller integrates
an Abort Status register set.

The full 32-bit wide abort address is saved in the Abort Address Status Register (MC_AASR).
Parameters of the access are saved in the Abort Status Register (MC_ASR) and include:

• the size of the request (ABTSZ field)

• the type of the access, whether it is a data read or write or a code fetch (ABTTYP field)

• whether the access is due to accessing an undefined address (UNDADD bit) or a misaligned
address (MISADD bit)

• the source of the access leading to the last abort (MST0, MST1, MST2 and MST3 bits)

• whether or not an abort occurred for each master since the last read of the register
(SVMST0, SVMST1, SVMST2 and SVMST3 bits) except if it is traced in the MST bits.

In case of Data Abort from the processor, the address of the data access is stored. This is prob-
ably the most useful, as finding which address has generated the abort would require
disassembling the instruction and full knowledge of the processor context.

However, in case of prefetch abort, the address might have changed, as the prefetch abort is
pipelined in the ARM processor. The ARM processor takes the prefetch abort into account only if
the read instruction is actually executed and it is probable that several aborts have occurred dur-
ing this time. So, in this case, it is preferable to use the content of the Abort Link register of the
ARM processor.

127
1768I–ATARM–09-Jul-09

AT91RM9200

16.3.5 Misalignment Detector
The Memory Controller features a Misalignment Detector that checks the consistency of the
accesses.

For each access, regardless of the master, the size of access and the 0 and 1 bits of the
address bus are checked. If the type of access is a word (32-bit) and the 0 and 1 bits are not 0,
or if the type of the access is a half-word (16-bit) and the 0 bit is not 0, an abort is returned to the
master and the access is cancelled. Note that the accesses of the ARM processor when it is
fetching instructions are not checked.

The misalignments are generally due to software errors leading to wrong pointer handling.
These errors are particularly difficult to detect in the debug phase.

As the requested address is saved in the Abort Status and the address of the instruction gener-
ating the misalignment is saved in the Abort Link Register of the processor, detection and
correction of this kind of software error is simplified.

16.3.6 Memory Controller Interrupt
The Memory Controller itself does not generate any interrupt. However, as indicated in Figure
16-1, the Memory Controller receives an interrupt signal from the External Bus Interface, which
might be activated in case of Refresh Error detected by the SDRAM Controller. This interrupt
signal just transits through the Memory Controller, which can neither enable/disable it nor return
its activity.

This Memory Controller interrupt signal is ORed with the other System Peripheral interrupt lines
(RTC, ST, DBGU, PMC) to provide the System Interrupt on Source 1 of the Advanced Interrupt
Controller.

128
1768I–ATARM–09-Jul-09

AT91RM9200

16.4 User Interface
Base Address: 0xFFFFFF00

AT91RM9200 Memory Controller Memory Map

Offset Register Name Access Reset State

0x00 MC Remap Control Register MC_RCR Write-only

0x04 MC Abort Status Register MC_ASR Read-only 0x0

0x08 MC Abort Address Status Register MC_AASR Read-only 0x0

0x0C MC Master Priority Register MC_MPR Read/Write 0x3210

0x10 - 0x5C Reserved

0x60 EBI Configuration Registers See “External Bus Interface (EBI)” on page 133

129
1768I–ATARM–09-Jul-09

AT91RM9200

16.4.1 MC Remap Control Register
Register Name: MC_RCR

Access Type: Write-only

Absolute Address: 0xFFFF FF00

• RCB: Remap Command Bit
0: No effect.

1: This Command Bit acts on a toggle basis: writing a 1 alternatively cancels and restores the remapping of the page zero
memory devices.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – RCB

130
1768I–ATARM–09-Jul-09

AT91RM9200

16.4.2 MC Abort Status Register
Register Name: MC_ASR

Access Type: Read-only

Reset Value: 0x0

Absolute Address: 0xFFFF FF04

• UNDADD: Undefined Address Abort Status
0: The last abort was not due to the access of an undefined address in the address space.

1: The last abort was due to the access of an undefined address in the address space.

• MISADD: Misaligned Address Abort Status
0: The last aborted access was not due to an address misalignment.

1: The last aborted access was due to an address misalignment.

• ABTSZ: Abort Size Status

• ABTTYP: Abort Type Status

• MST0: ARM920T Abort Source
0: The last aborted access was not due to the ARM920T.

1: The last aborted access was due to the ARM920T.

31 30 29 28 27 26 25 24

– – – – SVMST3 SVMST2 SVMST1 SVMST0

23 22 21 20 19 18 17 16

– – – – MST3 MST2 MST1 MST0

15 14 13 12 11 10 9 8

– – – – ABTTYP ABTSZ

7 6 5 4 3 2 1 0

– – – – – – MISADD UNDADD

ABTSZ Abort Size

0 0 Byte

0 1 Half-word

1 0 Word

1 1 Reserved

ABTTYP Abort Type

0 0 Data Read

0 1 Data Write

1 0 Code Fetch

1 1 Reserved

131
1768I–ATARM–09-Jul-09

AT91RM9200

• MST1: PDC Abort Source
0: The last aborted access was not due to the PDC.

1: The last aborted access was due to the PDC.

• MST2: UHP Abort Source
0: The last aborted access was not due to the UHP.

1: The last aborted access was due to the UHP.

• MST3: EMAC Abort Source
0: The last aborted access was not due to the EMAC.

1: The last aborted access was due to the EMAC.

• SVMST0: Saved ARM920T Abort Source
0: No abort due to the ARM920T occurred since the last read of MC_ASR or it is notified in the bit MST0.

1: At least one abort due to the ARM920T occurred since the last read of MC_ASR.

• SVMST1: Saved PDC Abort Source
0: No abort due to the PDC occurred since the last read of MC_ASR or it is notified in the bit MST1.

1: At least one abort due to the PDC occurred since the last read of MC_ASR.

• SVMST2: Saved UHP Abort Source
0: No abort due to the UHP occurred since the last read of MC_ASR or it is notified in the bit MST2.

1: At least one abort due to the UHP occurred since the last read of MC_ASR.

• SVMST3: Saved EMAC Abort Source
0: No abort due to the EMAC occurred since the last read of MC_ASR or it is notified in the bit MST3.

1: At least one abort due to the EMAC occurred since the last read of MC_ASR.

132
1768I–ATARM–09-Jul-09

AT91RM9200

16.4.3 MC Abort Address Status Register
Register Name: MC_AASR

Access Type: Read-only

Reset Value: 0x0

Absolute Address: 0xFFFF FF08

• ABTADD: Abort Address
This field contains the address of the last aborted access.

16.4.4 MC Master Priority Register
Register Name: MC_MPR

Access Type: Read/Write

Reset Value: 0x3210

Absolute Address: 0xFFFF FF0C

• MSTP0: ARM920T Priority

• MSTP1: PDC Priority

• MSTP2: UHP Priority

• MSTP3: EMAC Priority
000: Lowest priority

111: Highest priority

In the case of equal priorities, Master 0 has highest and Master 3 has lowest priority.

31 30 29 28 27 26 25 24

ABTADD

23 22 21 20 19 18 17 16

ABTADD

15 14 13 12 11 10 9 8

ABTADD

7 6 5 4 3 2 1 0

ABTADD

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– MSTP3 – MSTP2

7 6 5 4 3 2 1 0

– MSTP1 – MSTP0

133
1768I–ATARM–09-Jul-09

AT91RM9200

17. External Bus Interface (EBI)

17.1 Overview
The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the embedded Memory Controller of an ARM-based device. The
Static Memory, SDRAM and Burst Flash Controllers are all featured external Memory Control-
lers on the EBI. These external Memory Controllers are capable of handling several types of
external memory and peripheral devices, such as SRAM, PROM, EPROM, EEPROM, Flash,
SDRAM and Burst Flash.

The EBI also supports the CompactFlash and the NAND Flash/SmartMedia protocols via inte-
grated circuitry that greatly reduces the requirements for external components. Furthermore, the
EBI handles data transfers with up to eight external devices, each assigned to eight address
spaces defined by the embedded Memory Controller. Data transfers are performed through a
16-bit or 32-bit data bus, an address bus of up to 26 bits, up to eight chip select lines (NCS[7:0])
and several control pins that are generally multiplexed between the different external Memory
Controllers.

Features of the EBI are:

• Integrates Three External Memory Controllers:

– Static Memory Controller

– SDRAM Controller

– Burst Flash Controller

• Additional Logic for NAND Flash/SmartMedia and CompactFlash Support

• Optimized External Bus:

– 16- or 32-bit Data Bus(1)

– Up to 26-bit Address Bus, Up to 64 Mbytes Addressable

– Up to 8 Chip Selects, Each Reserved for one of the Eight Memory Areas

– Optimized Pin Multiplexing to Reduce Latencies on External Memories

• Configurable Chip Select Assignment:

– Burst Flash Controller or Static Memory Controller on NCS0

– SDRAM Controller or Static Memory Controller on NCS1

– Static Memory Controller on NCS3, Optional NAND Flash/SmartMedia Support

– Static Memory Controller on NCS4 - NCS6, Optional NAND Flash/SmartMedia and
CompactFlash Support

– Static Memory Controller on NCS7

Note: 1. The 32-bit Data Bus is for SDRAM only.

134
1768I–ATARM–09-Jul-09

AT91RM9200

17.2 Block Diagram
Figure 17-1 below shows the organization of the External Bus Interface.

Figure 17-1. Organization of the External Bus Interface

External Bus Interface

D[15:0]

A[15:2], A[22:18]

PIO

MUX
Logic

NAND Flash/
SmartMedia

Logic

CompactFlash
Logic

User Interface

Chip Select
 Assignor

Static
Memory

Controller

SDRAM
Controller

Burst Flash
Controller

Memory
Controller

ASB

Address Decoder

A16/BA0

A0/NBS0

A1/NWR2/NBS2

A17/BA1

NCS0/BFCS

NCS3/SMCS

NRD/NOE/CFOE

NCS1/SDCS

NCS2

NWR0/NWE/CFWE

NWR1/NBS1/CFIOR

NWR3/NBS3/CFIOW

SDCK

SDCKE

RAS

CAS

SDWE

D[31:16]

A[24:23]

A25/CFRNW

NCS4/CFCS

NCS5/CFCE1

NCS6/CFCE2

NCS7

BFCK

BFAVD

BFBAA/SMWE

BFOE

BFRDY/SMOE

BFWE

NWAIT

SDA10

APB

135
1768I–ATARM–09-Jul-09

AT91RM9200

17.3 I/O Lines Description

Table 17-1. I/O Lines Description

Name Function Type Active Level

EBI

D[31:0] Data Bus I/O

A[25:0] Address Bus Output

SMC

NCS[7:0] Chip Select Lines Output Low

NWR[1:0] Write Signals Output Low

NOE Output Enable Output Low

NRD Read Signal Output Low

NBS1 NUB: Upper Byte Select Output Low

NBS0 NLB: Lower Byte Select Output Low

NWE Write Enable Output Low

NWAIT Wait Signal Input Low

EBI for CompactFlash Support

CFCE[2:1] CompactFlash Chip Enable Output Low

CFOE CompactFlash Output Enable Output Low

CFWE CompactFlash Write Enable Output Low

CFIOR CompactFlash I/O Read Signal Output Low

CFIOW CompactFlash I/O Write Signal Output Low

CFRNW CompactFlash Read Not Write Signal Output

CFCS CompactFlash Chip Select Line Output Low

EBI for NAND Flash/SmartMedia Support

SMCS NAND Flash/Smart Media Chip Select Line Output Low

SMOE NAND Flash/SmartMedia Output Enable Output Low

SMWE NAND Flash/SmartMedia Write Enable Output Low

SDRAM Controller

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output High

SDCS SDRAM Controller Chip Select Line Output Low

BA[1:0] Bank Select Output

SDWE SDRAM Write Enable Output Low

RAS - CAS Row and Column Signal Output Low

NWR[3:0] Write Signals Output Low

NBS[3:0] Byte Mask Signals Output Low

SDA10 SDRAM Address 10 Line Output

136
1768I–ATARM–09-Jul-09

AT91RM9200

The connection of some signals through the MUX logic is not direct and depends on the Memory
Controller in use at the moment.

Table 17-2 below details the connections between the three Memory Controllers and the EBI
pins.

Burst Flash Controller

BFCK Burst Flash Clock Output

BFCS Burst Flash Chip Select Line Output Low

BFAVD Burst Flash Address Valid Signal Output Low

BFBAA Burst Flash Address Advance Signal Output Low

BFOE Burst Flash Output Enable Output Low

BFRDY Burst Flash Ready Signal Input High

BFWE Burst Flash Write Enable Output Low

Table 17-1. I/O Lines Description (Continued)

Name Function Type Active Level

Table 17-2. EBI Pins and Memory Controllers I/O Line Connections

EBI Pins SDRAMC I/O Lines BFC I/O Lines SMC I/O Lines

NWR1/NBS1/CFIOR NBS1 Not Supported NWR1/NUB

A0/NBS0 Not Supported Not Supported A0/NLB

A1 Not Supported A0 A1

A[11:2] A[9:0] A[10:1] A[11:2]

SDA10 A10 Not Supported Not Supported

A12 Not Supported A11 A12

A[14:13] A[12:11] A[13:12] A[14:13]

A[25:15] Not Supported A[24:14] A[25:15]

D[31:16] D[31:16] Not Supported Not Supported

D[15:0] D[15:0] D[15:0] D[15:0]

137
1768I–ATARM–09-Jul-09

AT91RM9200

17.4 Application Example

17.4.1 Hardware Interface
Table 17-3 below details the connections to be applied between the EBI pins and the external
devices for each Memory Controller.

Table 17-3. EBI Pins and External Device Connections

Pin

Pins of the Interfaced Device

8-bit Static
Device

2 x 8-bit
Static

Devices
16-bit Static

Device
Burst Flash

Device SDRAM CompactFlash
NAND Flash/
SmartMedia

Controller SMC BFC SDRAMC SMC

D0 - D7 D0 - D7 D0 - D7 D0 - D7 D0 - D7 D0 - D7 D0 - D7 AD0 - AD7

D8 - D15 – D8 - D15 D8 - D15 D8 - D15 D8 - D15 D8 - 15 –

D16 - D31 – – – – D16 - D31 – –

A0/NBS0 A0 – NLB – DQM0 A0 –

A1/NWR2/NBS2 A1 A0 A0 A0 DQM2 A1 –

A2 - A9 A2 - A9 A1 - A8 A1 - A8 A1 - A8 A0 - A7 A2 - A9 –

A10 A10 A9 A9 A9 A8 A10 –

A11 A11 A10 A10 A10 A9 – –

SDA10 – – – – A10 – –

A12 A12 A11 A11 A11 – – –

A13 - A14 A13 - A14 A12 - A13 A12 - A13 A12 - A13 A11 - A12 – –

A15 A15 A14 A14 A14 – – –

A16/BA0 A16 A15 A15 A15 BA0 – –

A17/BA1 A17 A16 A16 A16 BA1 – –

A18 - A20 A18 - A20 A17 - A19 A17 - A19 A17 - A19 – – –

A21 A21 A20 A20 A20 – – CLE

A22 A22 A21 A21 A21 – REG(3) ALE

A23 - A24 A23 - A24 A22 - A23 A22 - A23 A22 - A23 – – –

A25 A25 A24 A24 A24 – CFRNW(1) –

NCS0/BFCS CS CS CS CS – – –

NCS1/SDCS CS CS CS – CS – –

NCS2 CS CS CS – – – –

NCS3/SMCS CS CS C S – – – –

NCS4/CFCS CS CS CS – – CFCS(1) –

NCS5/CFCE1 CS CS CS – – CE1 –

NCS6/CFCE2 CS CS CS – – CE2 –

NRD/NOE/CFOE OE OE OE – – OE

NWR0/NWE/CFWE WE WE(5) WE – – WE

138
1768I–ATARM–09-Jul-09

AT91RM9200

Notes: 1. Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer between the EBI data bus and
the CompactFlash slot.

2. Any PIO line.

3. The REG signal of the CompactFlash can be driven by any of the following address bits: A24, A22 to A11. For details, see
Section 17.6.6 “CompactFlash Support” on page 141.

4. NWR1 enables upper byte writes. NWR0 enables lower byte writes.

NWR1/NBS1/CFIOR – WE(5) NUB – DQM1 IOR –

NWR3/NBS3/CFIOW – – – – DQM3 IOW –

BFCK – – – CK – – –

BFAVD – – – AVD – – –

BFBAA/SMWE – – – BAA – – WE

BFOE – – – OE – – –

BFRDY/SMOE – – – RDY – – OE

BFWE – – – WE – – –

SDCK – – – – CLK – –

SDCKE – – – – CKE – –

RAS – – – – RAS – –

CAS – – – – CAS – –

SDWE – – – – WE – –

NWAIT – – – – – WAIT –

Pxx(2) – – – – – CD1 or CD2 –

Pxx(2) – – – – – – CE

Pxx(2) – – – – – – RDY

Table 17-3. EBI Pins and External Device Connections (Continued)

Pin

Pins of the Interfaced Device

8-bit Static
Device

2 x 8-bit
Static

Devices
16-bit Static

Device
Burst Flash

Device SDRAM CompactFlash
NAND Flash/
SmartMedia

Controller SMC BFC SDRAMC SMC

139
1768I–ATARM–09-Jul-09

AT91RM9200

17.4.2 Connection Examples
Figure 17-2 below shows an example of connections between the EBI and external devices.

Figure 17-2. EBI Connections to Memory Devices

EBI

D0-D31

A2-A15

RAS
CAS

SDCK
SDCKE
SDWE

A0/NBS0

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

NWR1/NBS1
A1/NWR2/NBS2

NWR3/NBS3

NCS1/SDCS

D0-D7 D8-D15

A16/BA0
A17/BA1
A18-A25

A10

SDA10

SDA10
A2-A11, A13

NCS0/BFCS

NCS2
NCS3
NCS4
NCS5
NCS6
NCS7

A16/BA0
A17/BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

A10 SDA10
A2-A11, A13

A16/BA0
A17/BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

D16-D23 D24-D31

A10 SDA10
A2-A11, A13

A16/BA0
A17/BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

A10
SDA10
A2-A11, A13

A16/BA0
A17/BA1

NBS0 NBS1

NBS3
NBS2

2M x 16
Burst Flash

D0-D15

OE

CE

WE

NRD/NOE
NWR0/NWE

A0-A20

AVD
RDY

A1-A21

BFAVD

BFOE

BFRDY

BFCLK

BFWE

128K x 8
SRAM

128K x 8
SRAM

D0-D7 D0-D7A0-A16 A0-A16
A1-A17 A1-A17

D0-D15

CS CS

OE
WE

D0-D7 D8-D15

OE
WENRD/NOE

A0/NWR0/NBS0
NRD/NOE

NWR1/NBS1

SDWE

SDWESDWE

SDWE

CLK

140
1768I–ATARM–09-Jul-09

AT91RM9200

17.5 Product Dependencies

17.5.1 I/O Lines
The pins used for interfacing the External Bus Interface may be multiplexed with the PIO lines.
The programmer must first program the PIO controller to assign the External Bus Interface pins
to their peripheral function. If I/O lines of the External Bus Interface are not used by the applica-
tion, they can be used for other purposes by the PIO Controller.

17.6 Functional Description
The EBI transfers data between the internal ASB Bus (handled by the Memory Controller) and
the external memories or peripheral devices. It controls the waveforms and the parameters of
the external address, data and control busses and is composed of the following elements:

• The Static Memory Controller (SMC)

• The SDRAM Controller (SDRAMC)

• The Burst Flash Controller (BFC)

• A chip select assignment feature that assigns an ASB address space to the external devices.

• A multiplex controller circuit that shares the pins between the different Memory Controllers.

• Programmable CompactFlash support logic

• Programmable NAND Flash /SmartMedia and support logic

17.6.1 Bus Multiplexing
The EBI offers a complete set of control signals that share the 32-bit data lines, the address
lines of up to 26 bits and the control signals through a multiplex logic operating in function of the
memory area requests.

Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAM Controller without
delaying the other external Memory Controller accesses. Lastly, it prevents burst accesses on
the same page of a burst Flash from being interrupted which avoids the need to restart a high-
latency first access.

17.6.2 Pull-up Control
The EBI permits enabling of on-chip pull-up resistors on the data bus lines not multiplexed with
the PIO Controller lines. The pull-up resistors are enabled after reset. Setting the DBPUC bit dis-
ables the pull-up resistors on the D0 to D15 lines. Enabling the pull-up resistor on the D16 - D31
lines can be performed by programming the appropriate PIO controller.

17.6.3 Static Memory Controller
For information on the Static Memory Controller, refer to the SMC Section 18.1 “Description” on
page 155.

17.6.4 SDRAM Controller
For information on the SDRAM Controller, refer to the SDRAMC description on Section 19.1
“Overview” on page 193.

141
1768I–ATARM–09-Jul-09

AT91RM9200

17.6.5 Burst Flash Controller
For information on the Burst Flash Controller, refer to the BFC Section 20.1 “Overview” on page
215.

17.6.6 CompactFlash Support
The External Bus Interface integrates circuitry that interfaces to CompactFlash devices.

The CompactFlash logic is driven by the Static Memory Controller (SMC) on the NCS4 address
space. Programming the CS4A field of the Chip Select Assignment Register (See Section 17.8.1
”EBI Chip Select Assignment Register” on page 152.) to the appropriate value enables this logic.
Access to an external CompactFlash device is then made by accessing the address space
reserved to NCS4 (i.e., between 0x5000 0000 and 0x5FFF FFFF).

When multiplexed with CFCE1 and CFCE2 signals, the NCS5 and NCS6 signals become
unavailable. Performing an access within the address space reserved to NCS5 and NCS6 (i.e.,
between 0x6000 0000 and 0x7FFF FFFF) may lead to an unpredictable outcome.

The True IDE Mode is not supported and in I/O Mode, the signal _IOIS16 is not managed.

17.6.6.1 I/O Mode, Common Memory Mode and Attribute Memory Mode
Within the NCS4 address space, the current transfer address is used to distinguish I/O mode,
common memory mode and attribute memory mode. More precisely, the A23 bit of the transfer
address is used to select I/O Mode. Any EBI address bit not required by the CompactFlash
device (i.e., bit A24 or bits A22 to A11) can be used to separate common memory mode and
attribute memory mode. Using the A22 bit, for example, leads to the address map in Figure 17-3
below. In this figure, “i” stands for any hexadecimal digit.

Figure 17-3. Address Map Example

Note: In the above example, the A22 pin of the EBI can be used to drive the REG signal of the Compact-
Flash Device.

17.6.6.2 Read/Write Signals
In I/O mode, the CompactFlash logic drives the read and write command signals of the SMC on
CFIOR and CFIOW signals, while the CFOE and CFWE signals are deactivated. Likewise, in
common memory mode and attribute memory mode, the SMC signals are driven on the CFOE
and CFWE signals, while the CFIOR and CFIOW are deactivated. Figure 17-4 on page 142
demonstrates a schematic representation of this logic.

Attribute memory mode, common memory mode and I/O mode are supported by setting the
address setup and hold time on the NCS4 chip select to the appropriate values. For details on
these signal waveforms, please refer to: Section 18.6.5 “Setup and Hold Cycles” on page 168 of
the Static Memory Controller documentation.

0x5i00 0000

0x5iBF FFFF

0x5i80 0000

0x5i7F FFFF
Common Memory Mode

I/O Mode

Attribute Memory Mode

0x5i40 0000
0x5i3F FFFF

A23 = 1
A22 = 0

A23 = 0
A22 = 1

A23 = 0
A22 = 0

142
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 17-4. CompactFlash Read/Write Control Signals

17.6.6.3 Access Type
The CFCE1 and CFCE2 signals enable upper- and lower-byte access on the data bus of the
CompactFlash device in accordance with Table 17-4 below. The odd byte access on the D[7:0]
bus is only possible when the SMC is configured to drive 8-bit memory devices on the NCS4 pin.
The Chip Select Register (DBW field in Section 18.7.1 “SMC Chip Select Registers” on page
190) of the NCS4 address space must be set as shown in Table 17-4 to enable the required
access type. The CFCE1 and CFCE2 waveforms are identical to the NCS4 waveform. For
details on these waveforms and timings, refer to the Static Memory Controller Section 18.1
“Description” on page 155.

17.6.6.4 Multiplexing of CompactFlash Signals on EBI Pins
Table 17-5 below and Table 17-6 on page 143 illustrate the multiplexing of the CompactFlash
logic signals with other EBI signals on the EBI pins. The EBI pins in Table 17-5 are strictly dedi-
cated to the CompactFlash interface as soon as the CS4A field of the Chip Select Assignment
Register is set (See Section 17.8.1 ”EBI Chip Select Assignment Register” on page 152.) These
pins must not be used to drive any other memory devices.

SMC

NRD_NOE
NWR0_NWE

A23

CFIOR
CFIOW

CFOE
CFWE1

1

1
1

CompactFlash Logic

External Bus Interface

Table 17-4. Upper- and Lower-byte Access

Access CFCE2 CFCE1 A0 D[15:8] D[7:0] SMC_CSR4 (DBW)

Byte R/W Access
1 0 0 Don’t Care/High Z Even Byte 8-bit or 16-bit

1 0 1 Don’t Care/High Z Odd Byte 8-bit

Odd Byte R/W Access 0 1 X Odd Byte Don’t Care/High Z 16-bit

Half-word R/W Access 0 0 X Odd Byte Even Byte 16-bit

143
1768I–ATARM–09-Jul-09

AT91RM9200

The EBI pins in Table 17-6 on page 143 remain shared between all memory areas when the
CompactFlash interface is enabled (CS4A = 1).

17.6.6.5 CompactFlash Application Example
Figure 17-5 below illustrates an example of a CompactFlash application. CFCS and CFRNW
signals are not directly connected to the CompactFlash slot, but do control the direction and the
output enable of the buffers between the EBI and the CompactFlash Device. The timing of the
CFCS signal is identical to the NCS4 signal. Moreover, the CFRNW signal remains valid
throughout the transfer, as does the address bus. The CompactFlash _WAIT signal is con-
nected to the NWAIT input of the Static Memory Controller. For details on these waveforms and
timings, refer to the Static Memory Controller Section 18.1 “Description” on page 155.

Table 17-5. Dedicated CompactFlash Interface Multiplexing

Pins

CS4A = 1 CS4A = 0

CompactFlash Signals EBI Signals

NCS4/CFCS CFCS NCS4

NCS5/CFCE1 CFCE1 NCS5

NCS6/CFCE2 CFCE2 NCS6

Table 17-6. Shared CompactFlash Interface Multiplexing

Pins

Access to CompactFlash Device Access to Other EBI Devices

CompactFlash Signals EBI Signals

NOE/NRD/CFOE CFOE NRD/NOE

NWR0/NWE/CFWE CFWE NWR0/NWE

NWR1/NBS1/CFIOR CFIOR NWR1/NBS1

NWR3/NBS3/CFIOW CFIOW NWR3/NBS3

A25/CFRNW CFRNW A25

144
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 17-5. CompactFlash Application Example

17.6.7 NAND Flash/ SmartMedia Support
The EBI integrates circuitry that interfaces to NAND Flash/SmartMedia devices.

The NAND Flash/SmartMedia logic is driven by the Static Memory Controller on the NCS3
address space. Programming the CS3A field in the Chip Select Assignment Register to the
appropriate value enables the NAND Flash/SmartMedia logic (See Section 17.8.1 ”EBI Chip
Select Assignment Register” on page 152.) Access to an external NAND Flash/SmartMedia
device is then made by accessing the address space reserved to NCS3 (i.e., between 0x4000
0000 and 0x4FFF FFFF).

The NAND Flash/SmartMedia Logic drives the read and write command signals of the SMC on
the SMOE and SMWE signals when the NCS3 signal is active. SMOE and SMWE are invali-
dated as soon as the transfer address fails to lie in the NCS3 address space. For details on
these waveforms, refer to the Static Memory Controller Section 18.1 “Description” on page 155.

The SMWE and SMOE signals are multiplexed with BFRDY and BFBAA signals of the Burst
Flash Controller. This multiplexing is controlled in the MUX logic part of the EBI by the CS3A
field of the Chip Select Assignment Register (See Section 17.8.1 ”EBI Chip Select Assignment
Register” on page 152.) This logic also controls the direction of the BFRDY/SMOE pad.

CompactFlash ConnectorEBI

D[15:0]

/OEDIR

_CD1

_CD2

/OE

D[15:0]

A25/CFRNW

NCS4/CFCS

CD (PIO)

A[10:0]

A22/REG

NOE/CFOE

A[10:0]

_REG

_OE

_WE

_IORD

_IOWR

_CE1

_CE2

NWE/CFWE

NWR1/CFIOR

NWR3/CFIOW

NCS5/CFE1

NCS6/CFE2

_WAITNWAIT

145
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 17-6. NAND Flash/SmartMedia Signal Multiplexing on EBI Pins

The address latch enable and command latch enable signals on the NAND Flash/SmartMedia
device are driven by address bits A22 and A21 of the EBI address bus. The user should note
that any bit on the EBI address bus can also be used for this purpose. The command, address or
data words on the data bus of the NAND Flash/SmartMedia device are distinguished by using
their address within the NCS3 address space. The chip enable (CE) signal of the device and the
ready/busy (R/B) signals are connected to PIO lines. The CE signal then remains asserted even
when NCS3 is not selected, preventing the device from returning to standby mode. Some func-
t ional l imitation with the supported burst Flash device wil l occur when the NAND
Flash/SmartMedia device is activated due to the fact that the SMOE and SMWE signals are mul-
tiplexed with BFRDY and BFBAA signals respectively.

SMC

NRD_NOE

NWR0_NWE

SMOE

SMWE

NCS3

MUX Logic

EBI User Interface
CS3A

BFC

BFRDY

BFBAA
BFBAA_SMWE

BFRDY_SMOE

NAND Flash/Smart Media
Logic

146
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 17-7. NAND Flash/SmartMedia Application Example

D[7:0]

ALE

BFBAA/SMWE

BFRDY/SMOE
NOE

NWE

A[22:21]

CLE

AD[7:0]

PIO R/B

EBI

CE

NAND Flash/SmartMedia

PIO

NCS3/SMCS Not Connected

147
1768I–ATARM–09-Jul-09

AT91RM9200

17.7 Implementation Examples

17.7.1 16-bit SDRAM

17.7.1.1 Hardware Configuration

17.7.1.2 Software Configuration
The following configuration has to be performed:

• Assign the EBI CS1 to the SDRAM controller by setting the bit EBI_CS1A in the EBI Chip
Select Assignment Register located in the bus matrix memory space

• Initialize the SDRAM Controller accordingly to SDRAM device and system bus frequency.

The Data Bus Width is to be programmed to 16 bits.

The SDRAM initialization sequence is described in the “SDRAM Device Initialization” part of the
SDRAM controller.

148
1768I–ATARM–09-Jul-09

AT91RM9200

17.7.2 32-bit SDRAM

17.7.2.1 Hardware Configuration

17.7.2.2 Software Configuration
The following configuration has to be performed:

• Assign the EBI CS1 to the SDRAM controller by setting the bit EBI_CS1A in the EBI Chip
Select Assignment Register located in the bus matrix memory space

• Initialize the SDRAM Controller accordingly to SDRAM device and system bus frequency.

The Data Bus Width is to be programmed to 32 bits. The data lines D[16..31] are multiplexed
with PIO lines and thus the dedicated PIOs must be programmed in peripheral mode in the PIO
controller.

The SDRAM initialization sequence is described in the “SDRAM Device Initialization” part of the
SDRAM controller.

149
1768I–ATARM–09-Jul-09

AT91RM9200

17.7.3 NOR Flash on NCS0

17.7.3.1 Hardware Configuration

17.7.3.2 Software Configuration
The default configuration for the Static Memory Controller, byte select mode, 16-bit data bus,
Read/Write controlled by Chip Select, allows boot on a 16-bit non-volatile memory at slow clock.

For other configurations, configure Static Memory Controller CS0 Setup, Pulse, Cycle and Mode
accordingly to Flash timings and system bus frequency.

150
1768I–ATARM–09-Jul-09

AT91RM9200

17.7.4 Compact Flash

17.7.4.1 Hardware Configuration

17.7.4.2 Software Configuration
The following configuration has to be performed:

• Assign the EBI CS4 to the CompactFlash slot by setting the bit EBI_CS4A in the EBI Chip
Select Assignment Register located in the Bus Matrix memory space.

• The address line A23 is to select I/O (A23=1) or Memory mode (A23=0) and the address line
A22 for REG function.

• A23, CFRNW, CFCS0, CFCE1 and CFCE2 signals are multiplexed with PIO lines and thus
the dedicated PIOs must be programmed in peripheral mode in the PIO controller

• Configure a PIO line as an output for CFRST and two others as an input for CFIRQ and
CARD DETECT functions respectively.

• Configure SMC CS4 Setup, Pulse, Cycle and Mode accordingly to Compact Flash timings
and system bus frequency.

151
1768I–ATARM–09-Jul-09

AT91RM9200

17.8 External Bus Interface (EBI) User Interface
AT91RM9200 EBI User Interface Base Address: 0xFFFF FF60

Table 17-7. External Bus Interface Memory Map

Offset Register Name Access Reset State

0x00 Chip Select Assignment Register EBI_CSA Read/Write 0x0

0x04 Configuration Register EBI_CFGR Read/Write 0x0

0x08 Reserved –

0x0C Reserved –

0x10 - 0x2C SMC User Interface
 (See Section 18.7 ”Static Memory Controller (SMC) User Interface” on page

189.)

0x30 - 0x5C SDRAMC User Interface (See Section 19.7 ”SDRAM Controller (SDRAMC) User Interface” on page 205.)

0x60 BFC User Interface (See Section 20.7 ”Burst Flash Controller (BFC) User Interface” on page 227.)

0x64 - 0x9C Reserved

152
1768I–ATARM–09-Jul-09

AT91RM9200

17.8.1 EBI Chip Select Assignment Register
Register Name: EBI_CSA

Access Type: Read/Write

Reset Value: 0x0

Offset: 0x0

Absolute Address: 0xFFFF FF60

• CS0A: Chip Select 0 Assignment

0 = Chip Select 0 is assigned to the Static Memory Controller.

1 = Chip Select 0 is assigned to the Burst Flash Controller.

• CS1A: Chip Select 1 Assignment

0 = Chip Select 1 is assigned to the Static Memory Controller.

1 = Chip Select 1 is assigned to the SDRAM Controller.

• CS3A: Chip Select 3 Assignment

0 = Chip Select 3 is only assigned to the Static Memory Controller and NCS3 behaves as defined by the SMC.

1 = Chip Select 3 is assigned to the Static Memory Controller and the NAND Flash/SmartMedia Logic is activated.

• CS4A: Chip Select 4 Assignment

0 = Chip Select 4 is assigned to the Static Memory Controller and NCS4, NCS5 and NCS6 behave as defined by the SMC.

1 = Chip Select 4 is assigned to the Static Memory Controller and the CompactFlash Logic is activated.

Accessing the address space reserved to NCS5 and NCS6 may lead to an unpredictable outcome.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CS4A CS3A – CS1A CS0A

153
1768I–ATARM–09-Jul-09

AT91RM9200

17.8.2 EBI Configuration Register
Register Name: EBI_CFGR

Access Type: Read/Write

Reset Value: 0x0

Offset: 0x04

Absolute Address: 0xFFFF FF64

• DBPUC: Data Bus Pull-Up Configuration

0 = [D15:0] Data Bus bits are internally pulled-up to the VDDIOM power supply.

1 = [D15:0] Data Bus bits are not internally pulled-up.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – DBPUC

154
1768I–ATARM–09-Jul-09

AT91RM9200

155
1768I–ATARM–09-Jul-09

AT91RM9200

18. Static Memory Controller (SMC)

18.1 Description
The Static Memory Controller (SMC) generates the signals that control the access to external
static memory or peripheral devices. The SMC is fully programmable. It has eight chip selects
and a 23-bit address bus. The 16-bit data bus can be configured to interface with 8- or 16-bit
external devices. Separate read and write control signals allow for direct memory and peripheral
interfacing. The SMC supports different access protocols allowing single clock cycle memory
accesses. It also provides an external wait request capability.

18.2 Block Diagram

Figure 18-1. Static Memory Controller Block Diagram

APB

NCS[7:0]

NWR0/NWE

 SMC
PIO

Controller

NWR1/NUB

NRD

A0/NLB

A[22:1]

D[15:0]

NWAIT

User Interface

PMC MCK

Memory
Controller

SMC
Chip Select

156
1768I–ATARM–09-Jul-09

AT91RM9200

18.3 I/O Lines Description

18.4 Multiplexed Signals

Table 18-1. I/O Lines Description

Name Description Type Active Level

NCS[7:0] Static Memory Controller Chip Select Lines Output Low

NRD Read Signal Output Low

NWR0/NWE Write 0/Write Enable Signal Output Low

NWR1/NUB Write 1/Upper Byte Select Signal Output Low

A0/NLB Address Bit 0/Lower Byte Select Signal Output Low

A[22:1] Address Bus Output

D[15:0] Data Bus I/O

NWAIT External Wait Signal Input Low

Table 18-2. Static Memory Controller Multiplexed Signals

Multiplexed Signals Related Function

A0 NLB 8-bit or 16-bit data bus, see 18.6.1.3 “Data Bus Width” on page 158.

NWR0 NWE Byte-write or byte-select access, see 18.6.2.1 “Write Access Type” on page 159.

NWR1 NUB Byte-write or byte-select access, see 18.6.2.1 “Write Access Type” on page 159.

157
1768I–ATARM–09-Jul-09

AT91RM9200

18.5 Product Dependencies

18.5.1 I/O Lines
The pins used for interfacing the Static Memory Controller may be multiplexed with the PIO
lines. The programmer must first program the PIO controller to assign the Static Memory Con-
troller pins to their peripheral function. If I/O lines of the Static Memory Controller are not used by
the application, they can be used for other purposes by the PIO Controller.

18.6 Functional Description

18.6.1 External Memory Interface

18.6.1.1 External Memory Mapping
The memory map is defined by hardware and associates the internal 32-bit address space with
the external 23-bit address bus. Note that A[22:0] is only significant for 8-bit memory. A[22:1] is
used for 16-bit memory. If the physical memory device is smaller than the page size, it wraps
around and appears to be repeated within the page. The SMC correctly handles any valid
access to the memory device within the page. See Figure 18-2.

Figure 18-2. Case of an External Memory Smaller than Page Size

18.6.1.2 Chip Select Lines
The Static Memory Controller provides up to eight chip select lines: NCS0 to NCS7.

1M Byte Device

1M Byte Device

1M Byte Device

1M Byte Device

Memory
Map

Hi

Low

Hi

Low

Hi

Low

Hi

Low
Base

Base + 1M Byte

Base + 2M Bytes

Base + 3M Bytes

Base + 4M Bytes

Repeat 1

Repeat 2

Repeat 3

158
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-3. Memory Connections for Eight External Devices (1)

Note: 1. The maximum address space per device is 8 Mbytes.

18.6.1.3 Data Bus Width
A data bus width of 8 or 16 bits can be selected for each chip select. This option is controlled by
the DBW field in the SMC_CSR for the corresponding chip select. See “SMC Chip Select Regis-
ters” on page 190.

Figure 18-4 shows how to connect a 512K x 8-bit memory on NCS2 (DBW = 10).

Figure 18-4. Memory Connection for an 8-bit Data Path Device

Figure 18-5 shows how to connect a 512K x 16-bit memory on NCS2 (DBW = 01).

NRD

NWR[1:0]

A[22:0]

D[15:0]

8 or 16

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Output Enable

Write Enable

A[22:0]

D[15:0] or D[7:0]

NCS3

NCS0

NCS1

NCS2

NCS7

NCS4

 NCS5

 NCS6

NCS[7:0]

SMC

SMC A0

NWR0

NRD

NCS2

A0

Write Enable

Output Enable

Memory Enable

NWR1

D[7:0] D[7:0]

D[15:8]

A[22:1]A[22:1]

159
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-5. Memory Connection for a 16-bit Data Path Device

18.6.2 Write Access

18.6.2.1 Write Access Type
Each chip select with a 16-bit data bus can operate with one of two different types of write
access:

• Byte Write Access supports two byte write and a single read signal.

• Byte Select Access selects upper and/or lower byte with two byte select lines, and separate
read and write signals.

This option is controlled by the BAT field in the SMC_CSR for the corresponding chip select.
See “SMC Chip Select Registers” on page 190.

Byte Write Access

Byte Write Access is used to connect 2 x 8-bit devices as a 16-bit memory page.

• The signal A0/NLB is not used.

• The signal NWR1/NUB is used as NWR1 and enables upper byte writes.

• The signal NWR0/NWE is used as NWR0 and enables lower byte writes.

• The signal NRD enables half-word and byte reads.

Figure 18-6 shows how to connect two 512K x 8-bit devices in parallel on NCS2 (BAT = 0)

SMC NLB

NWE

NRD

NCS2

Low Byte Enable

Write Enable

Output Enable

Memory Enable

NUB High Byte Enable

D[7:0] D[7:0]

D[15:8] D[15:8]

A[22:1] A[22:0]

160
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-6. Memory Connection for 2 x 8-bit Data Path Devices

18.6.2.2 Byte Select Access
Byte Select Access is used to connect 16-bit devices in a memory page.

• The signal A0/NLB is used as NLB and enables the lower byte for both read and write
operations.

• The signal NWR1/NUB is used as NUB and enables the upper byte for both read and write
operations.

• The signal NWR0/NWE is used as NWE and enables writing for byte or half-word.

• The signal NRD enables reading for byte or half-word.

Figure 18-7 shows how to connect a 16-bit device with byte and half-word access (e.g., SRAM
device type) on NCS2 (BAT = 1).

Figure 18-7. Connection to a 16-bit Data Path Device with Byte and Half-word Access

Figure 18-8 shows how to connect a 16-bit device without byte access (e.g., Flash device type)
on NCS2 (BAT = 1).

SMC A0

NWR0

NRD

NCS2

Write Enable

Read Enable

Memory Enable

NWR1

Write Enable

Read Enable

Memory Enable

D[7:0] D[7:0]

D[15:8]

D[15:8]

A[22:1]

A[18:0]

A[18:0]

SMC
NLB

NWE

NRD

NCS2

Low Byte Enable

Write Enable

Output Enable

Memory Enable

NUB High Byte Enable

D[7:0] D[7:0]

D[15:8] D[15:8]

A[19:1] A[18:0]

161
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-8. Connection to a 16-bit Data Path Device without Byte Write Capability

18.6.2.3 Write Data Hold Time
During write cycles, data output becomes valid after the rising edge of MCK and remains valid
after the rising edge of NWE. During a write access, the data remain on the bus 1/2 period of
MCK after the rising edge of NWE. See Figure 18-9 and Figure 18-10.

Figure 18-9. Write Access with 0 Wait State

Figure 18-10. Write Access with 1 Wait State

SMC

D[7:0] D[7:0]

D[15:8] D[15:8]

A[19:1]

NLB

NWE

NRD

NCS2

Write Enable

Output Enable

Memory Enable

NUB

A[18:0]

A[22:0]

NCS

MCK

NWE

D[15:0]

A[22:0]

NCS

NWE

MCK

D[15:0]

162
1768I–ATARM–09-Jul-09

AT91RM9200

18.6.3 Read Access

18.6.3.1 Read Protocols
The SMC provides two alternative protocols for external memory read accesses: standard and
early read. The difference between the two protocols lies in the behavior of the NRD signal.

For write accesses, in both protocols, NWE has the same behavior. In the second half of the
master clock cycle, NWE always goes low (see Figure 18-18 on page 167).

The protocol is selected by the DRP field in SMC_CSR (See “SMC Chip Select Registers” on
page 190.). Standard read protocol is the default protocol after reset.

Note: In the following waveforms and descriptions NWE represents NWE, NWR0 and NWR1 unless
NWR0 and NWR1 are otherwise represented. In addition, NCS represents NCS[7:0] (see 18.5.1
“I/O Lines” on page 157, Table 18-1 and Table 18-2).

18.6.3.2 Standard Read Protocol
Standard read protocol implements a read cycle during which NRD and NWE are similar. Both
are active during the second half of the clock cycle. The first half of the clock cycle allows time to
ensure completion of the previous access as well as the output of address lines and NCS before
the read cycle begins.

During a standard read protocol, NCS is set low and address lines are valid at the beginning of
the external memory access, while NRD goes low only in the second half of the master clock
cycle to avoid bus conflict. See Figure 18-11.

Figure 18-11. Standard Read Protocol

18.6.3.3 Early Read Protocol
Early read protocol provides more time for a read access from the memory by asserting NRD at
the beginning of the clock cycle. In the case of successive read cycles in the same memory,
NRD remains active continuously. Since a read cycle normally limits the speed of operation of
the external memory system, early read protocol can allow a faster clock frequency to be used.
However, an extra wait state is required in some cases to avoid contentions on the external bus.

A[22:0]

NCS

MCK

NRD

D[15:0]

163
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-12. Early Read Protocol

18.6.4 Wait State Management
The SMC can automatically insert wait states. The different types of wait states managed are
listed below:

• Standard wait states

• External wait states

• Data float wait states

• Chip select change wait states

• Early Read wait states

18.6.4.1 Standard Wait States
Each chip select can be programmed to insert one or more wait states during an access on the
corresponding memory area. This is done by setting the WSEN field in the corresponding
SMC_CSR (“SMC Chip Select Registers” on page 190). The number of cycles to insert is pro-
grammed in the NWS field in the same register.

Below is the correspondence between the number of standard wait states programmed and the
number of clock cycles during which the NWE pulse is held low:

0 wait states 1/2 clock cycle

1 wait state 1 clock cycle

For each additional wait state programmed, an additional cycle is added.

A[22:0]

NCS

MCK

NRD

D[15:0]

164
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-13. One Standard Wait State Access

Notes: 1. Early Read Protocol

2. Standard Read Protocol

18.6.4.2 External Wait States
The NWAIT input pin is used to insert wait states beyond the maximum standard wait states pro-
grammable or in addition to. If NWAIT is asserted low, then the SMC adds a wait state and no
changes are made to the output signals, the internal counters or the state. When NWAIT is de-
asserted, the SMC completes the access sequence.

WARNING: Asserting NWAIT low stops the core’s clock and thus stops program execution.

The input of the NWAIT signal is an asynchronous input. To avoid any metastability problems,
NWAIT is synchronized before using it. This operation results in a two-cycle delay.

NWS must be programmed as a function of synchronization time and delay between NWAIT fall-
ing and control signals falling (NRD/NWE), otherwise SMC will not function correctly.

Note: Where external NWAIT synchronization is equal to 2 cycles.
The minimum value for NWS if NWAIT is used, is 3.

WARNING: If NWAIT is asserted during a setup or hold timing, the SMC does not function
correctly.

A[22:0]

NCS

NWE

MCK

1 Wait State Access

NRD (1) (2)

NWS Wait Delay from nrd/nwe external_nwait Synchronization Delay 1+ +≥

165
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-14. NWAIT Behavior in Read Access [NWS = 3]

Notes: 1. Early Read Protocol

2. Standard Read Protocol

Figure 18-15. NWAIT Behavior in Write Access [NWS = 3]

18.6.4.3 Data Float Wait States
Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access before starting a write access or a
read access to a different external memory.

The Data Float Output Time (tDF) for each external memory device is programmed in the TDF
field of the SMC_CSR register for the corresponding chip select (“SMC Chip Select Registers”

A[22:0]

NWAIT

NWAIT
internally synchronized

NRD

NCS

(1)
(2)

Wait Delay from NRD

NWAIT
Synchronization Delay

MCK

A[22:0]

NWAIT

NWAIT
internally synchronized

NWE

D[15:0]

Wait Delay
from NWE

NWAIT
Synchronization Delay

MCK

166
1768I–ATARM–09-Jul-09

AT91RM9200

on page 190). The value of TDF indicates the number of data float wait cycles (between 0 and
15) to be inserted and represents the time allowed for the data output to go to high impedance
after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long tDF will not slow down the execution of a program from internal
memory.

To ensure that the external memory system is not accessed while it is still busy, the SMC keeps
track of the programmed external data float time during internal accesses.

Internal memory accesses and consecutive read accesses to the same external memory do not
add data float wait states.

Figure 18-16. Data Float Output Delay

Notes: 1. Early Read Protocol

2. Standard Read Protocol

18.6.4.4 Chip Select Change Wait State
A chip select wait state is automatically inserted when consecutive accesses are made to two
different external memories (if no other type of wait state has already been inserted). If a wait
state has already been inserted (e.g., data float wait state), then no more wait states are added.

A[22:0]

NRD

D[15:0]

MCK

tDF

(1) (2)

NCS

167
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-17. Chip Select Wait State

Notes: 1. Early Read Protocol

2. Standard Read Protocol

18.6.4.5 Early Read Wait State
In early read protocol, an early read wait state is automatically inserted when an external write
cycle is followed by a read cycle to allow time for the write cycle to end before the subsequent
read cycle begins (see Figure 18-18). This wait state is generated in addition to any other pro-
grammed wait states (i.e., data float wait state).

No wait state is added when a read cycle is followed by a write cycle, between consecutive
accesses of the same type, or between external and internal memory accesses.

Figure 18-18. Early Read Wait States

NCS1

NCS2

MCK

Mem 1 Chip Select Wait Mem 2

NRD

NWE

(1) (2)

A[22:0] addr Mem 1 addr Mem 2

A[22:0]

NCS

NWE

MCK

Write Cycle Early Read Wait Read Cycle

NRD

D[15:0]

168
1768I–ATARM–09-Jul-09

AT91RM9200

18.6.5 Setup and Hold Cycles
The SMC allows some memory devices to be interfaced with different setup, hold and pulse
delays. These parameters are programmable and define the timing of each portion of the read
and write cycles. However, it is not possible to use this feature in early read protocol.

If an attempt is made to program the setup parameter as not equal to zero and the hold parame-
ter as equal to zero with WSEN = 0 (0 standard wait state), the SMC does not operate correctly.

If consecutive accesses are made to two different external memories and the second memory is
programmed with setup cycles, then no chip select change wait state is inserted (see Figure 18-
23 on page 170).

When a data float wait state (tDF) is programmed on the first memory bank and when the second
memory bank is programmed with setup cycles, the SMC behaves as follows:

• If the number of tDF is higher or equal to the number of setup cycles, the number of setup
cycles inserted is equal to 0 (see Figure 18-24 on page 170).

• If the number of the setup cycle is higher than the number of tDF, the number of tDF inserted is
0 (see Figure 18-25 on page 171).

18.6.5.1 Read Access
The read cycle can be divided into a setup, a pulse length and a hold. The setup parameter can
have a value between 1.5 and 7.5 clock cycles, the hold parameter between 0 and 7 clock
cycles and the pulse length between 1.5 and 128.5 clock cycles, by increments of one.

Figure 18-19. Read Access with Setup and Hold

Figure 18-20. Read Access with Setup

NRD Setup Pulse Length

NRD

A[22:0]

NRD Hold

MCK

NRD Setup Pulse Length

NRD

A[22:0]

MCK

169
1768I–ATARM–09-Jul-09

AT91RM9200

18.6.5.2 Write Access
The write cycle can be divided into a setup, a pulse length and a hold. The setup parameter can
have a value between 1.5 and 7.5 clock cycles, the hold parameter between 0.5 and 7 clock
cycles and the pulse length between 1 and 128 clock cycles by increments of one.

Figure 18-21. Write Access with Setup and Hold

Figure 18-22. Write Access with Setup

NWR Setup Pulse Length

NWE

A[22:0]

NWR Hold

D[15:0]

MCK

NWR Setup Pulse Length

NWE

A[22:0]

NWR
Hold

D[15:0]

MCK

170
1768I–ATARM–09-Jul-09

AT91RM9200

18.6.5.3 Data Float Wait States with Setup Cycles

Figure 18-23. Consecutive Accesses with Setup Programmed on the Second Access

Figure 18-24. First Access with Data Float Wait States (TDF = 2) and Second Access with Setup (NRDSETUP = 1)

Setup

NCS1

A[22:0]

MCK

NCS2

NRD

NWE

 Setup

NCS1

A[22:0]

MCK

NCS2

D[15:0]

NRD

Data Float Time

171
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-25. First Access with Data Float Wait States (TDF = 2) and Second Access with Setup (NRDSETUP = 3)

18.6.6 LCD Interface Mode
The SMC can be configured to work with an external liquid crystal display (LCD) controller by
setting the ACSS (Address to Chip Select Setup) bit in the SMC_CSR registers (“SMC Chip
Select Registers” on page 190).

In LCD mode, NCS is shortened by one/two/three clock cycles at the leading and trailing edges,
providing positive address setup and hold. For read accesses, the data is latched in the SMC
when NCS is raised at the end of the access.

Additionally, WSEN must be set and NWS programmed with a value of two or more superior to
ACSS. In LCD mode, it is not recommended to use RWHOLD or RWSETUP. If the above condi-
tions are not satisfied, SMC does not operate correctly.

Setup

NCS1

A[22:0]

MCK

NCS2

D[15:0]

NRD

Data Float Time

172
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-26. Read Access in LCD Interface Mode

Figure 18-27. Write Access in LCD Interface Mode

18.6.7 Memory Access Waveforms

18.6.7.1 Read Accesses in Standard and Early Protocols
Figure 18-28 on page 173 through Figure 18-31 on page 176 show examples of the alternatives
for external memory read protocol.

NRD

A[22:0]

NCS

Data from LCD Controller

ACSS

 ACSS = 3, NWEN = 1, NWS = 10

ACSS

MCK

NWE

A[22:0]

ACCS = 2, NWEN = 1, NWS = 10

ACCS ACCS
NCS

D[15:0]

MCK

173
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-28. Standard Read Protocol without tDF

Read Mem 1 Write Mem 1 Read Mem 1 Read Mem 2 Write Mem 2 Read Mem 2

Chip Select
Change Wait

A[22:0]

NRD

NWE

NCS1

NCS2

D[15:0] (Mem 1)

D[15:0] (Mem 2)

 D[15:0] (to write)

MCK

tWHDX tWHDX

174
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-29. Early Read Protocol without tDF

Read
Mem 1

Write
Mem 1

Early Read
Wait Cycle

Read
Mem 1

Read
Mem 2

Write
Mem 2

Early Read
Wait Cycle

Read
Mem 2

Chip Select
Change Wait

Long tWHDX

A[22:0]

NRD

NWE

NCS1

NCS2

D[15:0] (Mem 1)

D[15:0] (Mem 2)

D[15:0] (to write)

MCK

tWHDX

175
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-30. Standard Read Protocol with tDF

Read Mem 1
Write

Mem 1

Data
Float Wait

Read Mem 1

Data
Float Wait

Read
Mem 2 Read Mem 2

Data
Float Wait

Write
Mem 2

Write
Mem 2

tWHDX

tDF tDF

tDF

A[22:0]

NRD

NWE

NCS1

NCS2

D[15:0]
(Mem 1)

D[15:0]
(Mem 2)

D[15:0]

MCK

(tDF = 2)

(tDF = 1)(tDF = 1)

(to write)

176
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-31. Early Read Protocol with tDF

18.6.7.2 Accesses with Setup and Hold
Figure 18-32 and Figure 18-33 show an example of read and write accesses with Setup and
Hold Cycles.

Read
Mem 2

A[22:0]

NRD

NWE

NCS1

NCS2

D[15:0]
(Mem 1)

D[15:0]
 (Mem 2)

D[15:0]

MCK

(tDF = 2)

 (to write)

Read Mem 1
Write

Mem 1

Data
Float Wait

Early
Read Wait Read Mem 1

Data
Float Wait

Read Mem 2
Data

Float Wait

Write
Mem 2

Write
Mem 2

tDF tDF

tDF

177
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-32. Read Accesses in Standard Read Protocol with Setup and Hold(1)

Note: 1. Read access, memory data bus width = 8, RWSETUP = 1, RWHOLD = 1,WSEN= 1, NWS = 0

Figure 18-33. Write Accesses with Setup and Hold(1)

Note: 1. Write access, memory data bus width = 8, RWSETUP = 1, RWHOLD = 1, WSEN = 1, NWS = 0

MCK

A[22:1]

A0/NLB

NRD

NWR0/NWE

NWR1/NUB

NCS

D[15:0]

00d2b 00028 00d2c

e59f 0001 0002

HoldSetup Setup Hold

MCK

A[22:1]

A0/NLB

NRD

NWR0/NWE

NWR1/NUB

NCS

D[15:0]

008cb 00082 008cc

3000 e3a0 0605 0606

Setup Hold Setup Hold

178
1768I–ATARM–09-Jul-09

AT91RM9200

18.6.7.3 Accesses Using NWAIT Input Signal
Figure 18-34 on page 178 through Figure 18-37 on page 181 show examples of accesses using
NWAIT.

Figure 18-34. Write Access using NWAIT in Byte Select Type Access(1)

Note: 1. Write access memory, data bus width = 16 bits, WSEN = 1, NWS = 6

A[22:1]

NRD

NWR0/NWE

A0/NLB

NWR1/NUB

NCS

D[15:0]

MCK

NWAIT

NWAIT
internally

synchronized

000008A

1312

Wait Delay Falling
from NWR0/NWE

Chip Select
Wait

179
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-35. Write Access using NWAIT in Byte Write Type Access(1)

Note: 1. Write access memory, data bus width = 16 bits, WSEN = 1, NWS = 5

A[22:1]

NRD

NWR0/NWE

A0/NLB

NWR1/NUB

NCS

D[15:0]

MCK

NWAIT

NWAIT
internally

synchronized

000008C

1716

Wait Delay Falling from NWR0/NWE/NWR1/NUB

Chip Select
Wait

180
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-36. Write Access using NWAIT(1)

Note: 1. Write access memory, data bus width = 8 bits, WSEN = 1, NWS = 4

NCS

A[22:1]

NRD

NWR0/NWE

A0/NLB

NWR1/NUB

D[15:0]

MCK

NWAIT

NWAIT
internally

synchronized

0000033

0403

Wait Delay Falling from NWR0/NWE

Chip Select
Wait

181
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-37. Read Access in Standard Protocol using NWAIT(1)

Note: 1. Read access, memory data bus width = 16, NWS = 5, WSEN = 1

18.6.7.4 Memory Access Example Waveforms
Figure 18-38 on page 182 through Figure 18-44 on page 188 show the waveforms for read and
write accesses to the various associated external memory devices. The configurations
described are shown in Table 18-3.

NCS

A[22:1]

NRD

NWR0/NWE

A0/NLB

NWR1/NUB

D[15:0]

MCK

NWAIT

NWAIT
internally

synchronized

0002C44

0003

Wait Delay Falling from NRD/NOE

Table 18-3. Memory Access Waveforms

Figure Number
Number of Wait

States Bus Width Size of Data Transfer

Figure 18-38 0 16 Word

Figure 18-39 1 16 Word

Figure 18-40 1 16 Half-word

Figure 18-41 0 8 Word

Figure 18-42 1 8 Half-word

Figure 18-43 1 8 Byte

Figure 18-44 0 16 Byte

182
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-38. 0 Wait State, 16-bit Bus Width, Word Transfer

B2 B1 B4 B3

B2 B1 B4 B3

B2 B1 B4 B3

MCK

NCS

NRD

Read Access

NRD

Write Access

NWE

D[15:0]

NLB

NUB

· Standard Read Protocol

· Early Read Protocol

· Byte Write/
 Byte Select Option

D[15:0]

D[15:0]

A[22:1] addr addr+1

183
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-39. 1 Wait State, 16-bit Bus Width, Word Transfer

B2B1

B4 B3

1 Wait State 1 Wait State

B4B3

B2B1 B4B3

B2 B1

MCK

NCS

NRD

Read Access

NRD

Write Access

NWE

D[15:0]

NLB

NUB

· Standard Read Protocol

· Early Read Protocol

· Byte Write/
 Byte Select Option

D[15:0]

D[15:0]

A[22:1] addr addr+1

184
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-40. 1 Wait State, 16-bit Bus Width, Half-Word Transfer

B2 B1

1 Wait State

B2 B1

B2 B1

MCK

NCS

NRD

Read Access

NRD

Write Access

NWE

D[15:0]

NLB

NUB

· Standard Read Protocol

· Early Read Protocol

· Byte Write/
 Byte Select Option

D[15:0]

D[15:0]

A[22:1]

185
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-41. 0 Wait State, 8-bit Bus Width, Word Transfer

addr

 X B1

addr+2 addr+3

 X B2 X B3 X B4

X B1 X B2 X B3 X B4

X B1 X B2 X B3 X B4

addr+1

MCK

NCS

NRD

Read Access

NRD

Write Access

NWR1

D[15:0]

· Standard Read Protocol

· Early Read Protocol

D[15:0]

D[15:0]

A[22:0]

NWR0

186
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-42. 1 Wait State, 8-bit Bus Width, Half-Word Transfer

Addr

X B1

1 Wait State

Addr+1

1 Wait State

X B2

X B1 X B2

X B1 X B2

MCK

NCS

NRD

Read Access

NRD

Write Access

NWR1

D[15:0]

· Standard Read, Protocol

· Early Read Protocol

D[15:0]

D[15:0]

A[22:0]

NWR0

187
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-43. 1 Wait State, 8-bit Bus Width, Byte Transfer

 XB1

1 Wait State

 X B1

 X B1

MCK

NCS

NRD

Read Access

NRD

Write Access

NWR1

D[15:0]

· Standard Read Protocol

· Early Read Protocol

D[15:0]

D[15:0]

A[22:0]

NWR0

188
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-44. 0 Wait State, 16-bit Bus Width, Byte Transfer

X B1 B2X

addr X X X 0 addr X X X 0

addr X X X 0 addr X X X 1

XB1 B2X

B1B1 B2B2

MCK

NCS

NRD

Read Access

NRD

Write Access

NWR1

D[15:0]

· Standard Read Protocol

· Early Read Protocol

D[15:0]

D[15:0]

A[22:1]

NWR0

 · Byte Write Option

· Byte Select Option

Internal Address Bus

NLB

NUB

NWE

189
1768I–ATARM–09-Jul-09

AT91RM9200

18.7 Static Memory Controller (SMC) User Interface
The Static Memory Controller is programmed using the registers listed in Table 18-4. Eight Chip Select Registers
(SMC_CSR0 to SMC_CSR7) are used to program the parameters for the individual external memories.

Table 18-4. Register Mapping

Offset Register Name Access Reset

0x00 SMC Chip Select Register 0 SMC_CSR0 Read-write 0x00002000

0x04 SMC Chip Select Register 1 SMC_CSR1 Read-write 0x00002000

0x08 SMC Chip Select Register 2 SMC_CSR2 Read-write 0x00002000

0x0C SMC Chip Select Register 3 SMC_CSR3 Read-write 0x00002000

0x10 SMC Chip Select Register 4 SMC_CSR4 Read-write 0x00002000

0x14 SMC Chip Select Register 5 SMC_CSR5 Read-write 0x00002000

0x18 SMC Chip Select Register 6 SMC_CSR6 Read-write 0x00002000

0x1C SMC Chip Select Register 7 SMC_CSR7 Read-write 0x00002000

190
1768I–ATARM–09-Jul-09

AT91RM9200

18.7.1 SMC Chip Select Registers
Register Name: SMC_CSR0..SMC_CSR7

Access Type: Read-write

Reset Value: See Table 18-4 on page 189

• NWS: Number of Wait States
This field defines the Read and Write signal pulse length from 1 cycle up to 128 cycles.

Note: When WSEN i 0, NWS will be read to 0 whichever the previous programmed value should be.

Note: 1. Assuming WSEN Field = 0.

• WSEN: Wait State Enable
0: Wait states are disabled.

1: Wait states are enabled.

• TDF: Data Float Time
The external bus is marked occupied and cannot be used by another chip select during TDF cycles. Up to 15 cycles can be
defined and represents the time allowed for the data output to go to high impedance after the memory is disabled.

• BAT: Byte Access Type
This field is used only if DBW defines a 16-bit data bus.

0: Chip select line is connected to two 8-bit wide devices.

1: Chip select line is connected to a 16-bit wide device.

31 30 29 28 27 26 25 24

– RWHOLD – RWSETUP

23 22 21 20 19 18 17 16
– – – – – – ACSS

15 14 13 12 11 10 9 8
DRP DBW BAT TDF

7 6 5 4 3 2 1 0
WSEN NWS

Number of Wait States NWS Field
NRD Pulse Length

Standard Read Protocol
NRD Pulse Length

Early Read Protocol NWR Pulse Length

0(1) Don’t Care ½ cycle 1 cycle ½ cycle

1 0 1 + ½ cycles 2 cycles 1 cycle

2 1 2 + ½ cycles 3 cycles 2 cycles

X + 1 Up to X = 127 X + 1+ ½ cycles X + 2 cycles X + 1 cycle

191
1768I–ATARM–09-Jul-09

AT91RM9200

• DBW: Data Bus Width

• DRP: Data Read Protocol
0: Standard Read Protocol is used.

1: Early Read Protocol is used.

• ACSS: Address to Chip Select Setup

• RWSETUP: Read and Write Signal Setup Time
See definition and description below.

• RWHOLD: Read and Write Signal Hold Time
See definition and description below.

Notes: 1. For a visual description, please refer to “Setup and Hold Cycles” on page 168 and the diagrams in Figure 18-45 and Figure
18-46 and Figure 18-47 on page 192.

2. In Standard Read Protocol.

3. In Early Read Protocol. (It is not possible to use the parameters RWSETUP or RWHOLD in this mode.)

4. When the ECC Controller is used, RWHOLD must be programmed to 1 at least.

5. If an attempt is made to program the setup parameter as not equal to zero and the hold parameter as equal to zero, with
WSEN = 0 (0 standard wait state), the SMC does not operate correctly.

DBW Data Bus Width

0 0 Reserved

0 1 16-bit

1 0 8-bit

1 1 Reserved

ACSS Chip Select Waveform

0 0 Standard, asserted at the beginning of the access and deasserted at the end.

0 1 One cycle less at the beginning and the end of the access.

1 0 Two cycles less at the beginning and the end of the access.

1 1 Three cycles less at the beginning and the end of the access.

RWSETUP(1) (5) NRD Setup NWR Setup RWHOLD(1) (4) (5) NRD Hold NWR Hold

0 0 0
½ cycle(2)or
0 cycles(3) ½ cycle 0 0 0 0 ½ cycle

0 0 1 1 + ½ cycles 1 + ½ cycles 0 0 1 1 cycles 1 cycle

0 1 0 2 + ½ cycles 2 + ½ cycles 0 1 0 2 cycles 2 cycles

0 1 1 3 + ½ cycles 3 + ½ cycles 0 1 1 3 cycles 3 cycles

1 0 0 4 + ½ cycles 4 + ½ cycles 1 0 0 4 cycles 4 cycles

1 0 1 5 + ½ cycles 5 + ½ cycles 1 0 1 5 cycles 5 cycles

1 1 0 6 + ½ cycles 6 + ½ cycles 1 1 0 6 cycles 6 cycles

1 1 1 7 + ½ cycles 7 + ½ cycles 1 1 1 7 cycles 7 cycles

192
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 18-45. Read-write Setup

Figure 18-46. Read Hold

Figure 18-47. Write Hold

NRD

A[22:0]

MCK

RWSETUP

NWE

NRD

A[22:0]

MCK

RWHOLD

NWE

A[22:0]

MCK

RWHOLD

D[15:0]

193
1768I–ATARM–09-Jul-09

AT91RM9200

19. SDRAM Controller (SDRAMC)

19.1 Overview
The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing
the interface to an external 16-bit or 32-bit SDRAM device. The page size supports ranges
from 2048 to 8192 and the number of columns from 256 to 2048. It supports byte (8-bit),
half-word (16-bit) and word (32-bit) accesses.

The SDRAM Controller supports a read or write burst length of one location. It does not
support byte Read/Write bursts or half-word write bursts. It keeps track of the active row
in each bank, thus maximizing SDRAM performance, e.g., the application may be placed
in one bank and data in the other banks. So as to optimize performance, it is advisable to
avoid accessing different rows in the same bank.

Features of the SDRAMC are:

• Numerous Configurations Supported

– 2K, 4K, 8K Row Address Memory Parts

– SDRAM with Two or Four Internal Banks

– SDRAM with 16- or 32-bit Data Path

• Programming Facilities

– Word, Half-word, Byte Access

– Automatic Page Break When Memory Boundary Has Been Reached

– Multibank Ping-pong Access

– Timing Parameters Specified by Software

– Automatic Refresh Operation, Refresh Rate is Programmable

• Energy-saving Capabilities

– Self-refresh and Low-power Modes Supported

• Error Detection

– Refresh Error Interrupt

• SDRAM Power-up Initialization by Software

• Latency is Set to Two Clocks (CAS Latency of 1, 3 Not Supported)

• Auto Precharge Command Not Used

194
1768I–ATARM–09-Jul-09

AT91RM9200

19.2 Block Diagram

Figure 19-1. SDRAM Controller Block Diagram

19.3 I/O Lines Description

Memory
Controller

APB

SDRAMC
Interrupt

SDCK

SDCS

A[12:0]

SDRAMC PIO
Controller

BA[1:0]

SDCKE

RAS

CAS

SDWE

NBS[3:0]

User Interface

PMC MCK

D[31:0]

SDRAMC
Chip Select

Table 19-1. I/O Line Description

Name Description Type Active Level

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output High

SDCS SDRAM Controller Chip Select Output Low

BA[1:0] Bank Select Signals Output

RAS Row Signal Output Low

CAS Column Signal Output Low

SDWE SDRAM Write Enable Output Low

NBS[3:0] Data Mask Enable Signals Output Low

A[12:0] Address Bus Output

D[31:0] Data Bus I/O

195
1768I–ATARM–09-Jul-09

AT91RM9200

19.4 Software Interface
The SDRAM Controller’s function is to make the SDRAM device access protocol transparent to
the user. Table 19-2 to Table 19-7 illustrate the SDRAM device memory mapping therefore seen
by the user in correlation with the device structure. Various configurations are illustrated.

19.4.1 32-bit Memory Data Bus Width

Notes: 1. M[1:0] is the byte address inside a 32-bit word.

2. Bk[1] = BA1, Bk[0] = BA0.

Table 19-2. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns

CPU Address Line

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[10:0] Column[7:0] M[1:0]

Bk[1:0] Row[10:0] Column[8:0] M[1:0]

Bk[1:0] Row[10:0] Column[9:0] M[1:0]

Bk[1:0] Row[10:0] Column[10:0] M[1:0]

Table 19-3. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns

CPU Address Line

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[11:0] Column[7:0] M[1:0]

Bk[1:0] Row[11:0] Column[8:0] M[1:0]

Bk[1:0] Row[11:0] Column[9:0] M[1:0]

Bk[1:0] Row[11:0] Column[10:0] M[1:0]

Table 19-4. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns

CPU Address Line

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[12:0] Column[7:0] M[1:0]

Bk[1:0] Row[12:0] Column[8:0] M[1:0]

Bk[1:0] Row[12:0] Column[9:0] M[1:0]

Bk[1:0] Row[12:0] Column[10:0] M[1:0]

196
1768I–ATARM–09-Jul-09

AT91RM9200

19.4.2 16-bit Memory Data Bus Width

Notes: 1. M0 is the byte address inside a 16-bit half-word.

2. Bk[1] = BA1, Bk[0] = BA0.

Table 19-5. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns

CPU Address Line

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[10:0] Column[7:0]
M
0

Bk[1:0] Row[10:0] Column[8:0]
M
0

Bk[1:0] Row[10:0] Column[9:0]
M
0

Bk[1:0] Row[10:0] Column[10:0]
M
0

Table 19-6. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns

CPU Address Line

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[11:0] Column[7:0]
M
0

Bk[1:0] Row[11:0] Column[8:0]
M
0

Bk[1:0] Row[11:0] Column[9:0]
M
0

Bk[1:0] Row[11:0] Column[10:0]
M
0

Table 19-7. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns

CPU Address Line

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[12:0] Column[7:0]
M
0

Bk[1:0] Row[12:0] Column[8:0]
M
0

Bk[1:0] Row[12:0] Column[9:0]
M
0

Bk[1:0] Row[12:0] Column[10:0]
M
0

197
1768I–ATARM–09-Jul-09

AT91RM9200

19.5 Product Dependencies

19.5.1 SDRAM Device Initialization
The initialization sequence is generated by software. The SDRAM devices are initialized by the
following sequence:

1. A minimum pause of 200 µs is provided to precede any signal toggle.

2. An All Banks Precharge command is issued to the SDRAM devices.

3. Eight auto-refresh (CBR) cycles are provided.

4. A mode register set (MRS) cycle is issued to program the parameters of the SDRAM
devices, in particular CAS latency and burst length.

5. A Normal Mode command is provided, 3 clocks after tMRD is met.

6. Write refresh rate into the count field in the SDRAMC Refresh Timer register. (Refresh
rate = delay between refresh cycles).

After these six steps, the SDRAM devices are fully functional.

The commands (NOP, MRS, CBR, normal mode) are generated by programming the command
field in the SDRAMC Mode register

Figure 19-2. SDRAM Device Initialization Sequence

19.5.2 I/O Lines
The pins used for interfacing the SDRAM Controller may be multiplexed with the PIO lines. The
programmer must first program the PIO controller to assign the SDRAM Controller pins to their
peripheral function. If I/O lines of the SDRAM Controller are not used by the application, they
can be used for other purposes by the PIO Controller.

SDCK

A[9:0]

A10

A[12:11]

SDCS

RAS

CAS

SDWE

NBS

Inputs Stable for
200 μsec

Precharge All Banks 1st Auto-refresh 8th Auto-refresh MRS Command Valid Command

SDCKE tRP tRC tMRD

198
1768I–ATARM–09-Jul-09

AT91RM9200

19.5.3 Interrupt
The SDRAM Controller interrupt (Refresh Error notification) is connected to the Memory Control-
ler. This interrupt may be ORed with other System Peripheral interrupt lines and is finally
provided as the System Interrupt Source (Source 1) to the AIC (Advanced Interrupt Controller).

Using the SDRAM Controller interrupt requires the AIC to be programmed first.

199
1768I–ATARM–09-Jul-09

AT91RM9200

19.6 Functional Description

19.6.1 SDRAM Controller Write Cycle
The SDRAM Controller allows burst access or single access. To initiate a burst access, the
SDRAM Controller uses the transfer type signal provided by the master requesting the access. If
the next access is a sequential write access, writing to the SDRAM device is carried out. If the
next access is a write-sequential access, but the current access is to a boundary page, or if the
next access is in another row, then the SDRAM Controller generates a precharge command,
activates the new row and initiates a write command. To comply with SDRAM timing parame-
ters, additional clock cycles are inserted between precharge/active (tRP) commands and
active/write (tRCD) commands. For definition of these timing parameters, refer to the Section
19.7.3 “SDRAMC Configuration Register” on page 208. This is described in Figure 19-3 below.

Figure 19-3. Write Burst, 32-bit SDRAM Access

SDCK

SDCS

RAS

CAS

A[12:0]

D[31:0]

tRCD = 3

Dna

SDWE

Dnb Dnc Dnd Dne Dnf Dng Dnh Dni Dnj Dnk Dnl

Row n col a col b col c col d col e col f col g col h col i col j col k col l

200
1768I–ATARM–09-Jul-09

AT91RM9200

19.6.2 SDRAM Controller Read Cycle
The SDRAM Controller allows burst access or single access. To initiate a burst access, the
SDRAM Controller uses the transfer type signal provided by the master requesting the access. If
the next access is a sequential read access, reading to the SDRAM device is carried out. If the
next access is a sequential read access, but the current access is to a boundary page, or if the
next access is in another row, then the SDRAM Controller generates a precharge command,
activates the new row and initiates a read command. To comply with SDRAM timing parameters,
an additional clock cycle is inserted between the precharge/active (tRP) command and the
active/read (tRCD) command, After a read command, additional wait states are generated to
comply with cas latency. The SDRAM Controller supports a cas latency of two. For definition of
these timing parameters, refer to 19.7.3 “SDRAMC Configuration Register” on page 208. This is
described in Figure 19-4 below.

Figure 19-4. Read Burst, 32-bit SDRAM access

SDCK

SDCS

RAS

CAS

A[12:0]

D[31:0]
(Input)

tRCD = 3

Dna

SDWE

Dnb Dnc Dnd Dne Dnf

Row n col a col b col c col d col e col f

CAS = 2

201
1768I–ATARM–09-Jul-09

AT91RM9200

19.6.3 Border Management
When the memory row boundary has been reached, an automatic page break is inserted. In this
case, the SDRAM controller generates a precharge command, activates the new row and initi-
ates a read or write command. To comply with SDRAM timing parameters, an additional clock
cycle is inserted between the precharge/active (tRP) command and the active/read (tRCD) com-
mand. This is described in Figure 19-5 below.

Figure 19-5. Read Burst with Boundary Row Access

SDCK

SDCS

RAS

CAS

A[12:0]

D[31:0]

TRP = 3

SDWE

Row mcol a col a col b col c col d col e

Dna Dnb Dnc Dnd

TRCD = 3 CAS = 3

col b col c col d

Dma Dmb Dmc Dmd

Row n

Dme

202
1768I–ATARM–09-Jul-09

AT91RM9200

19.6.4 SDRAM Controller Refresh Cycles
An auto-refresh command is used to refresh the SDRAM device. Refresh addresses are gener-
ated internally by the SDRAM device and incremented after each auto-refresh automatically.
The SDRAM Controller generates these auto-refresh commands periodically. A timer is loaded
with the value in the register SDRAMC_TR that indicates the number of clock cycles between
refresh cycles.

A refresh error interrupt is generated when the previous auto-refresh command did not perform.
It will be acknowledged by reading the Interrupt Status Register (SDRAMC_ISR).

When the SDRAM Controller initiates a refresh of the SDRAM device, internal memory accesses
are not delayed. However, if the CPU tries to access the SDRAM, the slave will indicate that the
device is busy and the ARM BWAIT signal will be asserted. See Figure 19-6 below.

Figure 19-6. Refresh Cycle Followed by a Read Access

SDCK

SDCS

RAS

CAS

A[12:0]

D[31:0]
(input)

tRP = 3

SDWE

Dnb Dnc Dnd

col c col d

CAS = 2

Row m col a

tRC = 8 tRCD = 3

Dma

Row n

203
1768I–ATARM–09-Jul-09

AT91RM9200

19.6.5 Power Management

19.6.5.1 Self-refresh Mode
Self-refresh mode is used in power-down mode, i.e., when no access to the SDRAM device is
possible. In this case, power consumption is very low. The mode is activated by programming
the self-refresh command bit (SRCB) in SDRAMC_SRR. In self-refresh mode, the SDRAM
device retains data without external clocking and provides its own internal clocking, thus per-
forming its own auto-refresh cycles. All the inputs to the SDRAM device become “don’t care”
except SDCKE, which remains low. As soon as the SDRAM device is selected, the SDRAM
Controller provides a sequence of commands and exits self-refresh mode, so the self-refresh
command bit is disabled.

To re-activate this mode, the self-refresh command bit must be re-programmed.

The SDRAM device must remain in self-refresh mode for a minimum period of tRAS and may
remain in self-refresh mode for an indefinite period. This is described in Figure 19-7 below.

Figure 19-7. Self-refresh Mode Behavior

SDCK

SDCS

RAS

CAS

A[12:0]

Self Refresh Mode

SDWE

Row

TXSR = 3

SDCKE

Write
SDRAMC_SRR

SRCB = 1

Access Request
to the SDRAM Controller

204
1768I–ATARM–09-Jul-09

AT91RM9200

19.6.5.2 Low-power Mode
Low-power mode is used in power-down mode, i.e., when no access to the SDRAM device is
possible. In this mode, power consumption is greater than in self-refresh mode. This state is sim-
ilar to normal mode (No low-power mode/No self-refresh mode), but the SDCKE pin is low and
the input and output buffers are deactivated as soon as the SDRAM device is no longer accessi-
ble. In contrast to self-refresh mode, the SDRAM device cannot remain in low-power mode
longer than the refresh period (64 ms for a whole device refresh operation). As no auto-refresh
operations are performed in this mode, the SDRAM Controller carries out the refresh operation.
In order to exit low-power mode, a NOP command is required. The exit procedure is faster than
in self-refresh mode.

When self-refresh mode is enabled, it is recommended to avoid enabling low-power mode.
When low-power mode is enabled, it is recommended to avoid enabling self-refresh mode.

This is described in Figure 19-8 below.

Figure 19-8. Low-power Mode Behavior

SDCK

SDCS

RAS

CAS

A[12:0]

D[31:0]
(input)

TRCD = 3

Dna Dnb Dnc Dnd Dne Dnf

Row n col a col b col c col d col e col f

CAS = 2

SDCKE

Low Power Mode

205
1768I–ATARM–09-Jul-09

AT91RM9200

19.7 SDRAM Controller (SDRAMC) User Interface

Table 19-8. SDRAM Controller Memory Map

Offset Register Name Access Reset State

0x00 SDRAMC Mode Register SDRAMC_MR Read/Write 0x00000010

0x04 SDRAMC Refresh Timer Register SDRAMC_TR Read/Write 0x00000800

0x08 SDRAMC Configuration Register SDRAMC_CR Read/Write 0x2A99C140

0x0C SDRAMC Self Refresh Register SDRAMC_SRR Write-only –

0x10 SDRAMC Low Power Register SDRAMC_LPR Read/Write 0x0

0x14 SDRAMC Interrupt Enable Register SDRAMC_IER Write-only –

0x18 SDRAMC Interrupt Disable Register SDRAMC_IDR Write-only –

0x1C SDRAMC Interrupt Mask Register SDRAMC_IMR Read-only 0x0

0x20 SDRAMC Interrupt Status Register SDRAMC_ISR Read-only 0x0

206
1768I–ATARM–09-Jul-09

AT91RM9200

19.7.1 SDRAMC Mode Register
Register Name: SDRAMC_MR

Access Type: Read/Write

Reset Value: 0x00000010

• MODE: SDRAMC Command Mode
This field defines the command issued by the SDRAM Controller when the SDRAM device is accessed.

• DBW: Data Bus Width
0: Data bus width is 32 bits.

1: Data bus width is 16 bits.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – DBW MODE

MODE Description

0 0 0 0 Normal mode. Any access to the SDRAM is decoded normally.

0 0 0 1
The SDRAM Controller issues a NOP command when the SDRAM device is accessed regardless of the
cycle.

0 0 1 0
The SDRAM Controller issues an “All Banks Precharge” command when the SDRAM device is accessed
regardless of the cycle.

0 0 1 1

The SDRAM Controller issues a “Load Mode Register” command when the SDRAM device is accessed
regardless of the cycle. The address offset with respect to the SDRAM device base address is used to
program the Mode Register. For instance, when this mode is activated, an access to the “SDRAM_Base +
offset” address generates a “Load Mode Register” command with the value “offset” written to the SDRAM
device Mode Register.

0 1 0 0
The SDRAM Controller issues a “Refresh” Command when the SDRAM device is accessed regardless of
the cycle. Previously, an “All Banks Precharge” command must be issued.

207
1768I–ATARM–09-Jul-09

AT91RM9200

19.7.2 SDRAMC Refresh Timer Register
Register Name: SDRAMC_TR

Access Type: Read/Write

Reset Value: 0x00000800

• COUNT: SDRAMC Refresh Timer Count
This 12-bit field is loaded into a timer that generates the refresh pulse. Each time the refresh pulse is generated, a refresh
burst is initiated. The value to be loaded depends on the SDRAMC clock frequency (MCK: Master Clock), the refresh rate
of the SDRAM device and the refresh burst length where 15.6 µs per row is a typical value for a burst of length one.

To refresh the SDRAM device even if the reset value is not equal to 0, this 12-bit field must be written. If this condition is not
satisfied, no refresh command is issued and no refresh of the SDRAM device is carried out.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – COUNT

7 6 5 4 3 2 1 0
COUNT

208
1768I–ATARM–09-Jul-09

AT91RM9200

19.7.3 SDRAMC Configuration Register
Register Name: SDRAMC_CR

Access Type: Read/Write

Reset Value: 0x2A99C140

• NC: Number of Column Bits
Reset value is 8 column bits.

• NR: Number of Row Bits
Reset value is 11 row bits.

• NB: Number of Banks
Reset value is two banks.

• CAS: CAS Latency
Reset value is two cycles.

31 30 29 28 27 26 25 24

– TXSR TRAS

23 22 21 20 19 18 17 16
TRAS TRCD TRP

15 14 13 12 11 10 9 8
TRP TRC TWR

7 6 5 4 3 2 1 0
TWR CAS NB NR NC

NC Column Bits

0 0 8

0 1 9

1 0 10

1 1 11

NR Row Bits

0 0 11

0 1 12

1 0 13

1 1 Reserved

NB Number of Banks

0 2

1 4

209
1768I–ATARM–09-Jul-09

AT91RM9200

In the SDRAMC, only a CAS latency of two cycles is managed. In any case, another value must be programmed.

• TWR: Write Recovery Delay
Reset value is two cycles.

This field defines the Write Recovery Time in number of cycles. Number of cycles is between 2 and 15.

If TWR is less than or equal to 2, two clock periods are inserted by default.

• TRC: Row Cycle Delay
Reset value is eight cycles.

This field defines the delay between a Refresh and an Activate Command in number of cycles. Number of cycles is
between 2 and 15.

If TRC is less than or equal to 2, two clock periods are inserted by default.

• TRP: Row Precharge Delay
Reset value is three cycles.

This field defines the delay between a Precharge Command and another Command in number of cycles. Number of cycles
is between 2 and 15.

If TRP is less than or equal to 2, two clock periods are inserted by default.

• TRCD: Row to Column Delay
Reset value is three cycles.

This field defines the delay between an Activate Command and a Read/Write Command in number of cycles. Number of
cycles is between 2 and 15.

If TRCD is less than or equal to 2, two clock periods are inserted by default.

• TRAS: Active to Precharge Delay
Reset value is five cycles.

This field defines the delay between an Activate Command and a Precharge Command in number of cycles. Number of
cycles is between 2 and 15.

If TRAS is less than or equal to 2, two clock periods are inserted by default.

• TXSR: Exit Self Refresh to Active Delay
Reset value is five cycles.

This field defines the delay between SCKE set high and an Activate Command in number of cycles. Number of cycles is
between 1/2 and 15.5.

If TXSR is equal to 0, 1/2 clock period is inserted by default.

CAS CAS Latency (Cycles)

0 0 Reserved

0 1 Reserved

1 0 2

1 1 Reserved

210
1768I–ATARM–09-Jul-09

AT91RM9200

19.7.4 SDRAMC Self-refresh Register
Register Name: SDRAMC_SRR

Access Type: Write-only

• SRCB: Self-refresh Command Bit
0: No effect.

1: The SDRAM Controller issues a self-refresh command to the SDRAM device, the SDCK clock is inactivated and the
SDCKE signal is set low. The SDRAM device leaves self-refresh mode when accessed again.

19.7.5 SDRAMC Low-power Register
Register Name: SDRAMC_LPR

Access Type: Read/Write

Reset Value: 0x0

• LPCB: Low-power Command Bit
0: The SDRAM Controller low-power feature is inhibited: no low-power command is issued to the SDRAM device.

1: The SDRAM Controller issues a low-power command to the SDRAM device after each burst access, the SDCKE signal
is set low. The SDRAM device will leave low-power mode when accessed and enter it after the access.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – SRCB

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – LPCB

211
1768I–ATARM–09-Jul-09

AT91RM9200

19.7.6 SDRAMC Interrupt Enable Register
Register Name: SDRAMC_IER

Access Type: Write-only

• RES: Refresh Error Status
0: No effect.

1: Enables the refresh error interrupt.

19.7.7 SDRAMC Interrupt Disable Register
Register Name: SDRAMC_IDR

Access Type: Write-only

• RES: Refresh Error Status
0: No effect.

1: Disables the refresh error interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – RES

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – RES

212
1768I–ATARM–09-Jul-09

AT91RM9200

19.7.8 SDRAMC Interrupt Mask Register
Register Name: SDRAMC_IMR

Access Type: Read-only

• RES: Refresh Error Status
0: The refresh error interrupt is disabled.

1: The refresh error interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – RES

213
1768I–ATARM–09-Jul-09

AT91RM9200

19.7.9 SDRAMC Interrupt Status Register
Register Name: SDRAMC_ISR

Access Type: Read-only

• RES: Refresh Error Status
0: No refresh error has been detected since the register was last read.

1: A refresh error has been detected since the register was last read.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – RES

214
1768I–ATARM–09-Jul-09

AT91RM9200

215
1768I–ATARM–09-Jul-09

AT91RM9200

20. Burst Flash Controller (BFC)

20.1 Overview
The Burst Flash Controller (BFC) provides an interface for external 16-bit Burst Flash devices
and handles an address space of 256M bytes. It supports byte, half-word and word aligned
accesses and can access up to 32M bytes of Burst Flash devices. The BFC also supports data
bus and address bus multiplexing. The Burst Flash interface supports only continuous burst
reads. Programmable burst lengths of four or eight words are not possible. The BFC never gen-
erates an abort signal, regardless of the requested address within the 256M bytes of address
space.

The BFC can operate with two burst read protocols depending on whether or not the address
increment of the Burst Flash device is signal controlled. The Burst Flash Controller Mode Regis-
ter (BFC_MR) located in the BFC user interface is used in programming Asynchronous or Burst
Operating Modes. In Burst Mode, the read protocol, Clock Controlled Address Advance, auto-
matically increments the address at each clock cycle. Whereas in Signal Controlled Address
Advance protocol the address is incremented only when the Burst Address Advance signal is
active. When Address and Data Bus Multiplexing Mode is chosen, the sixteen lowest address
bits are multiplexed with the data bus.

The BFC clock speed is programmable to be either master clock or master clock divided by 2 or
4. Page size handling (16 bytes to 1024 bytes) is required by some Burst Flash devices unable
to handle continuous burst read. The number of latency cycles after address valid goes up to
sixteen cycles. The number of latency cycles after output enable runs between one and three
cycles. The Burst Flash Controller can also be programmed to suspend and maintain the current
burst. This attribute gives other devices the possibility to share the BFC busses without any loss
of efficiency. In Burst Mode, the BFC can restart a sequential access without any additional
latency.

Features of the Burst Flash Controller are:

• Multiple Access Modes Supported

– Asynchronous or Burst Mode Byte, Half-word or Word Read Accesses

– Asynchronous Mode Half-word Write Accesses

• Adaptability to Different Device Speed Grades

– Programmable Burst Flash Clock Rate

– Programmable Data Access Time

– Programmable Latency after Output Enable

• Adaptability to Different Device Access Protocols and Bus Interfaces

– Two Burst Read Protocols: Clock Control Address Advance or Signal Controlled
Address Advance

– Multiplexed or Separate Address and Data Busses

– Continuous Burst and Page Mode Accesses Supported

216
1768I–ATARM–09-Jul-09

AT91RM9200

20.2 Block Diagram

Figure 20-1. Burst Flash Controller Block Diagram

20.3 I/O Lines Description

Table 20-1. I/O Lines Description

Name Description Type Active Level

BFCK Burst Flash Clock Output

BFCS Burst Flash Chip Select Output Low

BFAVD Burst Flash Address Valid Output Low

BFBAA Burst Flash Address Advance Output Low

BFOE Burst Flash Output Enable Output Low

BFWE Burst Flash Write Enable Output Low

BFRDY Burst Flash Ready Input High

A[24:0] Address Bus Output

D[15:0] Data Bus I/O

APB

BFCK

BFAVD

D[15:0]

BFC
PIO

Controller

BFBAA

BFCS

BFOE

BFWE

BFRDY

A[24:0]

User Interface

PMC MCK

Memory
Controller

BFC
Chip Select

217
1768I–ATARM–09-Jul-09

AT91RM9200

20.4 Application Example

20.4.1 Burst Flash Interface
The Burst Flash Interface provides control, address and data signals to the Burst Flash Memory.
These signals are detailed in Section 20.6 “Functional Description” on page 218 which describes
the BFC functionality and operating modes. Figure 20-2 below presents an illustration of the
possible connections of the BFC to some popular Burst Flash Memories.

Figure 20-2. Burst Flash Controller Connection Example

BFC

Burst Flash

[D0:D15] [D0:D15]

[A0:A22] [A0:A22]

clk

avd/adv

ce

we

oe

rdy/wait

BFC

Burst Flash

[D0:D15] [AD0:AD15]

[A16:A21] [A16:A21]

BFCK clk

BFAVD avd

BFCS ce

BFWE we

BFOE oe

BFRDY rdy

BFC

Burst Flash

[D0:D15] [D0:D15]

[A0:A19] [A0:A19]

BFCK clk

BFAVD avd/lba

BFCS ce

BFWE we

BFOE oe

BFRDY rdy/ind

BFC

Burst Flash

[D0:D15] [AD0:AD15]

[A16:A19] [A16:A19]

BFBAA baa

Clock Controlled Address Advance

Multiplexed Bus Disabled

Clock Controlled Address Advance

Multiplexed Bus Enabled

Signal Controlled Address Advance

Multiplexed Bus Disabled

Signal Controlled Address Advance

Multiplexed Bus Enabled

BFCK

BFAVD

BFCS

BFWE

BFOE

BFRDY

BFBAA

clk

avd

ce

we

oe

rdy

baa

BFCK

BFAVD

BFCS

BFWE

BFOE

BFRDY

218
1768I–ATARM–09-Jul-09

AT91RM9200

20.5 Product Dependencies

20.5.1 I/O Lines
The pins used for interfacing the Burst Flash Controller may be multiplexed with the PIO lines.
The programmer must first program the PIO controller to assign the Burst Flash Controller pins
to their peripheral function. If I/O lines of the Burst Flash Controller are not used by the applica-
tion, they can be used for other purposes by the PIO Controller.

20.6 Functional Description
The Burst Flash Controller drives the following signals:

• Address Valid (BFAVD), to latch the addresses

• Clock (BFCK), to supply the burst clock

• Burst Advance Address (BFBAA), to control the Burst Flash memory address advance when
programmed to operate in signal controlled burst advance

• Write Enable (BFWE), to write to the Burst Flash device

• Output Enable (BFOE), to enable the external device data drive on the data bus

When enabled, the BFC also drives the address bus, the data bus and the Chip Select (BFCS)
line. The Ready Signal (BFRDY) is taken as an input and used as an indicator for the next data
availability.

20.6.1 Burst Flash Controller Reset State
After reset, the BFC is disabled and, therefore, must be enabled by programming the field
BFCOM. See “Burst Flash Controller Mode Register” on page 227. At this time, the Burst Flash
Controller operates in Asynchronous Mode. The Burst Flash memory can be programmed by
writing and reading in Asynchronous Mode.

20.6.2 Burst Flash Controller Clock Selection
The BFC clock rate is programmable to be either Master Clock, Master Clock divided by 2 or
Master Clock divided by 4. The clock selection is necessary in Burst Mode as well as in Asyn-
chronous Mode. The latency fields in the mode register and all burst Flash control signal
waveforms are related to the Burst Flash Clock (BFCK) period.

The BFC clock rate is selected by the BFCC field. “Burst Flash Controller Mode Register” on
page 227

Figure 20-3. Burst Flash Clock Rates

20.6.3 Burst Flash Controller Asynchronous Mode
In Asynchronous Mode, the Burst Flash Controller clock is off. The BFCK signal is driven low.

The BFC performs read access to bytes (8-bits), half-words (16-bits), and words (32-bits). In the
last case, the BFC autonomously transforms the word read request into two separate half-word
reads. This is fully transparent to the user.

MCK

BFC Clock

BFCC = 1

MCK

BFC Clock

BFCC = 2

MCK

BFC Clock

BFCC = 3

219
1768I–ATARM–09-Jul-09

AT91RM9200

The BFC performs only half-word write requests. Write requests for bytes or words are ignored
by the BFC.

For any access in the address space, the address is driven on the address bus while a pulse is
driven on the BFAVD signal (see Figure 20-4 on page 220, and Figure 20-5 on page 221). The
Burst Flash address is also driven on the data bus if the multiplexed data and address bus
options are enabled. (Figure 20-4 on page 220).

• For write access, the signal BFWE is asserted in the following BFCK clock cycle.

• For read access, the signal BFOE is asserted one cycle later. This additional cycle in read
accesses has been inserted to switch the I/O pad direction so as to avoid conflict on the Burst
Flash data bus when address and data busses are multiplexed.

The Address Valid Latency (AVL) determines the length of the pulses as a number of Master
Clock cycles. The AVL field See “Burst Flash Controller Mode Register” on page 227. is coded
as the Address Valid Latency minus 1. Waveforms in Figure 20-4 on page 220 and Figure 20-5
on page 221 show the AVL field definition in read and write accesses.

• In read access, the access finishes with the rising edge of BFOE.

• In write access, data and address lines are released one half cycle after the rising edge of
BFWE.

After a read access to the Burst Flash, it takes Output Enable Latency (OEL) cycles for the Burst
Flash device to release the data bus. The OEL field See “Burst Flash Controller Mode Register”
on page 227. gives the OEL expressed in BFCK Clock cycles. This prevents other memory con-
trollers from using the Data Bus until it is released by the Burst Flash device.

In Figure 20-4 on page 220 (multiplexed address and data busses), one idle cycle (OEL = 1) is
inserted between the read and write accesses. The Burst Flash device must release the data
bus before the BFC can drive the address. As shown in Figure 20-5 on page 221, where busses
are not multiplexed, the write access can start as soon as the read access ends. In the same
way, the OEL has no impact when a read follows a write access.

Waveforms in Figure 20-4 on page 220 below and Figure 20-5 on page 221 are related to the
Burst Flash Controller Clock even though the BFCK pin is driven low in Asynchronous Mode.
The BFCC field See “Burst Flash Controller Mode Register” on page 227.is used as a measure
of the burst Flash speed and must also be programmed in Asynchronous Mode.

220
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 20-4. Asynchronous Read and Write Accesses with Multiplexed Address and Data Buses

BFCK

BFCS

BFAVD

BFOE

D[15:0]
Output

BFWE

A[24:0] Write Address

DataRead Address

D[15:0]
Input Data

Read Address

Write Address

Asynchronous
Read Access

Asynchronous
Write Access

AVL

AVL

OEL = 1

Address Valid Latency = 4 BFCK cycles (AVL field = 3)
Output Enable Latency (OEL) = 1 BFCK cycle

221
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 20-5. Asynchronous Read and Write Accesses with Non-multiplexed Address and Data

20.6.4 Burst Flash Controller Synchronous Mode
Writing the Burst Flash Controller Operating Mode field (BFCOM) to 2 See “Burst Flash Control-
ler Mode Register” on page 227. puts the BFC in Burst Mode. The BFC Clock is driven on the
BFCK pin. Only read accesses are treated and write accesses are ignored. The BFC supports
read access of bytes, half-words or words.

20.6.4.1 Burst Read Protocols
The BFC supports two burst read protocols:

• Clock Controlled Address Advance, the internal address of the burst Flash is automatically
incremented at each BFCK cycle.

• Signal Controlled Address Advance, the internal address of the burst Flash is incremented
only when the BFBAA signal is active.

20.6.4.2 Read Access in Burst Mode
When a read access is requested in Burst Mode, the requested address is registered in the
BFC. For subsequent read accesses, the address is compared to the previous one. Then the
two following cases are considered:

1. In case of a non-sequential access, the current burst is broken and the BFC launches a
new burst by performing an address latch cycle. The address is presented on the
address bus in any case and on the data bus if the multiplexed bus option is enabled.

BFCK

BFCS

BFAVD

BFOE

D[15:0]
Output

BFWE

A[24:0] Write Address

Data

D[15:0]
Input

Data

Read Address

Asynchronous
Read Access

Asynchronous
Write Access

AVL

AVL

OEL = 1

Address Valid Latency = 4 BFCK cycles (AVL field = 3)
Output Enable Latency (OEL) = 1 BFCK cycle

222
1768I–ATARM–09-Jul-09

AT91RM9200

This new address is registered in the BFC and is then used as reference for further
accesses.

2. In case of sequential access, and provided that the BFOEH mode is selected in the
mode register See “Burst Flash Controller Mode Register” on page 227., the internal
burst address is incremented:

– Through the BFBAA pin, if the Signal Controlled Address Advance is enabled.

– By enabling the clock during one clock cycle in Clock Controlled Address Advance
Mode.

These protocols are illustrated in Figure 20-6 below and Figure 20-7 on page 223. The Address
Valid Latency AVL+1 See “Burst Flash Controller Mode Register” on page 227. gives the num-
ber of cycles from the first rising clock edge when BFAVD is asserted to the rising edge that
causes the read of data D1.

Note: This rising edge is also used to latch D0 in the BFC.

Figure 20-6. Burst Suspend and Resume with Signal Control Address Advance

BFCK

BFCS

BFAVD

BFOE

D[15:0]
Output

BFWE

A[24:0]

Address (1)

D[15:0]
Input

Address (D0)

AVL

(1) Only if Multiplexed Address & Data Buses

Address Valid Latency = 4 BFCK cycles (AVL field = 3)
Output Enable Latency (OEL) = 2 BFCK cycles

D0 D1 D2 D3

BFBAA

D4

OEL = 2

D4 D5 D6

Burst Suspend Burst Resume

Burst Suspend and Resume (BFOEH = 1)
Signal Control Address Advance (BAAEN = 1)

D0
Sampling

D5
Sampling

D4
Sampling

D3
Sampling

D2
Sampling

D1
Sampling

Internal BFC
Selection Signal

223
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 20-7. Burst Suspend and Resume with Clock Control Address Advance

20.6.4.3 Burst Suspension for Transfer Enabling
The BFC can suspend a burst to enable other internal transfers, or other memory controllers to
use the memory address and data busses if they are shared. Two modes are provided on the
BFOEH bit (Burst Flash Output Enable Handling, See “Burst Flash Controller Mode Register” on
page 227.):

• BFOEH = 1: the BFC suspends the burst when it is no longer selected and the BFOE pin is
deasserted. When a new sequential access on the Burst Flash device is requested, the burst
is resumed and the BFOE pin is asserted again. The data is available on the data bus after
OEL cycles. This mode provides a minimal access latency. (Refer to Figure 20-6 on page 222
and Figure 20-7 above).

• BFOEH = 0: the BFC suspends the burst when it is no longer selected and the BFOE pin is
deasserted. When a new access to the Burst Flash device is requested, either sequential or
not, a new burst is initialized and the next data is available as defined by the AVL latency field
in the Mode Register. This mode is provided for Burst Flash devices for which the deassertion
of the BFOE signal causes an irreversible break of the burst. Figure 20-8 on page 224 shows
the access request to the BFC and the deassertion of the BFOE signal due to a deselection

BFCK

BFCS

BFAVD

BFOE

D[15:0]
Output

BFWE

A[24:0]

Address (1)

D[15:0]
Input

Address (D0)

AVL

(1) Only if Multiplexed Address & Data Buses

Address Valid Latency = 4 BFCK cycles (AVL = 3)
Output Enable Latency (OEL) = 2 BFCK cycles

D0 D1 D2 D3 D4

OEL = 2

D4 D5 D6

Burst Suspend Burst Resume

Burst Suspend and Resume (BFOEH = 1)
Clock Control Address Advance (BAAEN = 0)

D0
Sampling

D5
Sampling

D4
Sampling

D3
Sampling

D2
Sampling

D1
Sampling

Internal BFC
Selection Signal

224
1768I–ATARM–09-Jul-09

AT91RM9200

of the BFC (Suspend). When the BFC is requested again, a new burst is started even though
the requested address is sequential to the previously requested address.

Figure 20-8. Burst Flash Controller with No Burst Enable Handling

20.6.4.4 Continuous Burst Reads
The BFC performs continuous burst reads. It is also possible to program page sizes from 16
bytes up to 1024 bytes. This is done by setting the appropriate value in the PAGES field of the
“Burst Flash Controller Mode Register” on page 227.

Page Mode

BFCK

BFCS

BFAVD

BFOE

Output

BFWE

A[24:0]

Address (1)

D[15:0]
Input

Address (D0)

AVL

(1) Only if Multiplexed Address & Data Busses
(2) Master Clock Mode (BFCC =1)

Address Valid Latency = 4 BFCK cycles
Output Enable Latency (OEL) = 1 BFCK cycle

D0 D1 D2

D0
Sampling

D1
Sampling

OEL = 1

D2 D3 D4

D2
Sampling

D3
Sampling

Address (1)

AVL

BFBAA

Address (D2)

No Burst Output Enable Handling (BFOEH = 0)
Signal Control Advance Address (BAAEN = 1)

D[15:0]

Internal
Clock (2)

A0 A1 A2 A3

Internal BFC
Selection Signal

Internal
Address Bus

Begin New BurstBurst Suspend

225
1768I–ATARM–09-Jul-09

AT91RM9200

In Page Mode, the BFC stops the current burst and starts a new burst each time the requested
address matches a page boundary. Figure 20-9 on page 225 illustrates a 16-byte page size.
Data D0 to D10 belong to two separate pages and are accessed through two burst accesses.
This mode is provided for Burst Flash devices that cannot handle continuous burst read (in
which case, a continuous burst access to address D0 would cause the Burst Flash internal
address to wrap around address D0). Page Mode can be disabled by programming a null value
in the PAGES field of the “Burst Flash Controller Mode Register” on page 227.

Figure 20-9. Burst Read in Page Mode

Ready Enable Mode

In Ready Enable Mode (bit RDYEN in the “Burst Flash Controller Mode Register” on page 227),
the BFC uses the Ready Signal (BFRDY) from the burst Flash device as an indicator of the next
data availability. The BFRDY signal must be asserted one BFCK cycle before data is valid. In
Figure 20-10 on page 226 below, the BFRDY signal indicates on edge (A) that the expected D4
data will not be available on the next rising BFCK edge. The BFRDY signal remains low until ris-
ing at edge (B). D4 is then sampled on edge (C).

…..

…..BFCK

BFCS

BFAVD

BFOE

D[15:0]
Output

BFWE

A[24:0]

D[15:0]
Input

Address (D0)

AVL

Address Valid Latency = 3 BFCK cycles (AVL field = 2)
Output Enable Latency (OEL) = 1 BFCK cycle
Page Size = 16 Bytes

D0 D1 D6 D7 D8 D9 D10

AVL

BFBAA

Address (D8)

D0

D0
Sampling

D7
Sampling

16-byte Page

D8
Sampling

16-byte Page

Burst Read in Page Mode (16 Bytes)
Signal Control Advance Address (BAAEN = 1)

16-byte Page Boundary

(8 Accesses of 2 Bytes Each) (8 Accesses of 2 Bytes Each)

(1) A New Page Begins at D8

(1)

(1)

(1)

226
1768I–ATARM–09-Jul-09

AT91RM9200

When the RDYEN mode is disabled (RDYEN = 0), the BFRDY signal at the BFC input interface
is ignored. This mode is provided for Burst Flash devices that do not handle the BFRDY signal.

Figure 20-10. Burst Read Using BFRDY Signal

BFCK

BFCS

BFAVD

BFOE

A[24:0]

D[15:0]
Input

Address (D0)

AVL

Address Valid Latency = 4 BFCK cycles (AVL field = 3)
Output Enable Latency (OEL) = 1 BFCK cycle

D0 D1 D2 D3

BFBAA

D0Sampling

Burst Read
Signal Control Advance Address (BAAEN = 1)

BFRDY

D1 D2 D3 D4 D6D5 D7

(A) (B) (C)

D4 D5 D6 D7

227
1768I–ATARM–09-Jul-09

AT91RM9200

20.7 Burst Flash Controller (BFC) User Interface

20.7.1 Burst Flash Controller Mode Register
Register Name: BFC_MR

Access Type: Read/Write

Reset Value :0x0

• BFCOM: Burst Flash Controller Operating Mode

• BFCC: Burst Flash Controller Clock

• AVL: Address Valid Latency
The Address Valid Latency is defined as the number of BFC Clock Cycles from the first BFCK rising edge when BFAVD is
asserted to the BFCK rising edge that samples read data. The Latency is equal to AVL + 1.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RDYEN MUXEN BFOEH BAAEN

15 14 13 12 11 10 9 8

– – OEL PAGES

7 6 5 4 3 2 1 0

AVL BFCC BFCOM

BFCOM BFC Operating Mode

0 0 Disabled.

0 1 Asynchronous

1 0 Burst Read

1 1 Reserved

BFCC BFC Clock

0 0 Reserved

0 1 Master Clock

1 0 Master Clock divided by 2

1 1 Master Clock divided by 4

228
1768I–ATARM–09-Jul-09

AT91RM9200

• PAGES: Page Size
This field defines the page size handling and the page size.

• OEL: Output Enable Latency
This field defines the number of idle cycles inserted after each level change on the BFOE output enable signal. OEL range
is 1 to 3.

• BAAEN: Burst Address Advance Enable
0: The burst clock is enabled to increment the burst address or, disabled to remain at the same address.

1: The burst clock is continuous and the burst address advance is controlled with the BFBAA pin.

• BFOEH: Burst Flash Output Enable Handling
0: No burst resume in Burst Mode. When the BFC is deselected, this causes an irreversible break of the burst. A new burst
will be initiated for the next access.

1: Burst resume. When the BFC is deselected, the burst is suspended. It will be resumed if the next access is sequential to
the last one.

• MUXEN: Multiplexed Bus Enable
0: The address and data busses operate independently.

1: The address and data busses are multiplexed. Actually, the address is presented on both the data bus and the address
bus when the BFAVD signal is asserted.

• RDYEN: Ready Enable Mode
0: The BFRDY input signal at the BFC input interface is ignored.

1: The BFRDY input signal is used as an indicator of data availability in the next cycle.

Pages Page Size

0 0 0
No page handling. The Ready Signal (BFRDY) is sampled to check if the next
data is available.

0 0 1 16 bytes page size

0 1 0 32 bytes page size

0 1 1 64 bytes page size

1 0 0 128 bytes page size

1 0 1 256 bytes page size

1 1 0 512 bytes page size

1 1 1 1024 bytes page size

229
1768I–ATARM–09-Jul-09

AT91RM9200

21. Peripheral DMA Controller (PDC)

21.1 Overview
The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals such as
the UART, USART, SSC, SPI, MCI and the on- and off-chip memories. Using the Peripheral
DMA Controller avoids processor intervention and removes the processor interrupt-handling
overhead.This significantly reduces the number of clock cycles required for a data transfer and,
as a result, improves the performance of the microcontroller and makes it more power efficient.

The PDC channels are implemented in pairs, each pair being dedicated to a particular periph-
eral. One channel in the pair is dedicated to the receiving channel and one to the transmitting
channel of each UART, USART, SSC and SPI.

The user interface of a PDC channel is integrated in the memory space of each peripheral. It
contains:

• A 32-bit memory pointer register

• A 16-bit transfer count register

• A 32-bit register for next memory pointer

• A 16-bit register for next transfer count

The peripheral triggers PDC transfers using transmit and receive signals. When the pro-
grammed data is transferred, an end of transfer interrupt is generated by the corresponding
peripheral.

Important features of the PDC are:

• Generates Transfers to/from Peripherals Such as DBGU, USART, SSC, SPI and MCI

• Supports Up to Twenty Channels (Product Dependent)

• One Master Clock Cycle Needed for a Transfer from Memory to Peripheral

• Two Master Clock Cycles Needed for a Transfer from Peripheral to Memory

21.2 Block Diagram

Figure 21-1. Block Diagram

Control

PDC Channel 0

PDC Channel 1

THR

RHR

Control
Status & Control

Peripheral Peripheral DMA Controller

Memory
Controller

230
1768I–ATARM–09-Jul-09

AT91RM9200

21.3 Functional Description

21.3.1 Configuration
The PDC channels user interface enables the user to configure and control the data transfers for
each channel. The user interface of a PDC channel is integrated into the user interface of the
peripheral (offset 0x100), which it is related to.

Per peripheral, it contains four 32-bit Pointer Registers (RPR, RNPR, TPR, and TNPR) and four
16-bit Counter Registers (RCR, RNCR, TCR, and TNCR).

The size of the buffer (number of transfers) is configured in an internal 16-bit transfer counter
register, and it is possible, at any moment, to read the number of transfers left for each channel.

The memory base address is configured in a 32-bit memory pointer by defining the location of
the first address to access in the memory. It is possible, at any moment, to read the location in
memory of the next transfer and the number of remaining transfers. The PDC has dedicated sta-
tus registers which indicate if the transfer is enabled or disabled for each channel. The status for
each channel is located in the peripheral status register. Transfers can be enabled and/or dis-
abled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in PDC Transfer Control Register. These
control bits enable reading the pointer and counter registers safely without any risk of their
changing between both reads.

The PDC sends status flags to the peripheral visible in its status-register (ENDRX, ENDTX,
RXBUFF, and TXBUFE).

ENDRX flag is set when the PERIPH_RCR register reaches zero.

RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.

ENDTX flag is set when the PERIPH_TCR register reaches zero.

TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.

These status flags are described in the peripheral status register.

21.3.2 Memory Pointers
Each peripheral is connected to the PDC by a receiver data channel and a transmitter data
channel. Each channel has an internal 32-bit memory pointer. Each memory pointer points to a
location anywhere in the memory space (on-chip memory or external bus interface memory).

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented
by 1, 2 or 4, respectively for peripheral transfers.

If a memory pointer is reprogrammed while the PDC is in operation, the transfer address is
changed, and the PDC performs transfers using the new address.

21.3.3 Transfer Counters
There is one internal 16-bit transfer counter for each channel used to count the size of the block
already transferred by its associated channel. These counters are decremented after each data
transfer. When the counter reaches zero, the transfer is complete and the PDC stops transfer-
ring data.

If the Next Counter Register is equal to zero, the PDC disables the trigger while activating the
related peripheral end flag.

If the counter is reprogrammed while the PDC is operating, the number of transfers is updated
and the PDC counts transfers from the new value.

231
1768I–ATARM–09-Jul-09

AT91RM9200

Programming the Next Counter/Pointer registers chains the buffers. The counters are decre-
mented after each data transfer as stated above, but when the transfer counter reaches zero,
the values of the Next Counter/Pointer are loaded into the Counter/Pointer registers in order to
re-enable the triggers.

For each channel, two status bits indicate the end of the current buffer (ENDRX, ENTX) and the
end of both current and next buffer (RXBUFF, TXBUFE). These bits are directly mapped to the
peripheral status register and can trigger an interrupt request to the AIC.

The peripheral end flag is automatically cleared when one of the counter-registers (Counter or
Next Counter Register) is written.

Note: When the Next Counter Register is loaded into the Counter Register, it is set to zero.

21.3.4 Data Transfers
The peripheral triggers PDC transfers using transmit (TXRDY) and receive (RXRDY) signals.

When the peripheral receives an external character, it sends a Receive Ready signal to the PDC
which then requests access to the system bus. When access is granted, the PDC starts a read
of the peripheral Receive Holding Register (RHR) and then triggers a write in the memory.

After each transfer, the relevant PDC memory pointer is incremented and the number of trans-
fers left is decremented. When the memory block size is reached, a signal is sent to the
peripheral and the transfer stops.

The same procedure is followed, in reverse, for transmit transfers.

21.3.5 Priority of PDC Transfer Requests
The Peripheral DMA Controller handles prioritized transfer requests from the channel.

If simultaneous requests of the same type (receiver or transmitter) occur on identical peripher-
als, the priority is determined by the numbering of the peripherals.

If transfer requests are not simultaneous, they are treated in the order they occurred. Requests
from the receivers are handled first and then followed by transmitter requests.

232
1768I–ATARM–09-Jul-09

AT91RM9200

21.4 Peripheral DMA Controller (PDC) User Interface

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the peripheral desired (DBGU, USART, SSC, SPI, MCI etc).

Table 21-1. Peripheral DMA Controller (PDC) Register Mapping

Offset Register Register Name Read/Write Reset

0x100 PDC Receive Pointer Register PERIPH(1)_RPR Read/Write 0x0

0x104 PDC Receive Counter Register PERIPH_RCR Read/Write 0x0

0x108 PDC Transmit Pointer Register PERIPH_TPR Read/Write 0x0

0x10C PDC Transmit Counter Register PERIPH_TCR Read/Write 0x0

0x110 PDC Receive Next Pointer Register PERIPH_RNPR Read/Write 0x0

0x114 PDC Receive Next Counter Register PERIPH_RNCR Read/Write 0x0

0x118 PDC Transmit Next Pointer Register PERIPH_TNPR Read/Write 0x0

0x11C PDC Transmit Next Counter Register PERIPH_TNCR Read/Write 0x0

0x120 PDC Transfer Control Register PERIPH_PTCR Write-only -

0x124 PDC Transfer Status Register PERIPH_PTSR Read-only 0x0

233
1768I–ATARM–09-Jul-09

AT91RM9200

21.4.1 PDC Receive Pointer Register
Register Name: PERIPH_RPR

Access Type: Read/Write

• RXPTR: Receive Pointer Address
Address of the next receive transfer.

21.4.2 PDC Receive Counter Register
Register Name: PERIPH_RCR

Access Type: Read/Write

• RXCTR: Receive Counter Value
Number of receive transfers to be performed.

31 30 29 28 27 26 25 24

RXPTR

23 22 21 20 19 18 17 16

RXPTR

15 14 13 12 11 10 9 8

RXPTR

7 6 5 4 3 2 1 0

RXPTR

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

RXCTR

7 6 5 4 3 2 1 0

RXCTR

234
1768I–ATARM–09-Jul-09

AT91RM9200

21.4.3 PDC Transmit Pointer Register
Register Name: PERIPH_TPR

Access Type: Read/Write

• TXPTR: Transmit Pointer Address
Address of the transmit buffer.

21.4.4 PDC Transmit Counter Register
Register Name: PERIPH_TCR

Access Type: Read/Write

• TXCTR: Transmit Counter Value
·TXCTR is the size of the transmit transfer to be performed. At zero, the peripheral DMA transfer is stopped.

31 30 29 28 27 26 25 24

TXPTR

23 22 21 20 19 18 17 16

TXPTR

15 14 13 12 11 10 9 8

TXPTR

7 6 5 4 3 2 1 0

TXPTR

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

TXCTR

7 6 5 4 3 2 1 0

TXCTR

235
1768I–ATARM–09-Jul-09

AT91RM9200

21.4.5 PDC Receive Next Pointer Register
Register Name: PERIPH_RNPR

Access Type: Read/Write

• RXNPTR: Receive Next Pointer Address
RXNPTR is the address of the next buffer to fill with received data when the current buffer is full.

21.4.6 PDC Receive Next Counter Register
Register Name: PERIPH_RNCR

Access Type: Read/Write

• RXNCR: Receive Next Counter Value
·RXNCR is the size of the next buffer to receive.

31 30 29 28 27 26 25 24

RXNPTR

23 22 21 20 19 18 17 16

RXNPTR

15 14 13 12 11 10 9 8

RXNPTR

7 6 5 4 3 2 1 0

RXNPTR

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

RXNCR

7 6 5 4 3 2 1 0

RXNCR

236
1768I–ATARM–09-Jul-09

AT91RM9200

21.4.7 PDC Transmit Next Pointer Register
Register Name: PERIPH_TNPR

Access Type: Read/Write

• TXNPTR: Transmit Next Pointer Address
TXNPTR is the address of the next buffer to transmit when the current buffer is empty.

21.4.8 PDC Transmit Next Counter Register
Register Name: PERIPH_TNCR

Access Type: Read/Write

• TXNCR: Transmit Next Counter Value
TXNCR is the size of the next buffer to transmit.

31 30 29 28 27 26 25 24

TXNPTR

23 22 21 20 19 18 17 16

TXNPTR

15 14 13 12 11 10 9 8

TXNPTR

7 6 5 4 3 2 1 0

TXNPTR

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

TXNCR

7 6 5 4 3 2 1 0

TXNCR

237
1768I–ATARM–09-Jul-09

AT91RM9200

21.4.9 PDC Transfer Control Register
Register Name: PERIPH_PTCR

Access Type: Write-only

• RXTEN: Receiver Transfer Enable
0 = No effect.

1 = Enables the receiver PDC transfer requests if RXTDIS is not set.

• RXTDIS: Receiver Transfer Disable
0 = No effect.

1 = Disables the receiver PDC transfer requests.

• TXTEN: Transmitter Transfer Enable
0 = No effect.

1 = Enables the transmitter PDC transfer requests.

• TXTDIS: Transmitter Transfer Disable
0 = No effect.

1 = Disables the transmitter PDC transfer requests

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – TXTDIS TXTEN

7 6 5 4 3 2 1 0

– – – – – – RXTDIS RXTEN

238
1768I–ATARM–09-Jul-09

AT91RM9200

21.4.10 PDC Transfer Status Register
Register Name: PERIPH_PTSR

Access Type: Read-only

• RXTEN: Receiver Transfer Enable
0 = Receiver PDC transfer requests are disabled.

1 = Receiver PDC transfer requests are enabled.

• TXTEN: Transmitter Transfer Enable
0 = Transmitter PDC transfer requests are disabled.

1 = Transmitter PDC transfer requests are enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – TXTEN

7 6 5 4 3 2 1 0

– – – – – – – RXTEN

239
1768I–ATARM–09-Jul-09

AT91RM9200

22. Advanced Interrupt Controller (AIC)

22.1 Overview
The Advanced Interrupt Controller (AIC) is an 8-level priority, individually maskable, vectored
interrupt controller, providing handling of up to thirty-two interrupt sources. It is designed to sub-
stantially reduce the software and real-time overhead in handling internal and external
interrupts.

The AIC drives the nFIQ (fast interrupt request) and the nIRQ (standard interrupt request) inputs
of an ARM processor. Inputs of the AIC are either internal peripheral interrupts or external inter-
rupts coming from the product's pins.

The 8-level Priority Controller allows the user to define the priority for each interrupt source, thus
permitting higher priority interrupts to be serviced even if a lower priority interrupt is being
treated.

Internal interrupt sources can be programmed to be level sensitive or edge triggered. External
interrupt sources can be programmed to be positive-edge or negative-edge triggered or high-
level or low-level sensitive.

Important Features of the AIC are:

• Controls the Interrupt Lines (nIRQ and nFIQ) of an ARM Processor

• Thirty-two Individually Maskable and Vectored Interrupt Sources

– Source 0 is Reserved for the Fast Interrupt Input (FIQ)

– Source 1 is Reserved for System Peripherals (ST, RTC, PMC, DBGU…)

– Source 2 to Source 31 Control up to Thirty Embedded Peripheral Interrupts or
External Interrupts

– Programmable Edge-triggered or Level-sensitive Internal Sources

– Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive
External Sources

• 8-level Priority Controller

– Drives the Normal Interrupt of the Processor

– Handles Priority of the Interrupt Sources 1 to 31

– Higher Priority Interrupts Can Be Served During Service of Lower Priority Interrupt

• Vectoring

– Optimizes Interrupt Service Routine Branch and Execution

– One 32-bit Vector Register per Interrupt Source

– Interrupt Vector Register Reads the Corresponding Current Interrupt Vector

• Protect Mode

– Easy Debugging by Preventing Automatic Operations when Protect ModeIs Are
Enabled

• General Interrupt Mask

– Provides Processor Synchronization on Events Without Triggering an Interrupt

240
1768I–ATARM–09-Jul-09

AT91RM9200

22.2 Block Diagram

Figure 22-1. Block Diagram

22.3 Application Block Diagram

Figure 22-2. Description of the Application Block

22.4 AIC Detailed Block Diagram

Figure 22-3. AIC Detailed Block Diagram

AIC

APB

ARM
Processor

FIQ

IRQ0-IRQn

Embedded
PeripheralEE

PeripheralEmbedded
Peripheral

Embedded

Up to
Thirty-two
Sources

nFIQ

nIRQ

Advanced Interrupt Controller

Embedded Peripherals
External Peripherals
(External Interrupts)

Standalone
Applications RTOS Drivers

Hard Real Time Tasks

OS-based Applications

OS Drivers

General OS Interrupt Handler

FIQ

PIO
Controller

Advanced Interrupt Controller

IRQ0-IRQn
PIOIRQ

Embedded
Peripherals

External Source
Input Stage

Internal Source
Input Stage

Interrupt
Priority

Controller

Fast
Interrupt

Controller

ARM
Processor

nFIQ

nIRQ

Power
Management

Controller

Wake UpUser Interface

APB

Processor
Clock

241
1768I–ATARM–09-Jul-09

AT91RM9200

22.5 I/O Line Description

22.6 Product Dependencies

22.6.1 I/O Lines
The interrupt signals FIQ and IRQ0 to IRQn are normally multiplexed through the PIO control-
lers. Depending on the features of the PIO controller used in the product, the pins must be
programmed in accordance with their assigned interrupt function. This is not applicable when
the PIO controller used in the product is transparent on the input path.

22.6.2 Power Management
The Advanced Interrupt Controller is continuously clocked. The Power Management Controller
has no effect on the Advanced Interrupt Controller behavior.

The assertion of the Advanced Interrupt Controller outputs, either nIRQ or nFIQ, wakes up the
ARM processor while it is in Idle Mode. The General Interrupt Mask feature enables the AIC to
wake up the processor without asserting the interrupt line of the processor, thus providing syn-
chronization of the processor on an event.

22.6.3 Interrupt Sources
The Interrupt Source 0 is always located at FIQ. If the product does not feature an FIQ pin, the
Interrupt Source 0 cannot be used.

The Interrupt Source 1 is always located at System Interrupt. This is the result of the OR-wiring
of the system peripheral interrupt lines, such as the System Timer, the Real Time Clock, the
Power Management Controller and the Memory Controller. When a system interrupt occurs, the
service routine must first distinguish the cause of the interrupt. This is performed by reading suc-
cessively the status registers of the above mentioned system peripherals.

The interrupt sources 2 to 31 can either be connected to the interrupt outputs of an embedded
user peripheral or to external interrupt lines. The external interrupt lines can be connected
directly, or through the PIO Controller.

The PIO Controllers are considered as user peripherals in the scope of interrupt handling.
Accordingly, the PIO Controller interrupt lines are connected to the Interrupt Sources 2 to 31.

The peripheral identification defined at the product level corresponds to the interrupt source
number (as well as the bit number controlling the clock of the peripheral). Consequently, to sim-
plify the description of the functional operations and the user interface, the interrupt sources are
named FIQ, SYS, and PID2 to PID31.

Table 22-1. I/O Line Description

Pin Name Pin Description Type

FIQ Fast Interrupt Input

IRQ0 - IRQn Interrupt 0 - Interrupt n Input

242
1768I–ATARM–09-Jul-09

AT91RM9200

22.7 Functional Description

22.7.1 Interrupt Source Control

22.7.1.1 Interrupt Source Mode
The Advanced Interrupt Controller independently programs each interrupt source. The SRC-
TYPE field of the corresponding AIC_SMR (Source Mode Register) selects the interrupt
condition of each source.

The internal interrupt sources wired on the interrupt outputs of the embedded peripherals can be
programmed either in level-sensitive mode or in edge-triggered mode. The active level of the
internal interrupts is not important for the user.

The external interrupt sources can be programmed either in high level-sensitive or low level-sen-
sitive modes, or in positive edge-triggered or negative edge-triggered modes.

22.7.1.2 Interrupt Source Enabling
Each interrupt source, including the FIQ in source 0, can be enabled or disabled by using the
command registers; AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register). This set of registers conducts enabling or disabling in one instruc-
tion. The interrupt mask can be read in the AIC_IMR register. A disabled interrupt does not affect
servicing of other interrupts.

22.7.1.3 Interrupt Clearing and Setting
All interrupt sources programmed to be edge-triggered (including the FIQ in source 0) can be
individually set or cleared by writing respectively the AIC_ISCR and AIC_ICCR registers. Clear-
ing or setting interrupt sources programmed in level-sensitive mode has no effect.

The clear operation is perfunctory, as the software must perform an action to reinitialize the
“memorization” circuitry activated when the source is programmed in edge-triggered mode.
However, the set operation is available for auto-test or software debug purposes. It can also be
used to execute an AIC-implementation of a software interrupt.

The AIC features an automatic clear of the current interrupt when the AIC_IVR (Interrupt Vector
Register) is read. Only the interrupt source being detected by the AIC as the current interrupt is
affected by this operation. (See Section 22.7.3.1 ”Priority Controller” on page 245.) The auto-
matic clear reduces the operations required by the interrupt service routine entry code to reading
the AIC_IVR.)

The automatic clear of the interrupt source 0 is performed when AIC_FVR is read.

22.7.1.4 Interrupt Status
For each interrupt, the AIC operation originates in AIC_IPR (Interrupt Pending Register) and its
mask in AIC_IMR (Interrupt Mask Register). AIC_IPR enables the actual activity of the sources,
whether masked or not.

The AIC_ISR register reads the number of the current interrupt (See Section 22.7.3.1 ”Priority
Controller” on page 245.) and the register AIC_CISR gives an image of the signals nIRQ and
nFIQ driven on the processor.

Each status referred to above can be used to optimize the interrupt handling of the systems.

243
1768I–ATARM–09-Jul-09

AT91RM9200

22.7.1.5 Internal Interrupt Source Input Stage

Figure 22-4. Internal Interrupt Source Input Stage

22.7.1.6 External Interrupt Source Input Stage

Figure 22-5. External Interrupt Source Input Stage

MCK

nIRQ

Maximum IRQ Latency = 3.5 Cycles

Peripheral Interrupt
Becomes Active

Edge
Detector

ClearSet

Pos./Neg.

AIC_ISCR

AIC_ICCR

Source i

FF

Level/
Edge

High/Lo w
AIC_SMRi

SRCTYPE

AIC_IPR

AIC_IMR

AIC_IECR

AIC_IDCR

Fast Interrupt Controller
or
Priority Controller

244
1768I–ATARM–09-Jul-09

AT91RM9200

22.7.2 Interrupt Latencies
Global interrupt latencies depend on several parameters, including:

• The time the software masks the interrupts.

• Occurrence, either at the processor level or at the AIC level.

• The execution time of the instruction in progress when the interrupt occurs.

• The treatment of higher priority interrupts and the resynchronization of the hardware signals.

This section addresses only the hardware resynchronizations. It gives details of the latency
times between the event on an external interrupt leading in a valid interrupt (edge or level) or the
assertion of an internal interrupt source and the assertion of the nIRQ or nFIQ line on the pro-
cessor. The resynchronization time depends on the programming of the interrupt source and on
its type (internal or external). For the standard interrupt, resynchronization times are given
assuming there is no higher priority in progress.

The PIO Controller multiplexing has no effect on the interrupt latencies of the external interrupt
sources.

22.7.2.1 External Interrupt Edge Triggered Source

Figure 22-6. External Interrupt Edge Triggered Source

22.7.2.2 External Interrupt Level Sensitive Source

Figure 22-7. External Interrupt Level Sensitive Source

Maximum FIQ Latency = 4 Cycles

Maximum IRQ Latency = 4 Cycles

nFIQ

nIRQ

MCK

IRQ or FIQ
(Positive Edge)

IRQ or FIQ
(Negative Edge)

Maximum IRQ
Latency = 3 Cycles

Maximum FIQ
Latency = 3 cycles

MCK

IRQ or FIQ
(High Level)

IRQ or FIQ
(Low Level)

nIRQ

nFIQ

245
1768I–ATARM–09-Jul-09

AT91RM9200

22.7.2.3 Internal Interrupt Edge Triggered Source

Figure 22-8. Internal Interrupt Edge Triggered Source

22.7.2.4 Internal Interrupt Level Sensitive Source

Figure 22-9. Internal Interrupt Level Sensitive Source

22.7.3 Normal Interrupt

22.7.3.1 Priority Controller
An 8-level priority controller drives the nIRQ line of the processor, depending on the interrupt
conditions occurring on the interrupt sources 1 to 31.

Each interrupt source has a programmable priority level of 7 to 0, which is user-definable by writ-
ing the PRIOR field of the corresponding AIC_SMR (Source Mode Register). Level 7 is the
highest priority and level 0 the lowest.

As soon as an interrupt condition occurs, as defined by the SRCTYPE field of the AIC_SVR
(Source Vector Register), the nIRQ line is asserted. As a new interrupt condition might have
happened on other interrupt sources since the nIRQ has been asserted, the priority controller
determines the current interrupt at the time the AIC_IVR (Interrupt Vector Register) is read. The
read of AIC_IVR is the entry point of the interrupt handling which allows the AIC to consider
that the interrupt has been taken into account by the software.

The current priority level is defined as the priority level of the current interrupt.

If several interrupt sources of equal priority are pending and enabled when the AIC_IVR is read,
the interrupt with the lowest interrupt source number is serviced first.

MCK

nIRQ

Peripheral Interrupt
Becomes Active

Maximum IRQ Latency = 4.5 Cycles

MCK

nIRQ

Maximum IRQ Latency = 3.5 Cycles

Peripheral Interrupt
Becomes Active

246
1768I–ATARM–09-Jul-09

AT91RM9200

The nIRQ line can be asserted only if an interrupt condition occurs on an interrupt source with a
higher priority. If an interrupt condition happens (or is pending) during the interrupt treatment in
progress, it is delayed until the software indicates to the AIC the end of the current service by
writing the AIC_EOICR (End of Interrupt Command Register). The write of AIC_EOICR is the
exit point of the interrupt handling.

22.7.3.2 Interrupt Nesting
The priority controller utilizes interrupt nesting in order for the highest priority interrupt to be han-
dled during the service of lower priority interrupts. This requires the interrupt service routines of
the lower interrupts to re-enable the interrupt at the processor level.

When an interrupt of a higher priority happens during an already occurring interrupt service rou-
tine, the nIRQ line is re-asserted. If the interrupt is enabled at the core level, the current
execution is interrupted and the new interrupt service routine should read the AIC_IVR. At this
time, the current interrupt number and its priority level are pushed into an embedded hardware
stack, so that they are saved and restored when the higher priority interrupt servicing is finished
and the AIC_EOICR is written.

The AIC is equipped with an 8-level wide hardware stack in order to support up to eight interrupt
nestings pursuant to having eight priority levels.

22.7.3.3 Interrupt Vectoring
The interrupt handler addresses corresponding to each interrupt source can be stored in the reg-
isters AIC_SVR1 to AIC_SVR31 (Source Vector Register 1 to 31). When the processor reads
AIC_IVR (Interrupt Vector Register), the value written into AIC_SVR corresponding to the cur-
rent interrupt is returned.

This feature offers a way to branch in one single instruction to the handler corresponding to the
current interrupt, as AIC_IVR is mapped at the absolute address 0xFFFF F100 and thus acces-
sible from the ARM interrupt vector at address 0x0000 0018 through the following instruction:

LDR PC,[PC,# -&F20]

When the processor executes this instruction, it loads the read value in AIC_IVR in its program
counter, thus branching the execution on the correct interrupt handler.

This feature is often not used when the application is based on an operating system (either real
time or not). Operating systems often have a single entry point for all the interrupts and the first
task performed is to discern the source of the interrupt.

However, it is strongly recommended to port the operating system on AT91 products by support-
ing the interrupt vectoring. This can be performed by defining all the AIC_SVR of the interrupt
source to be handled by the operating system at the address of its interrupt handler. When doing
so, the interrupt vectoring permits a critical interrupt to transfer the execution on a specific very
fast handler and not onto the operating system’s general interrupt handler. This facilitates the
support of hard real-time tasks (input/outputs of voice/audio buffers and software peripheral han-
dling) to be handled efficiently and independently of the application running under an operating
system.

22.7.3.4 Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and espe-
cially the processor interrupt modes and the associated status bits.

247
1768I–ATARM–09-Jul-09

AT91RM9200

It is assumed that:

1. The Advanced Interrupt Controller has been programmed, AIC_SVR registers are
loaded with corresponding interrupt service routine addresses and interrupts are
enabled.

2. The instruction at the ARM interrupt exception vector address is required to work with
the vectoring

LDR PC, [PC, # -&F20]

When nIRQ is asserted, if the bit “I” of CPSR is 0, the sequence is as follows:

1. The CPSR is stored in SPSR_irq, the current value of the Program Counter is loaded in
the Interrupt link register (R14_irq) and the Program Counter (R15) is loaded with 0x18.
In the following cycle during fetch at address 0x1C, the ARM core adjusts R14_irq, dec-
rementing it by four.

2. The ARM core enters Interrupt mode, if it has not already done so.

3. When the instruction loaded at address 0x18 is executed, the program counter is
loaded with the value read in AIC_IVR. Reading the AIC_IVR has the following effects:

a. Sets the current interrupt to be the pending and enabled interrupt with the highest
priority. The current level is the priority level of the current interrupt.

b. De-asserts the nIRQ line on the processor. Even if vectoring is not used, AIC_IVR
must be read in order to de-assert nIRQ.

c. Automatically clears the interrupt, if it has been programmed to be edge-triggered.

d. Pushes the current level and the current interrupt number on to the stack.

e. Returns the value written in the AIC_SVR corresponding to the current interrupt.

4. The previous step has the effect of branching to the corresponding interrupt service
routine. This should start by saving the link register (R14_irq) and SPSR_IRQ. The link
register must be decremented by four when it is saved if it is to be restored directly into
the program counter at the end of the interrupt. For example, the instruction SUB PC,
LR, #4 may be used.

5. Further interrupts can then be unmasked by clearing the “I” bit in CPSR, allowing re-
assertion of the nIRQ to be taken into account by the core. This can happen if an inter-
rupt with a higher priority than the current interrupt occurs.

6. The interrupt handler can then proceed as required, saving the registers that will be
used and restoring them at the end. During this phase, an interrupt of higher priority
than the current level will restart the sequence from step 1.

Note: If the interrupt is programmed to be level sensitive, the source of the interrupt must be cleared dur-
ing this phase.

7. The “I” bit in CPSR must be set in order to mask interrupts before exiting to ensure that
the interrupt is completed in an orderly manner.

8. The End of Interrupt Command Register (AIC_EOICR) must be written in order to indi-
cate to the AIC that the current interrupt is finished. This causes the current level to be
popped from the stack, restoring the previous current level if one exists on the stack. If
another interrupt is pending, with lower or equal priority than the old current level but
with higher priority than the new current level, the nIRQ line is re-asserted, but the inter-
rupt sequence does not immediately start because the “I” bit is set in the core.
SPSR_irq is restored. Finally, the saved value of the link register is restored directly into
the PC. This has effect of returning from the interrupt to whatever was being executed
before, and of loading the CPSR with the stored SPSR, masking or unmasking the
interrupts depending on the state saved in SPSR_irq.

248
1768I–ATARM–09-Jul-09

AT91RM9200

Note: The “I” bit in SPSR is significant. If it is set, it indicates that the ARM core was on the verge of
masking an interrupt when the mask instruction was interrupted. Hence, when SPSR is restored,
the mask instruction is completed (interrupt is masked).

22.7.4 Fast Interrupt

22.7.4.1 Fast Interrupt Source
The interrupt source 0 is the only source which can raise a fast interrupt request to the proces-
sor. The interrupt source 0 is generally connected to an FIQ pin of the product, either directly or
through a PIO Controller.

22.7.4.2 Fast Interrupt Control
The fast interrupt logic of the AIC has no priority controller. The mode of interrupt source 0 is
programmed with the AIC_SMR0 and the field PRIOR of this register is not used even if it reads
what has been written. The field SRCTYPE of AIC_SMR0 enables programming the fast inter-
rupt source to be positive-edge triggered or negative-edge triggered or high-level sensitive or
low-level sensitive

Writing 0x1 in the AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register) respectively enables and disables the fast interrupt. The bit 0 of
AIC_IMR (Interrupt Mask Register) indicates whether the fast interrupt is enabled or disabled.

22.7.4.3 Fast Interrupt Vectoring
The fast interrupt handler address can be stored in AIC_SVR0 (Source Vector Register 0). The
value written into this register is returned when the processor reads AIC_FVR (Fast Vector Reg-
ister). This offers a way to branch in one single instruction to the interrupt handler, as AIC_FVR
is mapped at the absolute address 0xFFFF F104 and thus accessible from the ARM fast inter-
rupt vector at address 0x0000 001C through the following instruction:

LDR PC,[PC,# -&F20]

When the processor executes this instruction it loads the value read in AIC_FVR in its program
counter, thus branching the execution on the fast interrupt handler. It also automatically per-
forms the clear of the fast interrupt source if it is programmed in edge-triggered mode.

22.7.4.4 Fast Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and espe-
cially the processor interrupt modes and associated status bits.

Assuming that:

1. The Advanced Interrupt Controller has been programmed, AIC_SVR0 is loaded with
the fast interrupt service routine address, and the interrupt source 0 is enabled.

2. The Instruction at address 0x1C (FIQ exception vector address) is required to vector
the fast interrupt:

LDR PC, [PC, # -&F20]

3. The user does not need nested fast interrupts.

When nFIQ is asserted if the bit “F” of CPSR is 0, the sequence is:

1. The CPSR is stored in SPSR_fiq, the current value of the program counter is loaded in
the FIQ link register (R14_FIQ) and the program counter (R15) is loaded with 0x1C. In

249
1768I–ATARM–09-Jul-09

AT91RM9200

the following cycle, during fetch at address 0x20, the ARM core adjusts R14_fiq, decre-
menting it by four.

2. The ARM core enters FIQ mode.

3. When the instruction loaded at address 0x1C is executed, the program counter is
loaded with the value read in AIC_FVR. Reading the AIC_FVR has effect of automati-
cally clearing the fast interrupt, if it has been programmed to be edge triggered. In this
case only, it de-asserts the nFIQ line on the processor.

4. The previous step enables branching to the corresponding interrupt service routine. It is
not necessary to save the link register R14_fiq and SPSR_fiq if nested fast interrupts
are not needed.

5. The Interrupt Handler can then proceed as required. It is not necessary to save regis-
ters R8 to R13 because FIQ mode has its own dedicated registers and the user R8 to
R13 are banked. The other registers, R0 to R7, must be saved before being used, and
restored at the end (before the next step). Note that if the fast interrupt is programmed
to be level sensitive, the source of the interrupt must be cleared during this phase in
order to de-assert the interrupt source 0.

6. Finally, the Link Register R14_fiq is restored into the PC after decrementing it by four
(with instruction SUB PC, LR, #4 for example). This has the effect of returning from
the interrupt to whatever was being executed before, loading the CPSR with the SPSR
and masking or unmasking the fast interrupt depending on the state saved in the
SPSR.

Note: The “F” bit in SPSR is significant. If it is set, it indicates that the ARM core was just about to mask
FIQ interrupts when the mask instruction was interrupted. Hence when the SPSR is restored, the
interrupted instruction is completed (FIQ is masked).

Another way to handle the fast interrupt is to map the interrupt service routine at the address of
the ARM vector 0x1C. This method does not use the vectoring, so that reading AIC_FVR must
be performed at the very beginning of the handler operation. However, this method saves the
execution of a branch instruction.

22.7.5 Protect Mode
The Protect Mode permits reading the Interrupt Vector Register without performing the associ-
ated automatic operations. This is necessary when working with a debug system. When a
debugger, working either with a Debug Monitor or the ARM processor's ICE, stops the applica-
tions and updates the opened windows, it might read the AIC User Interface and thus the IVR.
This has undesirable consequences:

• If an enabled interrupt with a higher priority than the current one is pending, it is stacked.

• If there is no enabled pending interrupt, the spurious vector is returned.

In either case, an End of Interrupt command is necessary to acknowledge and to restore the
context of the AIC. This operation is generally not performed by the debug system as the debug
system would become strongly intrusive and cause the application to enter an undesired state.

This is avoided by using the Protect Mode. Writing DBGM in AIC_DCR (Debug Control Register)
at 0x1 enables the Protect Mode.

When the Protect Mode is enabled, the AIC performs interrupt stacking only when a write access
is performed on the AIC_IVR. Therefore, the Interrupt Service Routines must write (arbitrary
data) to the AIC_IVR just after reading it. The new context of the AIC, including the value of the
Interrupt Status Register (AIC_ISR), is updated with the current interrupt only when AIC_IVR is
written.

250
1768I–ATARM–09-Jul-09

AT91RM9200

An AIC_IVR read on its own (e.g., by a debugger), modifies neither the AIC context nor the
AIC_ISR. Extra AIC_IVR reads perform the same operations. However, it is recommended to
not stop the processor between the read and the write of AIC_IVR of the interrupt service routine
to make sure the debugger does not modify the AIC context.

To summarize, in normal operating mode, the read of AIC_IVR performs the following opera-
tions within the AIC:

1. Calculates active interrupt (higher than current or spurious).

2. 2. Determines and returns the vector of the active interrupt.

3. Memorizes the interrupt.

4. Pushes the current priority level onto the internal stack.

5. Acknowledges the interrupt.

However, while the Protect Mode is activated, only operations 1 to 3 are performed when
AIC_IVR is read. Operations 4 and 5 are only performed by the AIC when AIC_IVR is written.

Software that has been written and debugged using the Protect Mode runs correctly in Normal
Mode without modification. However, in Normal Mode the AIC_IVR write has no effect and can
be removed to optimize the code.

22.7.6 Spurious Interrupt
The Advanced Interrupt Controller features protection against spurious interrupts. A spurious
interrupt is defined as being the assertion of an interrupt source long enough for the AIC to
assert the nIRQ, but no longer present when AIC_IVR is read. This is most prone to occur when:

• An external interrupt source is programmed in level-sensitive mode and an active level occurs
for only a short time.

• An internal interrupt source is programmed in level sensitive and the output signal of the
corresponding embedded peripheral is activated for a short time. (As in the case for the
Watchdog.)

• An interrupt occurs just a few cycles before the software begins to mask it, thus resulting in a
pulse on the interrupt source.

The AIC detects a spurious interrupt at the time the AIC_IVR is read while no enabled interrupt
source is pending. When this happens, the AIC returns the value stored by the programmer in
AIC_SPU (Spurious Vector Register). The programmer must store the address of a spurious
interrupt handler in AIC_SPU as part of the application, to enable an as fast as possible return to
the normal execution flow. This handler writes in AIC_EOICR and performs a return from
interrupt.

22.7.7 General Interrupt Mask
The AIC features a General Interrupt Mask bit to prevent interrupts from reaching the processor.
Both the nIRQ and the nFIQ lines are driven to their inactive state if the bit GMSK in AIC_DCR
(Debug Control Register) is set. However, this mask does not prevent waking up the processor if
it has entered Idle Mode. This function facilitates synchronizing the processor on a next event
and, as soon as the event occurs, performs subsequent operations without having to handle an
interrupt. It is strongly recommended to use this mask with caution.

251
1768I–ATARM–09-Jul-09

AT91RM9200

22.8 Advanced Interrupt Controller (AIC) User Interface

22.8.1 Base Address
The AIC is mapped at the address 0xFFFF F000. It has a total 4-Kbyte addressing space. This
permits the vectoring feature, as the PC-relative load/store instructions of the ARM processor
supports only an ± 4-Kbyte offset.

Note: 1. The reset value of the Interrupt Pending Register depends on the level of the external interrupt source. All other sources are
cleared at reset, thus not pending.

Table 22-2. Register Mapping

Offset Register Name Access Reset Value

0000 Source Mode Register 0 AIC_SMR0 Read/Write 0x0

0x04 Source Mode Register 1 AIC_SMR1 Read/Write 0x0

– – – – –

0x7C Source Mode Register 31 AIC_SMR31 Read/Write 0x0

0x80 Source Vector Register 0 AIC_SVR0 Read/Write 0x0

0x84 Source Vector Register 1 AIC_SVR1 Read/Write 0x0

– – – – –

0xFC Source Vector Register 31 AIC_SVR31 Read/Write 0x0

0x100 Interrupt Vector Register AIC_IVR Read-only 0x0

0x104 Fast Interrupt Vector Register AIC_FVR Read-only 0x0

0x108 Interrupt Status Register AIC_ISR Read-only 0x0

0x10C Interrupt Pending Register AIC_IPR Read-only 0x0(1)

0x110 Interrupt Mask Register AIC_IMR Read-only 0x0

0x114 Core Interrupt Status Register AIC_CISR Read-only 0x0

0x118 Reserved – – –

0x11C Reserved – – –

0x120 Interrupt Enable Command Register AIC_IECR Write-only –

0x124 Interrupt Disable Command Register AIC_IDCR Write-only –

0x128 Interrupt Clear Command Register AIC_ICCR Write-only –

0x12C Interrupt Set Command Register AIC_ISCR Write-only –

0x130 End of Interrupt Command Register AIC_EOICR Write-only –

0x134 Spurious Interrupt Vector Register AIC_SPU Read/Write 0x0

0x138 Debug Control Register AIC_DCR Read/Write 0x0

0x13C Reserved – – –

252
1768I–ATARM–09-Jul-09

AT91RM9200

22.8.2 AIC Source Mode Register
Register Name: AIC_SMR0..AIC_SMR31

Access Type: Read/Write

Reset Value: 0x0

• PRIOR: Priority Level
Programs the priority level for all sources except FIQ source (source 0).

The priority level can be between 0 (lowest) and 7 (highest).

The priority level is not used for the FIQ in the related SMR register AIC_SMRx.

• SRCTYPE: Interrupt Source Type
The active level or edge is not programmable for the internal interrupt sources.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– SRCTYPE – – PRIOR

SRCTYPE Internal Interrupt Sources External Interrupt Sources

0 0 High-level Sensitive Low-level Sensitive

0 1 Positive-edge Triggered Negative-edge Triggered

1 0 High-level Sensitive High-level Sensitive

1 1 Positive-edge Triggered Positive-edge Triggered

253
1768I–ATARM–09-Jul-09

AT91RM9200

22.8.3 AIC Source Vector Register
Register Name: AIC_SVR0..AIC_SVR31

Access Type: Read/Write

Reset Value: 0x0

• VECTOR: Source Vector
The user may store in these registers the addresses of the corresponding handler for each interrupt source.

22.8.4 AIC Interrupt Vector Register
Register Name: AIC_IVR

Access Type: Read-only

Reset Value: 0

• IRQV: Interrupt Vector Register
The Interrupt Vector Register contains the vector programmed by the user in the Source Vector Register corresponding to
the current interrupt.

The Source Vector Register is indexed using the current interrupt number when the Interrupt Vector Register is read.

When there is no current interrupt, the Interrupt Vector Register reads the value stored in AIC_SPU.

31 30 29 28 27 26 25 24

VECTOR

23 22 21 20 19 18 17 16

VECTOR

15 14 13 12 11 10 9 8

VECTOR

7 6 5 4 3 2 1 0

VECTOR

31 30 29 28 27 26 25 24

IRQV

23 22 21 20 19 18 17 16

IRQV

15 14 13 12 11 10 9 8

IRQV

7 6 5 4 3 2 1 0

IRQV

254
1768I–ATARM–09-Jul-09

AT91RM9200

22.8.5 AIC FIQ Vector Register

Register Name: AIC_FVR

Access Type: Read-only

Reset Value: 0

• FIQV: FIQ Vector Register
The FIQ Vector Register contains the vector programmed by the user in the Source Vector Register 0. When there is no
fast interrupt, the Fast Interrupt Vector Register reads the value stored in AIC_SPU.

22.8.6 AIC Interrupt Status Register
Register Name: AIC_ISR

Access Type: Read-only

Reset Value: 0

• IRQID: Current Interrupt Identifier
The Interrupt Status Register returns the current interrupt source number.

31 30 29 28 27 26 25 24

FIQV

23 22 21 20 19 18 17 16

FIQV

15 14 13 12 11 10 9 8

FIQV

7 6 5 4 3 2 1 0

FIQV

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – IRQID

255
1768I–ATARM–09-Jul-09

AT91RM9200

22.8.7 AIC Interrupt Pending Register
Register Name: AIC_IPR

Access Type: Read-only

Reset Value: 0

• FIQ, SYS, PID2-PID31: Interrupt Pending
0 = Corresponding interrupt is no pending.

1 = Corresponding interrupt is pending.

22.8.8 AIC Interrupt Mask Register
Register Name: AIC_IMR

Access Type: Read-only

Reset Value: 0

• FIQ, SYS, PID2-PID31: Interrupt Mask
0 = Corresponding interrupt is disabled.

1 = Corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

256
1768I–ATARM–09-Jul-09

AT91RM9200

22.8.9 AIC Core Interrupt Status Register
Register Name: AIC_CISR

Access Type: Read-only

Reset Value: 0

• NFIQ: NFIQ Status
0 = nFIQ line is deactivated.

1 = nFIQ line is active.

• NIRQ: NIRQ Status
0 = nIRQ line is deactivated.

1 = nIRQ line is active.

22.8.10 AIC Interrupt Enable Command Register
Register Name: AIC_IECR

Access Type: Write-only

• FIQ, SYS, PID2-PID3: Interrupt Enable
0 = No effect.

1 = Enables corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – NIRQ NIFQ

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

257
1768I–ATARM–09-Jul-09

AT91RM9200

22.8.11 AIC Interrupt Disable Command Register
Register Name: AIC_IDCR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Disable
0 = No effect.

1 = Disables corresponding interrupt.

22.8.12 AIC Interrupt Clear Command Register
Register Name: AIC_ICCR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Clear
0 = No effect.

1 = Clears corresponding interrupt.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

258
1768I–ATARM–09-Jul-09

AT91RM9200

22.8.13 AIC Interrupt Set Command Register
Register Name: AIC_ISCR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Set
0 = No effect.

1 = Sets corresponding interrupt.

22.8.14 AIC End of Interrupt Command Register
Register Name: AIC_EOICR

Access Type: Write-only

The End of Interrupt Command Register is used by the interrupt routine to indicate that the interrupt treatment is complete.
Any value can be written because it is only necessary to make a write to this register location to signal the end of interrupt
treatment.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

259
1768I–ATARM–09-Jul-09

AT91RM9200

22.8.15 AIC Spurious Interrupt Vector Register
Register Name: AIC_SPU

Access Type: Read/Write

Reset Value: 0

• SIQV: Spurious Interrupt Vector Register
The use may store the address of a spurious interrupt handler in this register. The written value is returned in AIC_IVR in
case of a spurious interrupt and in AIC_FVR in case of a spurious fast interrupt.

31 30 29 28 27 26 25 24

SIQV

23 22 21 20 19 18 17 16

SIQV

15 14 13 12 11 10 9 8

SIQV

7 6 5 4 3 2 1 0

SIQV

260
1768I–ATARM–09-Jul-09

AT91RM9200

22.8.16 AIC Debug Control Register
Register Name: AIC_DEBUG

Access Type: Read/Write

Reset Value: 0

• PROT: Protection Mode
0 = The Protection Mode is disabled.

1 = The Protection Mode is enabled.

• GMSK: General Mask
0 = The nIRQ and nFIQ lines are normally controlled by the AIC.

1 = The nIRQ and nFIQ lines are tied to their inactive state.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – GMSK PROT

261
1768I–ATARM–09-Jul-09

AT91RM9200

23. Power Management Controller (PMC)

23.1 Overview
The Power Management Controller (PMC) generates all the clocks of a system thanks to the
integration of two oscillators and two PLLs.

The PMC provides clocks to the embedded processor and enables the idle mode by stopping
the processor clock until the next interrupt.

The PMC independently provides and controls up to thirty peripheral clocks and four program-
mable clocks that can be used as outputs on pins to feed external devices. The integration of the
PLLs supplies the USB devices and host ports with a 48 MHz clock, as required by the bus
speed, and the rest of the system with a clock at another frequency. Thus, the fully-featured
Power Management Controller optimizes power consumption of the whole system and supports
the Normal, Idle, Slow Clock and Standby operating modes.

The main features of the PMC are:

• Optimize the Power Consumption of the Whole System

• Embeds and Controls:

– One Main Oscillator and One Slow Clock Oscillator (32.768 kHz)

– Two Phase Locked Loops (PLLs) and Dividers

– Clock Prescalers

• Provides:

– the Processor Clock PCK

– the Master Clock MCK

– the USB Clocks, UHPCK and UDPCK, Respectively for the USB Host Port and the
USB Device Port

– Programmable Automatic PLL Switch-off in USB Device Suspend Conditions

– up to Thirty Peripheral Clocks

– up to Four Programmable Clock Outputs

• Four Operating Modes:

– Normal Mode, Idle Mode, Slow Clock Mode, Standby Mode

262
1768I–ATARM–09-Jul-09

AT91RM9200

23.2 Product Dependencies

23.2.1 I/O Lines
The Power Management Controller is capable of handling up to four Programmable Clocks,
PCK0 to PCK3.

A Programmable Clock is generally multiplexed on a PIO Controller. The user must first program
the PIO controllers to assign the pins of the Programmable Clock to its peripheral function.

23.2.2 Interrupt
The Power Management Controller has an interrupt line connected to the Advanced Interrupt
Controller (AIC). Handling the PMC interrupt requires programming the AIC before configuring
the PMC.

23.2.3 Oscillator and PLL Characteristics
The electrical characteristics of the embedded oscillators and PLLs are product-dependent,
even if the way to control them is similar.

All of the parameters for both oscillators and the PLLs are given in the DC Characteristics sec-
tion of the product datasheet. These figures are used not only for the hardware design, as they
affect the external components to be connected to the pins, but also the software configuration,
as they determine the waiting time for the startup and lock times to be programmed.

23.2.4 Peripheral Clocks
The Power Management Controller provides and controls up to thirty peripheral clocks. The bit
number permitting the control of a peripheral clock is the Peripheral ID of the embedded
peripheral.

When the Peripheral ID does not correspond to a peripheral, either because this is an external
interrupt or because there are less than thirty peripherals, the control bits of the Peripheral ID
are not implemented in the PMC and programming them has no effect on the behavior of the
PMC.

23.2.5 USB Clocks
The Power Management Controller provides and controls two USB Clocks, the UHPCK for the
USB Host Port, and the UDPCK for the USB Device.

If the product does not embed either the USB Host Port or the USB Device Port, the associated
control bits and registers are not implemented in the PMC and programming them has no effect
on the behavior of the PMC.

263
1768I–ATARM–09-Jul-09

AT91RM9200

23.3 Block Diagram

Figure 23-1. Power Management Controller Block Diagram

APB

PIO

PCK0-PCK3

ARM7
Processor

User Interface

UDP

UHP

Embedded
Peripherals

MCK
(Continuous)

Processor
Clock

MCK

(Individually
Switchable)

AIC

ST

RTC

SLCK

PMCIRQ

XIN32

XOUT32

XIN

XOUT

PLLRCA

PLLRCB

IRQ or FIQ

UDPCK

UHPCK

Programmable
Clocks

Memory Controller

Suspend

Slow
Clock
SLCK

Main
Clock

PLLA
Clock

PLLB
Clock

SLCK
Main Clock

PLLA Clock
PLLB Clock

Prescaler
/2,/4,...,/64

ARM920T
Processor

Processor
Clock

Processor
Clock

Controller

Idle Mode

Divider
/1,/2,/3,/4

ARM9-systems
only

Master Clock Controller

Peripherals
Clock Controller

ON/OFF

USB Clock
Controller

ON/OFF

SLCK
Main Clock

PLLA Clock
PLLB Clock

Prescaler
/2,/4,...,/64

Programmable Clock Controller

Slow
Clock
SLCK

PLLB
Clock

30

4

Slow Clock
Oscillator

Main
Oscillator

PLL and
Divider A

PLL and
Divider B

Clock Generator

Power Management Controller

264
1768I–ATARM–09-Jul-09

AT91RM9200

23.4 Functional Description

23.4.1 Operating Modes Definition
The following operating modes are supported by the PMC and offer different power consumption
levels and event response latency times:

• Normal Mode: The ARM processor clock is enabled and peripheral clocks are enabled
depending on application requirements.

• Idle Mode: The ARM processor clock is disabled and waiting for the next interrupt (or a main
reset). The peripheral clocks are enabled depending on application requirements. PDC
transfers are still possible.

• Slow Clock Mode: Slow clock mode is similar to normal mode, but the main oscillator and the
PLL are switched off to save power and the processor and the peripherals run in Slow Clock
mode. Note that slow clock mode is the mode selected after the reset.

• Standby Mode: Standby mode is a combination of Slow Clock mode and Idle Mode. It
enables the processor to respond quickly to a wake-up event by keeping power consumption
very low.

23.4.2 Clock Definitions
The Power Management Controller provides the following clocks:

• Slow Clock (SLCK), typically at 32.768 kHz, is the only permanent clock within the system.

• Master Clock (MCK), programmable from a few hundred Hz to the maximum operating
frequency of the device. It is available to the modules running permanently, such as the AIC
and the Memory Controller.

• Processor Clock (PCK), typically the Master Clock for ARM7-based systems and a faster
clock on ARM9-based systems, switched off when entering idle mode.

• Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SSC, SPI,
TWI, TC, MCI, etc.) and independently controllable. In order to reduce the number of clock
names in a product, the Peripheral Clocks are named MCK in the product datasheet.

• UDP Clock (UDPCK), typically at 48 MHz, required by the USB Device Port operations.

• UHP Clock (UHPCK), typically at 48 MHz, required by the USB Host Port operations.

• Programmable Clock Outputs (PCK0 to PCK3) can be selected from the clocks provided by
the clock generator and driven on the PCK0 to PCK3 pins.

23.4.3 Clock Generator
The Clock Generator embeds:

• the Slow Clock Oscillator

• the Main Oscillator

• two PLL and divider blocks, A and B

The Clock Generator may optionally integrate a divider by 2. The ARM7-based systems gener-
ally embed PLLs able to output between 20 MHz and 100 MHz and do not embed the divider
by 2. The ARM9-based systems generally embed PLLs able to output between 80 MHz and
180 MHz. As the 48 MHz required by the USB cannot be reached by such a PLL, the optional
divider by 2 is implemented.

The block diagram of the Clock Generator is shown in Figure 23-2.

265
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 23-2. Clock Generator Block Diagram

23.4.4 Slow Clock Oscillator

23.4.4.1 Slow Clock Oscillator Connection
The Clock Generator integrates a low-power 32.768 kHz oscillator. The XIN32 and XOUT32
pins must be connected to a 32.768 kHz crystal. Two external capacitors must be wired as
shown in Figure 23-3.

Figure 23-3. Typical Slow Clock Oscillator Connection

23.4.4.2 Slow Clock Oscillator Startup Time
The startup time of the Slow Clock Oscillator is given in the DC Characteristics section of the
product datasheet. As it is often higher than 500 ms and the processor requires an assertion of
the reset until it has stabilized, the user must implement an external reset supervisor covering
this startup time. However, this startup is only required in case of cold reset, i.e., in case of sys-
tem power-up. When a warm reset occurs, the length of the reset pulse may be much lower. For
further details, see Section 15. “AT91RM9200 Reset Controller” on page 117.

Slow Clock
Oscillator

Main
Oscillator

Clock Generator

XIN32

XOUT32

XIN

XOUT

PLLRCA

PLLRCB

Slow
Clock
SLCK

Main
Clock

PLLA
Clock

PLLB
Clock

PLL ADivider A

Divider B PLL B /2
(optional)

Main Clock
Frequency

Counter

XIN32 XOUT32 GNDOSC

CL2CL1

32.768 kHz
Crystal

266
1768I–ATARM–09-Jul-09

AT91RM9200

23.4.5 Main Oscillator
Figure 23-4 shows the Main Oscillator block diagram.

Figure 23-4. Main Oscillator Block Diagram

23.4.5.1 Main Oscillator Connections
The Clock Generator integrates a Main Oscillator that is designed for a 3 to 20 MHz fundamental
crystal. The typical crystal connection is illustrated in Figure 23-5. The 1 kΩ resistor is only
required for crystals with frequencies lower than 8 MHz. The oscillator contains internal capaci-
tors on each XIN and XOUT pin. For further details on the electrical characteristics of the Main
Oscillator, see the section “AT91RM9200 Electrical Characteristics”.

Figure 23-5. Typical Crystal Connection

23.4.5.2 Main Oscillator Startup Time
The startup time of the Main Oscillator is given in the DC Characteristics section of the product
datasheet. The startup time depends on the crystal frequency and decreases when the fre-
quency rises.

23.4.5.3 Main Oscillator Control
To minimize the power required to start up the system, the Main Oscillator is disabled after reset
and the Slow Clock mode is selected.

Main
Oscillator

XIN

XOUT

MOSCEN

Main
Oscillator
Counter

OSCOUNT

MOSCSSlow
Clock

Main
Clock

Main Clock
Frequency

Counter

MAINF

MAINRDY

XIN XOUT GNDOSC

CL2CL1

1K

267
1768I–ATARM–09-Jul-09

AT91RM9200

The software enables or disables the Main Oscillator so as to reduce power consumption by
clearing the MOSCEN bit in the Main Oscillator Register (CKGR_MOR). When disabling the
Main Oscillator by clearing the MOSCEN bit in CKGR_MOR, the MOSCS bit in PMC_SR is
automatically cleared indicating the Main Clock is off.

When enabling the Main Oscillator, the user must initiate the Main Oscillator counter with a value
corresponding to the startup time of the oscillator. This startup time depends on the crystal fre-
quency connected to the main oscillator. When the MOSCEN bit and the OSCOUNT are written
in CKGR_MOR to enable the Main Oscillator, the MOSCS bit is cleared and the counter starts
counting down on Slow Clock from the OSCOUNT value. Since the OSCOUNT value is coded
with 8 bits, the maximum startup time is about 62 ms.

When the counter reaches 0, the MOSCS bit is set, indicating that the Main Clock is valid. Set-
ting the MOSCS bit in PMC_IMR can trigger an interrupt to the processor on this event.

23.4.5.4 Main Clock Frequency Counter
The Main Oscillator features a Main Clock frequency counter that provides the quartz frequency
connected to the Main Oscillator. Generally, this value is known by the system designer; how-
ever, it is useful for the boot program to configure the device with the correct clock speed,
independently of the application.

The Main Clock frequency counter starts incrementing at the Main Clock speed after the next ris-
ing edge of the Slow Clock as soon as the Main Oscillator is stable, i.e., as soon as the MOSCS
bit is set. Then, at the 16th falling edge of Slow Clock, the bit MAINRDY in CKGR_MCFR (Main
Clock Frequency Register) is set and the counter stops counting. Its value can be read in the
MAINF field of CKGR_MCFR and gives the number of Main Clock cycles during 16 periods of
Slow Clock, so that the frequency of the crystal connected on the Main Oscillator can be
determined.

23.4.5.5 Main Oscillator Bypass
The user can input a clock on the device instead of connecting a crystal. In this case, the user
has to provide the external clock signal on the pin XIN. The input characteristics of the XIN pin
under these conditions are given in the product Electrical Characteristics section. The program-
mer has to be sure not to modify the MOSCEN bit in the Main Oscillator Register (CKGR_MOR).
This bit must remain at 0, its reset value, for the external clock to operate properly. While this bit
is at 0, the pin XIN is pulled down by a 500 kΩ resistor in parallel with a 40 pF capacitor.

The external clock signal must meet the requirements relating to the power supply VDDPLL (i.e.,
between 1.65V and 1.95V) and cannot exceed 50 MHz.

268
1768I–ATARM–09-Jul-09

AT91RM9200

23.4.6 Divider and PLL Blocks
The Clock Generator features two Divider/PLL Blocks that generates a wide range of frequen-
cies. Additionally, they provide a 48 MHz signal to the embedded USB device and/or host ports,
regardless of the frequency of the Main Clock.

Figure 23-6 shows the block diagram of the divider and PLL blocks.

Figure 23-6. Divider and PLL Blocks Block Diagram

23.4.6.1 PLL Filters
The two PLLs require connection to an external second-order filter through the pins PLLRC. Fig-
ure 23-7 shows a schematic of these filters.

Figure 23-7. PLL Capacitors and Resistors

Values of R, C1 and C2 to be connected to the PLLRC pins must be calculated as a function of
the PLL input frequency, the PLL output frequency and the phase margin. A trade-off has to be
found between output signal overshoot and startup time.

Divider B

PLLRCB

DIVB

PLL B

MULB

Divider A

PLLRCA

DIVA

PLL A

PLL B
Counter

PLLBCOUNT

LOCKB

PLL A
Counter

PLLACOUNT

LOCKA

MULA

OUTB

OUTA

PLL B
Output

Slow
Clock

Main
Clock

PLL A
Output

GND

C1

C2

PLL
PLLRC

R

269
1768I–ATARM–09-Jul-09

AT91RM9200

23.4.6.2 PLL Source Clock
The source of PLLs A and B is respectively the output of Divider A, i.e. the Main Clock divided by
DIVA, and the output of Divider B, i.e. the Main Clock divided by DIVB.

As the input frequency of the PLLs is limited, the user has to make sure that the programming of
DIVA and DIVB are compliant with the input frequency range of the PLLs, which is given in the
DC Characteristics section of the product datasheet.

23.4.6.3 Divider and Phase Lock Loop Programming
The two dividers increase the accuracy of the PLLA and the PLLB clocks independently of the
input frequency.

The Main Clock can be divided by programming the DIVB field in CKGR_PLLBR and the DIVA
field in CKGR_PLLAR. Each divider can be set between 1 and 255 in steps of 1. When the DIVA
and DIVB fields are set to 0, the output of the divider and the PLL outputs A and B are a contin-
uous signal at level 0. On reset, the DIVA and DIVB fields are set to 0, thus both PLL input
clocks are set to 0.

The two PLLs of the clock generator allow multiplication of the divider’s outputs. The PLLA and
the PLLB clock signals have a frequency that depends on the respective source signal fre-
quency and on the parameters DIV (DIVA, DIVB) and MUL (MULA, MULB). The factor applied to
the source signal frequency is (MUL + 1)/DIV. When MULA or MULB is written to 0, the corre-
sponding PLL is disabled and its power consumption is saved. Re-enabling the PLLA or the
PLLB can be performed by writing a value higher than 0 in the MULA or MULB field,
respectively.

Whenever a PLL is re-enabled or one of its parameters is changed, the LOCKA or LOCKB bit in
PMC_SR is automatically cleared. The values written in the PLLACOUNT or PLLBCOUNT fields
in CKGR_PPLAR and CKGR_PLLBR, respectively, are loaded in the corresponding PLL coun-
ter. The PLL counter then decrements at the speed of the Slow Clock until it reaches 0. At this
time, the corresponding LOCK bit is set in PMC_SR and can trigger an interrupt to the proces-
sor. The user has to load the number of Slow Clock cycles required to cover the PLL transient
time into the PLLACOUNT and PLLBCOUNT field. The transient time depends on the PLL fil-
ters. The initial state of the PLL and its target frequency can be calculated using a specific tool
provided by Atmel.

23.4.6.4 PLLB Divider by 2
In ARM9-based systems, the PLLB clock may be divided by two. This divider can be enabled by
setting the bit USB_96M of CKGR_PLLBR. In this case, the divider by 2 is enabled and the
PLLB must be programmed to output 96 MHz and not 48 MHz, thus ensuring correct operation
of the USB bus.

270
1768I–ATARM–09-Jul-09

AT91RM9200

23.4.7 Clock Controllers
The Power Management Controller provides the clocks to the different peripherals of the sys-
tem, either internal or external. It embeds the following elements:

• the Master Clock Controller, which selects the Master Clock.

• the Processor Clock Controller, which implements the Idle Mode.

• the Peripheral Clock Controller, which provides power saving by controlling clocks of the
embedded peripherals.

• the USB Clock Controller, which distributes the 48 MHz clock to the USB controllers.

• the Programmable Clock Controller, which allows generation of up to four programmable
clock signals on external pins.

23.4.7.1 Master Clock Controller
The Master Clock Controller provides selection and division of the Master Clock (MCK). MCK is
the clock provided to all the peripherals and the memory controller.

The Master Clock is selected from one of the clocks provided by the Clock Generator. Selecting
the Slow Clock enables Slow Clock Mode by providing a 32.768 kHz signal to the whole device.
Selecting the Main Clock saves power consumption of both PLLs, but prevents using the USB
ports. Selecting the PLLB Clock saves the power consumption of the PLLA by running the pro-
cessor and the peripheral at 48 MHz required by the USB ports. Selecting the PLLA Clock runs
the processor and the peripherals at their maximum speed while running the USB ports at 48
MHz.

The Master Clock Controller is made up of a clock selector and a prescaler, as shown in Figure
23-8. It also contains an optional Master Clock divider in products integrating an ARM9 proces-
sor. This allows the processor clock to be faster than the Master Clock.

The Master Clock selection is made by writing the CSS field (Clock Source Selection) in
PMC_MCKR (Master Clock Register). The prescaler supports the division by a power of 2 of the
selected clock between 1 and 64. The PRES field in PMC_MCKR programs the prescaler.

When the Master Clock divider is implemented, it can be programmed between 1 and 4 through
the MDIV field in PMC_MCKR.

Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is cleared in
PMC_SR. It reads 0 until the Master Clock is established. Then, the MCKRDY bit is set and can
trigger an interrupt to the processor. This feature is useful when switching from a high-speed
clock to a lower one to inform the software when the change is actually done.

Note: A new value to be written in PMC_MCKR must not be the same as the current value in
PMC_MCKR.

271
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 23-8. Master Clock Controller

23.4.7.2 Processor Clock Controller
The PMC features a Processor Clock Controller that implements the Idle Mode. The Processor
Clock can be enabled and disabled by writing the System Clock Enable (PMC_SCER) and Sys-
tem Clock Disable Registers (PMC_SCDR). The status of this clock (at least for debug purpose)
can be read in the System Clock Status Register (PMC_SCSR).

Processor Clock Source

The clock provided to the processor is determined by the Master Clock controller. On ARM7-
based systems, the Processor Clock source is directly the Master Clock.

On ARM9-based systems, the Processor Clock source might be 2, 3 or 4 times the Master
Clock. This ratio value is determined by programming the field MDIV of the Master Clock Regis-
ter (PMC_MCKR).

Idle Mode

The Processor Clock is enabled after a reset and is automatically re-enabled by any enabled
interrupt. The Idle Mode is achieved by disabling the Processor Clock, which is automatically re-
enabled by any enabled fast or normal interrupt, or by the reset of the product.

When the Processor Clock is disabled, the current instruction is finished before the clock is
stopped, but this does not prevent data transfers from other masters of the system bus.

23.4.7.3 Peripheral Clock Controller
The PMC controls the clocks of each embedded peripheral. The user can individually enable
and disable the Master Clock on the peripherals by writing into the Peripheral Clock Enable
(PMC_PCER) and Peripheral Clock Disable (PMC_PCDR) registers. The status of the periph-
eral clock activity can be read in the Peripheral Clock Status Register (PMC_PCSR).

When a peripheral clock is disabled, the clock is immediately stopped. When the clock is re-
enabled, the peripheral resumes action where it left off. The peripheral clocks are automatically
disabled after a reset.

In order to stop a peripheral, it is recommended that the system software wait until the peripheral
has executed its last programmed operation before disabling the clock. This is to avoid data cor-
ruption or erroneous behavior of the system.

The bit number within the Peripheral Clock Control registers (PMC_PCER, PMC_PCDR, and
PMC_PCSR) is the Peripheral Identifier defined at the product level. Generally, the bit number
corresponds to the interrupt source number assigned to the peripheral.

SLCK

Master Clock
Prescaler

MCK
PRESCD

Master
Clock
Divider

To the Processor
Clock Controller

Main Clock

PLLA Clock

PLLB Clock

MDIV

To the Processor
Clock Controller

MCK

ARM9 Products

ARM7 Products

272
1768I–ATARM–09-Jul-09

AT91RM9200

23.4.7.4 USB Clock Controller
If using one of the USB ports, the user has to program the Divider and PLL B block to output a
48 MHz signal with an accuracy of ± 0.25%.

When the clock for the USB is stable, the USB device and host clocks, UDPCK and UHPCK, can
be enabled. They can be disabled when the USB transactions are finished, so that the power
consumption generated by the 48 MHz signal on these peripherals is saved.

The USB ports require both the 48 MHz signal and the Master Clock. The Master Clock may be
controlled via the Peripheral Clock Controller.

USB Device Clock Control

The USB Device Port clock UDPCK can be enabled by writing 1 at the UDP bit in PMC_SCER
(System Clock Enable Register) and disabled by writing 1 at the bit UDP in PMC_SCDR (Sys-
tem Clock Disable Register). The activity of UDPCK is shown in the bit UDP of PMC_SCSR
(System Clock Status Register).

USB Device Port Suspend

When the USB Device Port detects a suspend condition, the 48 MHz clock is automatically dis-
abled, i.e., the UDP bit in PMC_SCSR is cleared. It is also possible to automatically disable the
Master Clock provided to the USB Device Port on a suspend condition. The MCKUDP bit in
PMC_SCSR configures this feature and can be set or cleared by writing one in the same bit of
PMC_SCER and PMC_SCDR.

USB Host Clock Control

The USB Host Port clock UHPCK can be enabled by writing 1 at the UHP bit in PMC_SCER
(System Clock Enable Register) and disabled by writing 1 at the UHP bit in PMC_SCDR (Sys-
tem Clock Disable Register). The activity of UDPCK is shown in the bit UHP of PMC_SCSR
(System Clock Status Register).

23.4.7.5 Programmable Clock Output Controller
The PMC controls up to four signals to be output on external pins PCK0 to PCK3. Each signal
can be independently programmed via the registers PMC_PCK0 to PMC_PCK3.

PCK0 to PCK3 can be independently selected between the four clocks provided by the Clock
Generator by writing the CSS field in PMC_PCK0 to PMC_PCK3. Each output signal can also
be divided by a power of 2 between 1 and 64 by writing the field PRES (Prescaler) in
PMC_PCK0 to PMC_PCK3.

Each output signal can be enabled and disabled by writing 1 in the corresponding bit PCK0 to
PCK3 of PMC_SCER and PMC_SCDR, respectively. Status of the active programmable output
clocks are given in the bits PCK0 to PCK3 of PMC_SCSR (System Clock Status Register).

Moreover, like the MCK, a status bit in PMC_SR indicates that the Programmable Clock is actu-
ally what has been programmed in the Programmable Clock registers.

As the Programmable Clock Controller does not manage with glitch prevention when switching
clocks, it is strongly recommended to disable the Programmable Clock before any configuration
change and to re-enable it after the change is actually performed.

Note also that it is required to assign the pin to the Programmable Clock operation in the PIO
Controller to enable the signal to be driven on the pin.

273
1768I–ATARM–09-Jul-09

AT91RM9200

23.5 Clock Switching Details

23.5.1 Master Clock Switching Timings
Table 23-1 gives the worst case timing required for the Master Clock to switch from one selected
clock to another one. This is in the event that the prescaler is de-activated. When the prescaler
is activated, an additional time of 64 clock cycles of the new selected clock has to be added.

23.5.2 Clock Switching Waveforms

Figure 23-9. Switch Master Clock from Slow Clock to PLLA Clock

Table 23-1. Clock Switching Timings (Worst Case)

From Main Clock SLCK PLLA Clock PLLB Clock

To

Main Clock –
4 x SLCK +

2.5 x Main Clock

3 x PLLA Clock +

4 x SLCK +
1 x Main Clock

3 x PLLB Clock +
4 x SLCK +

1 x Main Clock

SLCK
0.5 x Main Clock +

4.5 x SLCK
–

3 x PLLA Clock +
5 x SLCK

3 x PLLB Clock +
5 x SLCK

PLLA Clock

0.5 x Main Clock +
4 x SLCK +

PLLACOUNT x SLCK +
2.5 x PLLA Clock

2.5 x PLLA Clock +
5 x SLCK +

PLLACOUNT x SLCK

2.5 x PLLA Clock +
4 x SLCK +

PLLB COUNT x SLCK

3 x PLLA Clock +
4 x SLCK +

1.5 x PLLA Clock

PLLB Clock

0.5 x Main Clock +
4 x SLCK +

PLLBCOUNT x SLCK +
2.5 x PLLB Clock

2.5 x PLLB Clock +
5 x SLCK +

PLLBCOUNT x SLCK

3 x PLLB Clock +
4 x SLCK +

1.5 x PLLB Clock

2.5 x PLLB Clock +
4 x SLCK +

PLLACOUNT x SLCK

Slow Clock

LOCK A

MCKRDY

Master Clock

Write PMC_MCKR

PLLA Clock

274
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 23-10. Switch Master Clock from Main Clock to Slow Clock

Figure 23-11. Change PLLA Programming

Slow Clock

Main Clock

MCKRDY

Master Clock

Write PMC_MCKR

Slow Clock

PLLA Clock

LOCKA

MCKRDY

Master Clock

Write CKGR_PLLAR

Slow Clock

275
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 23-12. Programmable Clock Output Programming

PLLA Clock

PCKRDY

PCKx Output

Write PMC_PCKX

Write PMC_SCER

Write PMC_SCDR PCKx is disabled

PCKx is enabled

PLLA Clock is selected

276
1768I–ATARM–09-Jul-09

AT91RM9200

23.6 Power Management Controller (PMC) User Interface

Table 23-2. Register Mapping

Offset Register Name Access Reset Value

0x0000 System Clock Enable Register PMC_SCER Write-only –

0x0004 System Clock Disable Register PMC_SCDR Write-only –

0x0008 System Clock Status Register PMC _SCSR Read-only 0x01

0x000C Reserved – – –

0x0010 Peripheral Clock Enable Register PMC _PCER Write-only –

0x0014 Peripheral Clock Disable Register PMC_PCDR Write-only –

0x0018 Peripheral Clock Status Register PMC_PCSR Read-only 0x0

0x001C Reserved – – –

0x0020 Main Oscillator Register CKGR_MOR ReadWrite 0x0

0x0024 Main Clock Frequency Register CKGR_MCFR Read-only -

0x0028 PLL A Register CKGR_PLLAR ReadWrite 0x3F00

0x002C PLL B Register CKGR_PLLBR ReadWrite 0x3F00

0x0030 Master Clock Register PMC_MCKR Read/Write 0x00

0x0034 Reserved – – –

0x0038 Reserved – – –

0x003C Reserved – – –

0x0040 Programmable Clock 0 Register PMC_PCK0 Read/Write 0x0

0x0044 Programmable Clock 1 Register PMC_PCK1 Read/Write 0x0

0x0048 Programmable Clock 2 Register PMC_PCK2 Read/Write 0x0

0x004C Programmable Clock 3 Register PMC_PCK3 Read/Write 0x0

0x0050 Reserved – – –

0x0054 Reserved – – –

0x0058 Reserved – – –

0x005C Reserved – – –

0x0060 Interrupt Enable Register PMC_IER Write-only --

0x0064 Interrupt Disable Register PMC_IDR Write-only --

0x0068 Status Register PMC_SR Read-only --

0x006C Interrupt Mask Register PMC_IMR Read-only 0x0

277
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.1 PMC System Clock Enable Register
Register Name: PMC_SCER

Access Type: Write-only

• PCK: Processor Clock Enable
0 = No effect.

1 = Enables the Processor Clock.

• UDP: USB Device Port Clock Enable
0 = No effect.

1 = Enables the 48 MHz clock of the USB Device Port.

• MCKUDP: USB Device Port Master Clock Automatic Disable on Suspend Enable
0 = No effect.

1 = Enables the automatic disable of the Master Clock of the USB Device Port when a suspend condition occurs.

• UHP: USB Host Port Clock Enable
0 = No effect.

1 = Enables the 48 MHz clock of the USB Host Port.

• PCK0...PCK3: Programmable Clock Output Enable
0 = No effect.

1 = Enables the corresponding Programmable Clock output.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3 PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

– – – UHP – MCKUDP UDP PCK

278
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.2 PMC System Clock Disable Register
Register Name: PMC_SCDR

Access Type: Write-only

• PCK: Processor Clock Disable
0 = No effect.

1 = Disables the Processor Clock.

• UDP: USB Device Port Clock Disable
0 = No effect.

1 = Disables the 48 MHz clock of the USB Device Port.

• MCKUDP: USB Device Port Master Clock Automatic Disable on Suspend Disable
0 = No effect.

1 = Disables the automatic disable of the Master Clock of the USB Device Port when a suspend condition occurs.

• UHP: USB Host Port Clock Disable
0 = No effect.

1 = Disables the 48 MHz clock of the USB Host Port.

• PCK0...PCK3: Programmable Clock Output Disable
0 = No effect.

1 = Disables the corresponding Programmable Clock output.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3 PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

– – – UHP – MCKUDP UDP PCK

279
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.3 PMC System Clock Status Register
Register Name: PMC_SCSR

Access Type: Read-only

• PCK: Processor Clock Status
0 = The Processor Clock is disabled.

1 = The Processor Clock is enabled.

• UDP: USB Device Port Clock Status
0 = The 48 MHz clock of the USB Device Port is disabled.

1 = The 48 MHz clock of the USB Device Port is enabled.

• MCKUDP: USB Device Port Master Clock Automatic Disable on Suspend Status
0 = The automatic disable of the Master clock of the USB Device Port when suspend condition occurs is disabled.

1 = The automatic disable of the Master clock of the USB Device Port when suspend condition occurs is enabled.

• UHP: USB Host Port Clock Status
0 = The 48 MHz clock of the USB Host Port is disabled.

1 = The 48 MHz clock of the USB Host Port is enabled.

• PCK0...PCK3: Programmable Clock Output Status
0 = The corresponding Programmable Clock output is disabled.

1 = The corresponding Programmable Clock output is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3 PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

– – – UHP – MCKUDP UDP PCK

280
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.4 PMC Peripheral Clock Enable Register
Register Name: PMC_PCER

Access Type: Write-only

• PID2...PID31: Peripheral Clock Enable
0 = No effect.

1 = Enables the corresponding peripheral clock.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 – –

281
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.5 PMC Peripheral Clock Disable Register
Register Name: PMC_PCDR

Access Type: Write-only

• PID2...PID31: Peripheral Clock Disable
0 = No effect.

1 = Disables the corresponding peripheral clock.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 – –

282
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.6 PMC Peripheral Clock Status Register
Register Name: PMC_PCSR

Access Type: Read-only

• PID2...PID31: Peripheral Clock Status
0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 – –

283
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.7 PMC Clock Generator Main Oscillator Register
Register Name: CKGR_MOR

Access Type: Read/Write

• MOSCEN: Main Oscillator Enable

A crystal must be connected between XIN and XOUT.

0 = The Main Oscillator is disabled.

1 = The Main Oscillator is enabled. OSCBYPASS must be set to 0.

When MOSCEN is set, the MOSCS flag is set once the Main Oscillator startup time is achieved.

• OSCBYPASS: Oscillator Bypass

0 = No effect.

1 = The Main Oscillator is bypassed. MOSCEN must be set to 0. An external clock must be connected on XIN.

When OSCBYPASS is set, the MOSCS flag in PMC_SR is automatically set.

Clearing MOSCEN and OSCBYPASS bits allows resetting the MOSCS flag.

• OSCOUNT: Main Oscillator Start-up Time

Specifies the number of Slow Clock cycles multiplied by 8 for the Main Oscillator start-up time.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

OSCOUNT

7 6 5 4 3 2 1 0

– – – – – – OSCBYPASS MOSCEN

284
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.8 PMC Clock Generator Main Clock Frequency Register
Register Name: CKGR_MCFR

Access Type: Read-only

• MAINF: Main Clock Frequency
Gives the number of Main Clock cycles within 16 Slow Clock periods.

• MAINRDY: Main Clock Ready
0 = MAINF value is not valid or the Main Oscillator is disabled.

1 = The Main Oscillator has been enabled previously and MAINF value is available.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – MAINRDY

15 14 13 12 11 10 9 8

MAINF

7 6 5 4 3 2 1 0

MAINF

285
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.9 PMC Clock Generator PLL A Register
Register Name: CKGR_PLLAR

Access Type: Read/Write

Possible limitations on PLL A input frequencies and multiplier factors should be checked before using the Clock Generator.

Value to be written in CKGR_PLLAR must not be the same as current value in CKGR_PLLAR.

• DIVA: Divider A

• PLLACOUNT: PLL A Counter
Specifies the number of Slow Clock cycles before the LOCKA bit is set in PMC_SR after CKGR_PLLAR is written.

• OUTA: PLL A Clock Frequency Range

• MULA: PLL A Multiplier
0 = The PLL A is deactivated.

1 up to 2047 = The PLL A Clock frequency is the PLL A input frequency multiplied by MULA + 1.

31 30 29 28 27 26 25 24
– – 1 – – MULA

23 22 21 20 19 18 17 16

MULA

15 14 13 12 11 10 9 8

OUTA PLLACOUNT

7 6 5 4 3 2 1 0

DIVA

DIVA Divider Selected

0 Divider output is 0

1 Divider is bypassed

2 - 255 Divider output is the Main Clock divided by DIVA.

OUTA PLL A Frequency Output Range

0 0 80 MHz to 160 MHz

0 1 Reserved

1 0 150 MHz to 180 MHz

1 1 Reserved

286
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.10 PMC Clock Generator PLL B Register
Register Name: CKGR_PLLBR

Access Type: Read/Write

Possible limitations on PLL B input frequencies and multiplier factors should be checked before using the Clock Generator.

Value to be written in CKGR_PLLBR must not be the same as current value in CKGR_PLLBR.

• DIVB: Divider B

• PLLBCOUNT: PLL B Counter
Specifies the number of slow clock cycles before the LOCKB bit is set in PMC_SR after CKGR_PLLBR is written.

• OUTB: PLL B Clock Frequency Range

• MULB: PLL B Multiplier
0 = The PLL B is deactivated.

1 up to 2047 = The PLL B Clock frequency is the PLL B input frequency multiplied by MULB + 1.

• USB_96M: Divider by 2 Enable (only on ARM9-based Systems)
0 = USB ports clocks are PLL B Clock, therefore the PMC Clock Generator must be programmed for the PLL B Clock to be
48 MHz.

1 = USB ports clocks are PLL B Clock divided by 2, therefore the PMC Clock Generator must be programmed for the PLL
B Clock to be 96 MHz.

31 30 29 28 27 26 25 24
– – – USB_96M – MULB

23 22 21 20 19 18 17 16

MULB

15 14 13 12 11 10 9 8

OUTB PLLBCOUNT

7 6 5 4 3 2 1 0

DIVB

DIVB Divider Selected

0 Divider output is 0

1 Divider is bypassed

2 - 255 Divider output is the selected clock divided by DIVB.

OUTB PLL B Clock Frequency Range

0 0 80 MHz to 160 MHz

0 1 Reserved

1 0 150 MHz to 180 MHz

1 1 Reserved

287
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.11 PMC Master Clock Register
Register Name: PMC_MCKR

Access Type: Read/Write

Note: Value to be written in PMC_MCKR must not be the same as current value in PMC_MCKR.

• CSS: Master Clock Selection

• PRES: Master Clock Prescaler

• MDIV: Master Clock Division (on ARM9-based systems only)
0 = The Master Clock and the Processor Clock are the same.

1 = The Processor Clock is twice as fast as the Master Clock.

2 = The Processor Clock is three times faster than the Master Clock.

3 = The Processor Clock is four times faster than the Master Clock.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – MDIV

7 6 5 4 3 2 1 0

– – PRES CSS

CSS Clock Source Selection

0 0 Slow Clock is selected

0 1 Main Clock is selected

1 0 PLL A Clock is selected

1 1 PLL B Clock is selected

PRES Master Clock

0 0 0 Selected clock

0 0 1 Selected clock divided by 2

0 1 0 Selected clock divided by 4

0 1 1 Selected clock divided by 8

1 0 0 Selected clock divided by 16

1 0 1 Selected clock divided by 32

1 1 0 Selected clock divided by 64

1 1 1 Reserved

288
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.12 PMC Programmable Clock Register 0 to 3
Register Name: PMC_PCK0..PMC_PCK3

Access Type: Read/Write

• CSS: Master Clock Selection

• PRES: Programmable Clock Prescaler

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – PRES CSS

CSS Clock Source Selection

0 0 Slow Clock is selected

0 1 Main Clock is selected

1 0 PLL A Clock is selected

1 1 PLL B Clock is selected

PRES Master Clock

0 0 0 Selected clock

0 0 1 Selected clock divided by 2

0 1 0 Selected clock divided by 4

0 1 1 Selected clock divided by 8

1 0 0 Selected clock divided by 16

1 0 1 Selected clock divided by 32

1 1 0 Selected clock divided by 64

1 1 1 Reserved

289
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.13 PMC Interrupt Enable Register
Register Name: PMC_IER

Access Type: Write-only

• MOSCS: Main Oscillator Status

• LOCKA: PLL A Lock

• LOCKB: PLL B Lock

• MCKRDY: Master Clock Ready

• PCK0RDY - PCK3RDY: Programmable Clock Ready
0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3RDY PCK2RDY PCK1RDY PCK0RDY

7 6 5 4 3 2 1 0

– – – – MCKRDY LOCKB LOCKA MOSCS

290
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.14 PMC Interrupt Disable Register
Register Name: PMC_IDR

Access Type: Write-only

• MOSCS: Main Oscillator Status

• LOCKA: PLL A Lock

• LOCKB: PLL B Lock

• MCKRDY: Master Clock Ready

• PCK0RDY - PCK3RDY: Programmable Clock Ready
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3RDY PCK2RDY PCK1RDY PCK0RDY

7 6 5 4 3 2 1 0

– – – – MCKRDY LOCKB LOCKA MOSCS

291
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.15 PMC Status Register
Register Name: PMC_SR

Access Type: Read-only

• MOSCS: MOSCS Flag Status
0 = Main oscillator is not stabilized.

1 = Main oscillator is stabilized.

• LOCKA: PLLA Lock Status
0 = PLLL A is not locked

1 = PLL A is locked.

• LOCKB: PLLB Lock Status
0 = PLL B is not locked.

1 = PLL B is locked.

• MCKRDY: Master Clock Status
0 = MCK is not ready.

1 = MCK is ready.

• PCK0RDY - PCK3RDY: Programmable Clock Ready Status
0 = Programmable Clock 0 to 3 is not ready.

1 = Programmable Clock 0 to 3 is ready.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3RDY PCK2RDY PCK1RDY PCK0RDY

7 6 5 4 3 2 1 0

– – – – MCKRDY LOCKB LOCKA MOSCS

292
1768I–ATARM–09-Jul-09

AT91RM9200

23.6.16 PMC Interrupt Mask Register
Register Name: PMC_IMR

Access Type: Read-only

• MOSCS: Main Oscillator Status

• LOCKA: PLL A Lock

• LOCKB: PLL B Lock

• MCKRDY: Master Clock Ready

• PCK0RDY - PCK3RDY: Programmable Clock Ready

• MOSCS: MOSCS Interrupt Mask
0 = The corresponding interrupt is enabled.

1 = The corresponding interrupt is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PCK3RDY PCK2RDY PCK1RDY PCK0RDY

7 6 5 4 3 2 1 0

– – – – MCKRDY LOCKB LOCKA MOSCS

293
1768I–ATARM–09-Jul-09

AT91RM9200

24. System Timer (ST)

24.1 Overview
The System Timer (ST) module integrates three different free-running timers:

• A Period Interval Timer (PIT) that sets the time base for an operating system.

• A Watchdog Timer (WDT) with system reset capabilities in case of software deadlock.

• A Real-Time Timer (RTT) counting elapsed seconds.

These timers count using the Slow Clock provided by the Power Management Controller. Typi-
cally, this clock has a frequency of 32.768 kHz, but the System Timer might be configured to
support another frequency.

The System Timer provides an interrupt line connected to one of the sources of the Advanced
Interrupt Controller (AIC). Interrupt handling requires programming the AIC before configuring
the System Timer. Usually, the System Timer interrupt line is connected to the first interrupt
source line and shares this entry with the Debug Unit (DBGU) and the Real Time Clock (RTC).
This sharing requires the programmer to determine the source of the interrupt when the source 1
is triggered.

Important features of the System Timer include:

• One Period Interval Timer, 16-bit Programmable Counter

• One Watchdog Timer, 16-bit Programmable Counter

• One Real-time Timer, 20-bit Free-running Counter

• Interrupt Generation on Event

24.2 Block Diagram

Figure 24-1. System Timer Block Diagram

System Timer

Watchdog Timer

APB

Power
Management

Controller

STIRQ

SLCK

Advanced Interrupt Controller

Real-Time Timer

Periodic Interval Timer

294
1768I–ATARM–09-Jul-09

AT91RM9200

24.3 Application Block Diagram

Figure 24-2. Application Block Diagram

24.4 Product Dependencies

24.4.1 Power Management
The System Timer is continuously clocked at 32768 Hz. The power management controller has
no effect on the system timer behavior.

24.4.2 Interrupt Sources
The System Timer interrupt is generally connected to the source 1 of the Advanced Interrupt
Controller. This interrupt line is the result of the OR-wiring of the system peripheral interrupt lines
(System Timer, Real Time Clock, Power Management Controller, Memory Controller). When a
system interrupt happens, the service routine must first determine the cause of the interrupt.
This is accomplished by reading successively the status registers of the above mentioned sys-
tem peripherals.

24.5 Functional Description

24.5.1 System Timer Clock
The System Timer uses only the SLCK clock so that it is capable to provide periodic, watchdog,
second change or alarm interrupt even if the Power Management Controller is programmed to
put the product in Slow Clock Mode. If the product has the capability to back up the Slow Clock
oscillator and the System Timer, the System Timer can continue to operate.

24.5.2 Period Interval Timer (PIT)
The Period Interval Timer can be used to provide periodic interrupts for use by operating sys-
tems. The reset value of the PIT is 0 corresponding to the maximum value. It is built around a
16-bit down counter, which is preloaded by a value programmed in ST_PIMR (Period Interval
Mode Register). When the PIT counter reaches 0, the bit PITS is set in ST_SR (Status Regis-
ter), and an interrupt is generated if it is enabled.

The counter is then automatically reloaded and restarted. Writing to the ST_PIMR at any time
immediately reloads and restarts the down counter with the new programmed value.

Warning: If ST_PIMR is programmed with a period less or equal to the current MCK period, the
update of the PITS status bit and its associated interrupt generation are unpredictable.

OS or RTOS
Scheduler

RTTPIT WDT

Date, Time
and Alarm
Manager

System Survey
Manager

295
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 24-3. Period Interval Timer

24.5.3 Watchdog Timer (WDT)
The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It is built around a 16-bit down counter loaded with the value defined in ST_WDMR
(Watchdog Mode Register).

At reset, the value of the ST_WDMR is 0x00020000, corresponding to the maximum value of the
counter.

It uses the Slow Clock divided by 128 to establish the maximum watchdog period to be 256 sec-
onds (with a typical slow clock of 32.768 kHz).

In normal operation, the user reloads the Watchdog at regular intervals before the timer overflow
occurs, by setting the bit WDRST in the ST_CR (Control Register).

If an overflow does occur, the watchdog timer:

• Sets the WDOVF bit in ST_SR (Status Register), from which an interrupt can be generated.

• Generates an internal reset if the parameter RSTEN in ST_WDMR is set.

• Reloads and restarts the down counter.

Writing the ST_WDMR does not reload or restart the down counter. When the ST_CR is written
the watchdog counter is immediately reloaded from ST_WDMR and restarted and the Slow
Clock 128 divider is also immediately reset and restarted.

Figure 24-4. Watchdog Timer

24.5.4 Real-time Timer (RTT)
The Real-Time Timer is used to count elapsed seconds. It is built around a 20-bit counter fed by
Slow Clock divided by a programmable value. At reset, this value is set to 0x8000, correspond-
ing to feeding the real-time counter with a 1 Hz signal when the Slow Clock is 32.768 Hz. The
20-bit counter can count up to 1048576 seconds, corresponding to more than 12 days, then roll
over to 0.

The Real-Time Timer value can be read at any time in the register ST_CRTR (Current Real-time
Register). As this value can be updated asynchronously to the master clock, it is advisable to
read this register twice at the same value to improve accuracy of the returned value.

16-bit
Down Counter

SLCK
Slow Clock

PITS

PIV

SLCK
1/128

WV

WDRST

16-bit Down
Counter

RSTEN

Internal Reset

WDOVF Status

296
1768I–ATARM–09-Jul-09

AT91RM9200

This current value of the counter is compared with the value written in the alarm register
ST_RTAR (Real-time Alarm Register). If the counter value matches the alarm, the bit ALMS in
TC_SR is set. The alarm register is set to its maximum value, corresponding to 0, after a reset.

The bit RTTINC in ST_SR is set each time the 20-bit counter is incremented. This bit can be
used to start an interrupt, or generate a one-second signal.

Writing the ST_RTMR immediately reloads and restarts the clock divider with the new pro-
grammed value. This also resets the 20-bit counter.

Warning: If RTPRES is programmed with a period less or equal to the current MCK period, the
update of the RTTINC and ALMS status bits and their associated interrupt generation are
unpredictable.

Figure 24-5. Real Time Timer

24.6 System Timer (ST) User Interface

SLCK

RTPRES

RTTINC

ALMS

16-bit
Divider

20-bit
Counter

=

ALMV

Table 24-1. Register Mapping

Offset Register Name Access Reset Value

0x0000 Control Register ST_CR Write-only –

0x0004 Period Interval Mode Register ST_PIMR Read/Write 0x00000000

0x0008 Watchdog Mode Register ST_WDMR Read/Write 0x00020000

0x000C Real-time Mode Register ST_RTMR Read/Write 0x00008000

0x0010 Status Register ST_SR Read-only –

0x0014 Interrupt Enable Register ST_IER Write-only –

0x0018 Interrupt Disable Register ST_IDR Write-only –

0x001C Interrupt Mask Register ST_IMR Read-only 0x0

0x0020 Real-time Alarm Register ST_RTAR Read/Write 0x0

0x0024 Current Real-time Register ST_CRTR Read-only 0x0

297
1768I–ATARM–09-Jul-09

AT91RM9200

24.6.1 ST Control Register
Register Name: ST_CR

Access Type: Write-only

• WDRST: Watchdog Timer Restart
0 = No effect.

1 = Reload the start-up value in the watchdog timer.

24.6.2 ST Period Interval Mode Register
Register Name: ST_PIMR

Access Type: Read/Write

• PIV: Period Interval Value
Defines the value loaded in the 16-bit counter of the period interval timer. The maximum period is obtained by programming
PIV at 0x0 corresponding to 65536 slow clock cycles.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – WDRST

– – – – – – – –

– – – – – – – –

PIV

PIV

298
1768I–ATARM–09-Jul-09

AT91RM9200

24.6.3 ST Watchdog Mode Register
Register Name: ST_WDMR

Access Type: Read/Write

• WDV: Watchdog Counter Value
Defines the value loaded in the 16-bit counter. The maximum period is obtained by programming WDV to 0x0 correspond-
ing to 65536 x 128 slow clock cycles.

• RSTEN: Reset Enable
0 = No reset is generated when a watchdog overflow occurs.

1 = An internal reset is generated when a watchdog overflow occurs.

24.6.4 ST Real-Time Mode Register
Register Name: ST_RTMR

Access Type: Read/Write

• RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the real-time timer. The maximum period is obtained by pro-
gramming RTPRES to 0x0 corresponding to 65536 slow clock cycles.

24.6.5 ST Status Register
Register Name: ST_SR

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

WDV

7 6 5 4 3 2 1 0

WDV

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RTPRES

7 6 5 4 3 2 1 0

RTPRES

299
1768I–ATARM–09-Jul-09

AT91RM9200

Access Type: Read-only

• PITS: Period Interval Timer Status
0 = The period interval timer has not reached 0 since the last read of the Status Register.

1 = The period interval timer has reached 0 since the last read of the Status Register.

• WDOVF: Watchdog Overflow
0 = The watchdog timer has not reached 0 since the last read of the Status Register.

1 = The watchdog timer has reached 0 since the last read of the Status Register.

• RTTINC: Real-time Timer Increment
0 = The real-time timer has not been incremented since the last read of the Status Register.

1 = The real-time timer has been incremented since the last read of the Status Register.

• ALMS: Alarm Status
0 = No alarm compare has been detected since the last read of the Status Register.

1 = Alarm compare has been detected since the last read of the Status Register.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – ALMS RTTINC WDOVF PITS

300
1768I–ATARM–09-Jul-09

AT91RM9200

24.6.6 ST Interrupt Enable Register
Register Name: ST_IER

Access Type: Write-only

• PITS: Period Interval Timer Status Interrupt Enable

• WDOVF: Watchdog Overflow Interrupt Enable

• RTTINC: Real-time Timer Increment Interrupt Enable

• ALMS: Alarm Status Interrupt Enable
0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – ALMS RTTINC WDOVF PITS

301
1768I–ATARM–09-Jul-09

AT91RM9200

24.6.7 ST Interrupt Disable Register
Register Name: ST_IDR

Access Type: Write-only

• PITS: Period Interval Timer Status Interrupt Disable

• WDOVF: Watchdog Overflow Interrupt Disable

• RTTINC: Real-time Timer Increment Interrupt Disable

• ALMS: Alarm Status Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – ALMS RTTINC WDOVF PITS

302
1768I–ATARM–09-Jul-09

AT91RM9200

24.6.8 ST Interrupt Mask Register
Register Name: ST_IMR

Access Type: Read-only

• PITS: Period Interval Timer Status Interrupt Mask

• WDOVF: Watchdog Overflow Interrupt Mask

• RTTINC: Real-time Timer Increment Interrupt Mask

• ALMS: Alarm Status Interrupt Mask
0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

24.6.9 ST Real-time Alarm Register
Register Name: ST_RTAR

Access Type: Read/Write

• ALMV: Alarm Value
Defines the alarm value compared with the real-time timer. The maximum delay before ALMS status bit activation is
obtained by programming ALMV to 0x0 corresponding to 1048576 seconds.

24.6.10 ST Current Real-Time Register
Register Name: ST_CRTR

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – ALMS RTTINC WDOVF PITS

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – ALMV

15 14 13 12 11 10 9 8

ALMV

7 6 5 4 3 2 1 0

ALMV

303
1768I–ATARM–09-Jul-09

AT91RM9200

Access Type: Read-only

• CRTV: Current Real-time Value
Returns the current value of the real-time timer.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – CRTV

15 14 13 12 11 10 9 8

CRTV

7 6 5 4 3 2 1 0

CRTV

304
1768I–ATARM–09-Jul-09

AT91RM9200

305
1768I–ATARM–09-Jul-09

AT91RM9200

25. Real Time Clock (RTC)

25.1 Overview
The Real-time Clock (RTC) peripheral is designed for very low power consumption.

It combines a complete time-of-day clock with alarm and a two-hundred-year Gregorian calen-
dar, complemented by a programmable periodic interrupt. The alarm and calendar registers are
accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format
can be 24-hour mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel
capture on the 32-bit data bus. An entry control is performed to avoid loading registers with
incompatible BCD format data or with an incompatible date according to the current
month/year/century.

Important features of the RTC include:

• Low Power Consumption

• Full Asynchronous Design

• Two Hundred Year Calendar

• Programmable Periodic Interrupt

• Alarm and Update Parallel Load

• Control of Alarm and Update Time/Calendar Data In

25.2 Block Diagram

Figure 25-1. RTC Block Diagram

25.3 Product Dependencies

25.3.1 Power Management
The Real-time Clock is continuously clocked at 32768 Hz. The Power Management Controller
has no effect on RTC behavior.

25.3.2 Interrupt
The RTC Interrupt is connected to interrupt source 1 (IRQ1) of the advanced interrupt controller.
This interrupt line is due to the OR-wiring of the system peripheral interrupt lines (System Timer,

Bus Interface

32768 Divider TimeCrystal Oscillator: SLCK

Bus Interface

Date

RTC InterruptEntry
Control

Interrupt
Control

306
1768I–ATARM–09-Jul-09

AT91RM9200

Real Time Clock, Power Management Controller, Memory Controller, etc.). When a system
interrupt occurs, the service routine must first determine the cause of the interrupt. This is done
by reading the status registers of the above system peripherals successively.

25.4 Functional Description
The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year
(with leap years), month, date, day, hours, minutes and seconds.

The valid year range is 1900 to 2099, a two-hundred-year Gregorian calendar achieving full Y2K
compliance.

The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years, including year
2000). This is correct up to the year 2099.

After hardware reset, the calendar is initialized to Thursday, January 1, 1998.

25.4.1 Reference Clock
The reference clock is Slow Clock (SLCK). It can be driven by the Atmel cell OSC55 or OSC56
(or an equivalent cell) and an external 32.768 kHz crystal.

During low power modes of the processor (idle mode), the oscillator runs and power consump-
tion is critical. The crystal selection has to take into account the current consumption for power
saving and the frequency drift due to temperature effect on the circuit for time accuracy.

25.4.2 Timing
The RTC is updated in real time at one-second intervals in normal mode for the counters of sec-
onds, at one-minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain
that the value read in the RTC registers (century, year, month, date, day, hours, minutes, sec-
onds) are valid and stable, it is necessary to read these registers twice. If the data is the same
both times, then it is valid. Therefore, a minimum of two and a maximum of three accesses are
required.

25.4.3 Alarm
The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:

• If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted
and an interrupt generated if enabled) at a given month, date, hour/minute/second.

• If only the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available to
the user ranging from minutes to 365/366 days.

25.4.4 Error Checking
Verification on user interface data is performed when accessing the century, year, month, date,
day, hours, minutes, seconds and alarms. A check is performed on illegal BCD entries such as
illegal date of the month with regard to the year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is
set in the validity register. The user can not reset this flag. It is reset as soon as an acceptable

307
1768I–ATARM–09-Jul-09

AT91RM9200

value is programmed. This avoids any further side effects in the hardware. The same procedure
is done for the alarm.

The following checks are performed:

1. Century (check if it is in range 19 - 20)

2. Year (BCD entry check)

3. Date (check range 01 - 31)

4. Month (check if it is in BCD range 01 - 12, check validity regarding “date”)

5. Day (check range 1 - 7)

6. Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is
not set if RTC is set in 24-hour mode; in 12-hour mode check range 01 - 12)

7. Minute (check BCD and range 00 - 59)

8. Second (check BCD and range 00 - 59)
Note: If the 12-hour mode is selected by means of the RTC_MODE register, a 12-hour value can be pro-

grammed and the returned value on RTC_TIME will be the corresponding 24-hour value. The
entry control checks the value of the AM/PM indicator (bit 22 of RTC_TIME register) to determine
the range to be checked.

25.4.5 Updating Time/Calendar
To update any of the time/calendar fields, the user must first stop the RTC by setting the corre-
sponding field in the Control Register. Bit UPDTIM must be set to update time fields (hour,
minute, second) and bit UPDCAL must be set to update calendar fields (century, year, month,
date, day).

Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Regis-
ter. Once the bit reads 1, the user must clear this status bit by writing ACKUPD to 1 in
RTC_SCCR, and write to the appropriate register.

Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control
Register.

The time and date are stopped when entering the programming mode.

It is highly recommended to prepare all the fields to update prior to entering the programming
mode, to avoid a time slip in case the user would stay in the calendar update phase for several
tens of seconds or more.

In successive update operations, the user must wait at least one second after resetting the
UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these bits again. This is
done by waiting for the SEC flag in the Status Register before setting UPDTIM/UPDCAL bit.
After resetting UPDTIM/UPDCAL, the SEC flag must also be cleared.

308
1768I–ATARM–09-Jul-09

AT91RM9200

25.5 Real Time Clock (RTC) User Interface

Table 25-1. RTC Register Mapping

Offset Register Register Name Read/Write Reset

0x00 RTC Control Register RTC_CR Read/Write 0x0

0x04 RTC Mode Register RTC_MR Read/Write 0x0

0x08 RTC Time Register RTC_TIMR Read/Write 0x0

0x0C RTC Calendar Register RTC_CALR Read/Write 0x01819819

0x10 RTC Time Alarm Register RTC_TIMALR Read/Write 0x0

0x14 RTC Calendar Alarm Register RTC_CALALR Read/Write 0x01010000

0x18 RTC Status Register RTC_SR Read only 0x0

0x1C RTC Status Clear Command Register RTC_SCCR Write only ---

0x20 RTC Interrupt Enable Register RTC_IER Write only ---

0x24 RTC Interrupt Disable Register RTC_IDR Write only ---

0x28 RTC Interrupt Mask Register RTC_IMR Read only 0x0

0x2C RTC Valid Entry Register RTC_VER Read only 0x0

309
1768I–ATARM–09-Jul-09

AT91RM9200

25.5.1 RTC Control Register
Name: RTC_CR

Access Type: Read/Write

• UPDTIM: Update Request Time Register
0 = No effect.

1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the Status Register.

• UPDCAL: Update Request Calendar Register
0 = No effect.

1 = Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once
this bit is set.

• TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.

0 = Minute change.

1 = Hour change.

2 = Every day at midnight.

3 = Every day at noon.

• CALEVSEL: Calendar Event Selection
The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL.

0 = Week change (every Monday at time 00:00:00).

1 = Month change (every 01 of each month at time 00:00:00).

2, 3 = Year change (every January 1 at time 00:00:00).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – CALEVSEL

15 14 13 12 11 10 9 8

– – – – – – TIMEVSEL

7 6 5 4 3 2 1 0

– – – – – – UPDCAL UPDTIM

310
1768I–ATARM–09-Jul-09

AT91RM9200

25.5.2 RTC Mode Register
Name: RTC_MR

Access Type: Read/Write

• HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.

1 = 12-hour mode is selected.

All non-significant bits read zero.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – HRMOD

311
1768I–ATARM–09-Jul-09

AT91RM9200

25.5.3 RTC Time Register
Name: RTC_TIMR

Access Type: Read/Write

• SEC: Current Second
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• MIN: Current Minute
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• HOUR: Current Hour
The range that can be set is 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

• AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.

0 = AM.

1 = PM.

All non-significant bits read zero.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– AMPM HOUR

15 14 13 12 11 10 9 8

– MIN

7 6 5 4 3 2 1 0

– SEC

312
1768I–ATARM–09-Jul-09

AT91RM9200

25.5.4 RTC Calendar Register
Name: RTC_CALR

Access Type: Read/Write

• CENT: Current Century
The range that can be set is 19 - 20 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• YEAR: Current Year
The range that can be set is 00 - 99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• MONTH: Current Month
The range that can be set is 01 - 12 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• DAY: Current Day
The range that can be set is 1 - 7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

• DATE: Current Date
The range that can be set is 01 - 31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

31 30 29 28 27 26 25 24

– – DATE

23 22 21 20 19 18 17 16

DAY MONTH

15 14 13 12 11 10 9 8

YEAR

7 6 5 4 3 2 1 0

– CENT

313
1768I–ATARM–09-Jul-09

AT91RM9200

25.5.5 RTC Time Alarm Register
Name: RTC_TIMALR

Access Type: Read/Write

• SEC: Second Alarm
This field is the alarm field corresponding to the BCD-coded second counter.

• SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.

1 = The second-matching alarm is enabled.

• MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.

• MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.

1 = The minute-matching alarm is enabled.

• HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

• AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.

• HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.

1 = The hour-matching alarm is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

HOUREN AMPM HOUR

15 14 13 12 11 10 9 8

MINEN MIN

7 6 5 4 3 2 1 0

SECEN SEC

314
1768I–ATARM–09-Jul-09

AT91RM9200

25.5.6 RTC Calendar Alarm Register
Name: RTC_CALALR

Access Type: Read/Write

• MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.

• MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.

1 = The month-matching alarm is enabled.

• DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.

• DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.

1 = The date-matching alarm is enabled.

31 30 29 28 27 26 25 24

DATEEN – DATE

23 22 21 20 19 18 17 16

MTHEN – – MONTH

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

315
1768I–ATARM–09-Jul-09

AT91RM9200

25.5.7 RTC Status Register
Name: RTC_SR

Access Type: Read-only

• ACKUPD: Acknowledge for Update
0 = Time and calendar registers cannot be updated.

1 = Time and calendar registers can be updated.

• ALARM: Alarm Flag
0 = No alarm matching condition occurred.

1 = An alarm matching condition has occurred.

• SEC: Second Event
0 = No second event has occurred since the last clear.

1 = At least one second event has occurred since the last clear.

• TIMEV: Time Event
0 = No time event has occurred since the last clear.

1 = At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CTRL (Control Register) and can be any one of the following
events: minute change, hour change, noon, midnight (day change).

• CALEV: Calendar Event
0 = No calendar event has occurred since the last clear.

1 = At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week
change, month change and year change.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CALEV TIMEV SEC ALARM ACKUPD

316
1768I–ATARM–09-Jul-09

AT91RM9200

25.5.8 RTC Status Clear Command Register
Name: RTC_SCCR

Access Type: Write-only

• Status Flag Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CALCLR TIMCLR SECCLR ALRCLR ACKCLR

317
1768I–ATARM–09-Jul-09

AT91RM9200

25.5.9 RTC Interrupt Enable Register
Name: RTC_IER

Access Type: Write-only

• ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.

1 = The acknowledge for update interrupt is enabled.

• ALREN: Alarm Interrupt Enable
0 = No effect.

1 = The alarm interrupt is enabled.

• SECEN: Second Event Interrupt Enable
0 = No effect.

1 = The second periodic interrupt is enabled.

• TIMEN: Time Event Interrupt Enable
0 = No effect.

1 = The selected time event interrupt is enabled.

• CALEN: Calendar Event Interrupt Enable
0 = No effect.

• 1 = The selected calendar event interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CALEN TIMEN SECEN ALREN ACKEN

318
1768I–ATARM–09-Jul-09

AT91RM9200

25.5.10 RTC Interrupt Disable Register
Name: RTC_IDR

Access Type: Write-only

• ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.

1 = The acknowledge for update interrupt is disabled.

• ALRDIS: Alarm Interrupt Disable
0 = No effect.

1 = The alarm interrupt is disabled.

• SECDIS: Second Event Interrupt Disable
0 = No effect.

1 = The second periodic interrupt is disabled.

• TIMDIS: Time Event Interrupt Disable
0 = No effect.

1 = The selected time event interrupt is disabled.

• CALDIS: Calendar Event Interrupt Disable
0 = No effect.

1 = The selected calendar event interrupt is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CALDIS TIMDIS SECDIS ALRDIS ACKDIS

319
1768I–ATARM–09-Jul-09

AT91RM9200

25.5.11 RTC Interrupt Mask Register
Name: RTC_IMR

Access Type: Read-only

• ACK: Acknowledge Update Interrupt Mask
0 = The acknowledge for update interrupt is disabled.

1 = The acknowledge for update interrupt is enabled.

• ALR: Alarm Interrupt Mask
0 = The alarm interrupt is disabled.

1 = The alarm interrupt is enabled.

• SEC: Second Event Interrupt Mask
0 = The second periodic interrupt is disabled.

1 = The second periodic interrupt is enabled.

• TIM: Time Event Interrupt Mask
0 = The selected time event interrupt is disabled.

1 = The selected time event interrupt is enabled.

• CAL: Calendar Event Interrupt Mask
0 = The selected calendar event interrupt is disabled.

1 = The selected calendar event interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CAL TIM SEC ALR ACK

320
1768I–ATARM–09-Jul-09

AT91RM9200

25.5.12 RTC Valid Entry Register
Name: RTC_VER

Access Type: Read-only

• NVTIM: Non valid Time
0 = No invalid data has been detected in RTC_TIMR (Time Register).

1 = RTC_TIMR has contained invalid data since it was last programmed.

• NVCAL: Non valid Calendar
0 = No invalid data has been detected in RTC_CALR (Calendar Register).

1 = RTC_CALR has contained invalid data since it was last programmed.

• NVTIMALR: Non valid Time Alarm
0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1 = RTC_TIMALR has contained invalid data since it was last programmed.

• NVCALALR: Non valid Calendar Alarm
0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1 = RTC_CALALR has contained invalid data since it was last programmed.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – NVCALAR NVTIMALR NVCAL NVTIM

321
1768I–ATARM–09-Jul-09

AT91RM9200

26. Debug Unit (DBGU)

26.1 Overview
The Debug Unit provides a single entry point from the processor for access to all the debug
capabilities of Atmel’s ARM-based systems.

The Debug Unit features a two-pin UART that can be used for several debug and trace purposes
and offers an ideal medium for in-situ programming solutions and debug monitor communica-
tions. Moreover, the association with two Peripheral DMA Controller channels permits packet
handling for these tasks with processor time reduced to a minimum.

The Debug Unit also makes the Debug Communication Channel (DCC) signals provided by the
In-circuit Emulator of the ARM processor visible to the software. These signals indicate the sta-
tus of the DCC read and write registers and generate an interrupt to the ARM processor, making
possible the handling of the DCC under interrupt control.

Chip Identifier registers permit recognition of the device and its revision. These registers inform
as to the sizes and types of the on-chip memories, as well as the set of embedded peripherals.

Finally, the Debug Unit features a Force NTRST capability that enables the software to decide
whether to prevent access to the system via the In-circuit Emulator. This permits protection of
the code, stored in ROM.

Important features of the Debug Unit are:

• System Peripheral to Facilitate Debug of Atmel’s ARM-based Systems

• Composed of Three Functions

– Two-pin UART

– Debug Communication Channel (DCC) Support

– Chip ID Registers

• Two-pin UART

– Implemented Features are 100% Compatible with the Standard Atmel USART

– Independent Receiver and Transmitter with a Common Programmable Baud Rate
Generator

– Even, Odd, Mark or Space Parity Generation

– Parity, Framing and Overrun Error Detection

– Automatic Echo, Local Loopback and Remote Loopback Channel Modes

– Interrupt Generation

– Support for Two Peripheral DMA Controller (PDC) Channels with Connection to
Receiver and Transmitter

• Debug Communication Channel Support

– Offers Visibility of COMMRX and COMMTX Signals from the ARM Processor

– Interrupt Generation

• Chip ID Registers

– Identification of the Device Revision, Sizes of the Embedded Memories, Set of
Peripherals

322
1768I–ATARM–09-Jul-09

AT91RM9200

26.2 Block Diagram

Figure 26-1. Debug Unit Functional Block Diagram

Note: 1. If NTRST pad is not bonded out, it is connected to NRST.

Figure 26-2. Debug Unit Application Example

Debug UnitAPB

Peripheral Data Controller

Baud Rate
Generator

DCC
Handler

ICE
Access
Handler

Transmit

Receive

Chip ID

Interrupt
Control

Peripheral
Bridge

Parallel
Input/
Output

DTXD

DRXD

Power
Management

Controller

ARM
Processor

Advanced
Interrupt

Controller

Force NTRST

NTRST(1)

Other
System
Interrupt
Sources

Source 1

DBGU Interupt

COMMRX

COMMTX

MCK

nTRST

Table 26-1. Debug Unit Pin Description

Pin Name Description Type

DRXD Debug Receive Data Input

DTXD Debug Transmit Data Output

Debug Unit

RS232 Drivers

Programming Tool Trace Console Debug Console

Boot Program Debug Monitor Trace Manager

323
1768I–ATARM–09-Jul-09

AT91RM9200

26.3 Product Dependencies

26.3.1 I/O Lines
Depending on product integration, the Debug Unit pins may be multiplexed with PIO lines. In this
case, the programmer must first configure the corresponding PIO Controller to enable I/O lines
operations of the Debug Unit.

26.3.2 Power Management
Depending on product integration, the Debug Unit clock may be controllable through the Power
Management Controller. In this case, the programmer must first configure the PMC to enable the
Debug Unit clock. Usually, the peripheral identifier used for this purpose is 1.

26.3.3 Interrupt Source
Depending on product integration, the Debug Unit interrupt line is connected to one of the inter-
rupt sources of the Advanced Interrupt Controller. Interrupt handling requires programming of
the AIC before configuring the Debug Unit. Usually, the Debug Unit interrupt line connects to the
interrupt source 1 of the AIC, which may be shared with the real-time clock, the system timer
interrupt lines and other system peripheral interrupts, as shown in Figure 26-1. This sharing
requires the programmer to determine the source of the interrupt when the source 1 is triggered.

26.4 UART Operations
The Debug Unit operates as a UART, (asynchronous mode only) and supports only 8-bit charac-
ter handling (with parity). It has no clock pin.

The Debug Unit's UART is made up of a receiver and a transmitter that operate independently,
and a common baud rate generator. Receiver timeout and transmitter time guard are not imple-
mented. However, all the implemented features are compatible with those of a standard USART.

26.4.1 Baud Rate Generator
The baud rate generator provides the bit period clock named baud rate clock to both the receiver
and the transmitter.

The baud rate clock is the master clock divided by 16 times the value (CD) written in
DBGU_BRGR (Baud Rate Generator Register). If DBGU_BRGR is set to 0, the baud rate clock
is disabled and the Debug Unit's UART remains inactive. The maximum allowable baud rate is
Master Clock divided by 16. The minimum allowable baud rate is Master Clock divided by (16 x
65536).

Baud Rate MCK
16 CD×
----------------------=

324
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 26-3. Baud Rate Generator

26.4.2 Receiver

26.4.2.1 Receiver Reset, Enable and Disable
After device reset, the Debug Unit receiver is disabled and must be enabled before being used.
The receiver can be enabled by writing the control register DBGU_CR with the bit RXEN at 1. At
this command, the receiver starts looking for a start bit.

The programmer can disable the receiver by writing DBGU_CR with the bit RXDIS at 1. If the
receiver is waiting for a start bit, it is immediately stopped. However, if the receiver has already
detected a start bit and is receiving the data, it waits for the stop bit before actually stopping its
operation.

The programmer can also put the receiver in its reset state by writing DBGU_CR with the bit
RSTRX at 1. In doing so, the receiver immediately stops its current operations and is disabled,
whatever its current state. If RSTRX is applied when data is being processed, this data is lost.

26.4.2.2 Start Detection and Data Sampling
The Debug Unit only supports asynchronous operations, and this affects only its receiver. The
Debug Unit receiver detects the start of a received character by sampling the DRXD signal until
it detects a valid start bit. A low level (space) on DRXD is interpreted as a valid start bit if it is
detected for more than 7 cycles of the sampling clock, which is 16 times the baud rate. Hence, a
space that is longer than 7/16 of the bit period is detected as a valid start bit. A space which is
7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid start bit.

When a valid start bit has been detected, the receiver samples the DRXD at the theoretical mid-
point of each bit. It is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period)
so the bit sampling point is eight cycles (0.5-bit period) after the start of the bit. The first sampling
point is therefore 24 cycles (1.5-bit periods) after the falling edge of the start bit was detected.

Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.

MCK 16-bit Counter

0

Baud Rate
Clock

CD

CD

OUT

Divide
by 16

0

1

>1

Receiver
Sampling Clock

325
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 26-4. Start Bit Detection

Figure 26-5. Character Reception

26.4.2.3 Receiver Ready
When a complete character is received, it is transferred to the DBGU_RHR and the RXRDY sta-
tus bit in DBGU_SR (Status Register) is set. The bit RXRDY is automatically cleared when the
receive holding register DBGU_RHR is read.

Figure 26-6. Receiver Ready

26.4.2.4 Receiver Overrun
If DBGU_RHR has not been read by the software (or the Peripheral DMA Controller) since the
last transfer, the RXRDY bit is still set and a new character is received, the OVRE status bit in
DBGU_SR is set. OVRE is cleared when the software writes the control register DBGU_CR with
the bit RSTSTA (Reset Status) at 1.

Figure 26-7. Receiver Overrun

26.4.2.5 Parity Error
Each time a character is received, the receiver calculates the parity of the received data bits, in
accordance with the field PAR in DBGU_MR. It then compares the result with the received parity

Sampling Clock

DRXD

True Start
Detection

D0

Baud Rate
Clock

D0 D1 D2 D3 D4 D5 D6 D7

DRXD

True Start Detection
Sampling

Parity Bit
Stop Bit

Example: 8-bit, parity enabled 1 stop

1 bit
period

0.5 bit
period

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PDRXD

Read DBGU_RHR

RXRDY

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PDRXD

RSTSTA

RXRDY

OVRE

stop stop

326
1768I–ATARM–09-Jul-09

AT91RM9200

bit. If different, the parity error bit PARE in DBGU_SR is set at the same time the RXRDY is set.
The parity bit is cleared when the control register DBGU_CR is written with the bit RSTSTA
(Reset Status) at 1. If a new character is received before the reset status command is written,
the PARE bit remains at 1.

Figure 26-8. Parity Error

26.4.2.6 Receiver Framing Error
When a start bit is detected, it generates a character reception when all the data bits have been
sampled. The stop bit is also sampled and when it is detected at 0, the FRAME (Framing Error)
bit in DBGU_SR is set at the same time the RXRDY bit is set. The bit FRAME remains high until
the control register DBGU_CR is written with the bit RSTSTA at 1.

Figure 26-9. Receiver Framing Error

26.4.3 Transmitter

26.4.3.1 Transmitter Reset, Enable and Disable
After device reset, the Debug Unit transmitter is disabled and it must be enabled before being
used. The transmitter is enabled by writing the control register DBGU_CR with the bit TXEN at 1.
From this command, the transmitter waits for a character to be written in the Transmit Holding
Register DBGU_THR before actually starting the transmission.

The programmer can disable the transmitter by writing DBGU_CR with the bit TXDIS at 1. If the
transmitter is not operating, it is immediately stopped. However, if a character is being pro-
cessed into the Shift Register and/or a character has been written in the Transmit Holding
Register, the characters are completed before the transmitter is actually stopped.

The programmer can also put the transmitter in its reset state by writing the DBGU_CR with the
bit RSTTX at 1. This immediately stops the transmitter, whether or not it is processing
characters.

26.4.3.2 Transmit Format
The Debug Unit transmitter drives the pin DTXD at the baud rate clock speed. The line is driven
depending on the format defined in the Mode Register and the data stored in the Shift Register.
One start bit at level 0, then the 8 data bits, from the lowest to the highest bit, one optional parity
bit and one stop bit at 1 are consecutively shifted out as shown on the following figure. The field

stopD0 D1 D2 D3 D4 D5 D6 D7 PSDRXD

RSTSTA

RXRDY

PARE

Wrong Parity Bit

D0 D1 D2 D3 D4 D5 D6 D7 PSDRXD

RSTSTA

RXRDY

FRAME

Stop Bit
Detected at 0

stop

327
1768I–ATARM–09-Jul-09

AT91RM9200

PARE in the mode register DBGU_MR defines whether or not a parity bit is shifted out. When a
parity bit is enabled, it can be selected between an odd parity, an even parity, or a fixed space or
mark bit.

Figure 26-10. Character Transmission

26.4.3.3 Transmitter Control
When the transmitter is enabled, the bit TXRDY (Transmitter Ready) is set in the status register
DBGU_SR. The transmission starts when the programmer writes in the Transmit Holding Regis-
ter DBGU_THR, and after the written character is transferred from DBGU_THR to the Shift
Register. The bit TXRDY remains high until a second character is written in DBGU_THR. As
soon as the first character is completed, the last character written in DBGU_THR is transferred
into the shift register and TXRDY rises again, showing that the holding register is empty.

When both the Shift Register and the DBGU_THR are empty, i.e., all the characters written in
DBGU_THR have been processed, the bit TXEMPTY rises after the last stop bit has been
completed.

Figure 26-11. Transmitter Control

26.4.4 Peripheral DMA Controller
Both the receiver and the transmitter of the Debug Unit's UART are generally connected to a
Peripheral DMA Controller (PDC) channel.

The Peripheral DMA controller channels are programmed via registers that are mapped within
the Debug Unit user interface from the offset 0x100. The status bits are reported in the Debug
Unit status register DBGU_SR and can generate an interrupt.

D0 D1 D2 D3 D4 D5 D6 D7

DTXD

Start
Bit

Parity
Bit

Stop
Bit

Example: Parity enabled

Baud Rate
 Clock

DBGU_THR

Shift Register

DTXD

TXRDY

TXEMPTY

Data 0 Data 1

Data 0

Data 0

Data 1

Data 1S S PP

Write Data 0
in DBGU_THR

Write Data 1
in DBGU_THR

stopstop

328
1768I–ATARM–09-Jul-09

AT91RM9200

The RXRDY bit triggers the PDC channel data transfer of the receiver. This results in a read of
the data in DBGU_RHR. The TXRDY bit triggers the PDC channel data transfer of the transmit-
ter. This results in a write of a data in DBGU_THR.

26.4.5 Test Modes
The Debug Unit supports three tests modes. These modes of operation are programmed by
using the field CHMODE (Channel Mode) in the mode register DBGU_MR.

The Automatic Echo mode allows bit-by-bit retransmission. When a bit is received on the DRXD
line, it is sent to the DTXD line. The transmitter operates normally, but has no effect on the
DTXD line.

The Local Loopback mode allows the transmitted characters to be received. DTXD and DRXD
pins are not used and the output of the transmitter is internally connected to the input of the
receiver. The DRXD pin level has no effect and the DTXD line is held high, as in idle state.

The Remote Loopback mode directly connects the DRXD pin to the DTXD line. The transmitter
and the receiver are disabled and have no effect. This mode allows a bit-by-bit retransmission.

Figure 26-12. Test Modes

26.4.6 Debug Communication Channel Support
The Debug Unit handles the signals COMMRX and COMMTX that come from the Debug Com-
munication Channel of the ARM Processor and are driven by the In-circuit Emulator.

Receiver

Transmitter
Disabled

RXD

TXD

Receiver

Transmitter
Disabled

RXD

TXD

VDD

Disabled

Receiver

Transmitter
Disabled

RXD

TXD

Disabled

Automatic Echo

Local Loopback

Remote Loopback VDD

329
1768I–ATARM–09-Jul-09

AT91RM9200

The Debug Communication Channel contains two registers that are accessible through the ICE
Breaker on the JTAG side and through the coprocessor 0 on the ARM Processor side.

As a reminder, the following instructions are used to read and write the Debug Communication
Channel:

MRC p14, 0, Rd, c1, c0, 0

Returns the debug communication data read register into Rd

MCR p14, 0, Rd, c1, c0, 0

Writes the value in Rd to the debug communication data write register.

The bits COMMRX and COMMTX, which indicate, respectively, that the read register has been
written by the debugger but not yet read by the processor, and that the write register has been
written by the processor and not yet read by the debugger, are wired on the two highest bits of
the status register DBGU_SR. These bits can generate an interrupt. This feature permits han-
dling under interrupt a debug link between a debug monitor running on the target system and a
debugger.

26.4.7 Chip Identifier
The Debug Unit features two chip identifier registers, DBGU_CIDR (Chip ID Register) and
DBGU_EXID (Extension ID). Both registers contain a hard-wired value that is read-only. The first
register contains the following fields:

• EXT - shows the use of the extension identifier register

• NVPTYP and NVPSIZ - identifies the type of embedded non-volatile memory and its size

• ARCH - identifies the set of embedded peripheral

• SRAMSIZ - indicates the size of the embedded SRAM

• EPROC - indicates the embedded ARM processor

• VERSION - gives the revision of the silicon

The second register is device-dependent and reads 0 if the bit EXT is 0.

330
1768I–ATARM–09-Jul-09

AT91RM9200

26.5 Debug Unit User Interface

Table 26-2. Debug Unit Memory Map

Offset Register Name Access Reset Value

0x0000 Control Register DBGU_CR Write-only –

0x0004 Mode Register DBGU_MR Read/Write 0x0

0x0008 Interrupt Enable Register DBGU_IER Write-only –

0x000C Interrupt Disable Register DBGU_IDR Write-only –

0x0010 Interrupt Mask Register DBGU_IMR Read-only 0x0

0x0014 Status Register DBGU_SR Read-only –

0x0018 Receive Holding Register DBGU_RHR Read-only 0x0

0x001C Transmit Holding Register DBGU_THR Write-only –

0x0020 Baud Rate Generator Register DBGU_BRGR Read/Write 0x0

0x0024 - 0x003C Reserved – – –

0X0040 Chip ID Register DBGU_CIDR Read-only –

0X0044 Chip ID Extension Register DBGU_EXID Read-only –

Reserved

0x004C - 0x00FC Reserved – – –

0x0100 - 0x0124 PDC Area – – –

331
1768I–ATARM–09-Jul-09

AT91RM9200

26.5.1 Debug Unit Control Register
Name: DBGU_CR

Access Type: Write-only

• RSTRX: Reset Receiver

0 = No effect.

1 = The receiver logic is reset and disabled. If a character is being received, the reception is aborted.

• RSTTX: Reset Transmitter

0 = No effect.

1 = The transmitter logic is reset and disabled. If a character is being transmitted, the transmission is aborted.

• RXEN: Receiver Enable

0 = No effect.

1 = The receiver is enabled if RXDIS is 0.

• RXDIS: Receiver Disable

0 = No effect.

1 = The receiver is disabled. If a character is being processed and RSTRX is not set, the character is completed before the
receiver is stopped.

• TXEN: Transmitter Enable

0 = No effect.

1 = The transmitter is enabled if TXDIS is 0.

• TXDIS: Transmitter Disable

0 = No effect.

1 = The transmitter is disabled. If a character is being processed and a character has been written the DBGU_THR and
RSTTX is not set, both characters are completed before the transmitter is stopped.

• RSTSTA: Reset Status Bits

0 = No effect.

1 = Resets the status bits PARE, FRAME and OVRE in the DBGU_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –

332
1768I–ATARM–09-Jul-09

AT91RM9200

26.5.2 Debug Unit Mode Register
Name: DBGU_MR

Access Type: Read/Write

• PAR: Parity Type

• CHMODE: Channel Mode

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CHMODE – – PAR –

7 6 5 4 3 2 1 0

– – – – – – – –

PAR Parity Type

0 0 0 Even parity

0 0 1 Odd parity

0 1 0 Space: parity forced to 0

0 1 1 Mark: parity forced to 1

1 x x No parity

CHMODE Mode Description

0 0 Normal Mode

0 1 Automatic Echo

1 0 Local Loopback

1 1 Remote Loopback

333
1768I–ATARM–09-Jul-09

AT91RM9200

26.5.3 Debug Unit Interrupt Enable Register
Name: DBGU_IER

Access Type: Write-only

• RXRDY: Enable RXRDY Interrupt

• TXRDY: Enable TXRDY Interrupt

• ENDRX: Enable End of Receive Transfer Interrupt

• ENDTX: Enable End of Transmit Interrupt

• OVRE: Enable Overrun Error Interrupt

• FRAME: Enable Framing Error Interrupt

• PARE: Enable Parity Error Interrupt

• TXEMPTY: Enable TXEMPTY Interrupt

• TXBUFE: Enable Buffer Empty Interrupt

• RXBUFF: Enable Buffer Full Interrupt

• COMMTX: Enable COMMTX (from ARM) Interrupt

• COMMRX: Enable COMMRX (from ARM) Interrupt

0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

334
1768I–ATARM–09-Jul-09

AT91RM9200

26.5.4 Debug Unit Interrupt Disable Register
Name: DBGU_IDR

Access Type: Write-only

• RXRDY: Disable RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Disable End of Receive Transfer Interrupt

• ENDTX: Disable End of Transmit Interrupt

• OVRE: Disable Overrun Error Interrupt

• FRAME: Disable Framing Error Interrupt

• PARE: Disable Parity Error Interrupt

• TXEMPTY: Disable TXEMPTY Interrupt

• TXBUFE: Disable Buffer Empty Interrupt

• RXBUFF: Disable Buffer Full Interrupt

• COMMTX: Disable COMMTX (from ARM) Interrupt

• COMMRX: Disable COMMRX (from ARM) Interrupt

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

335
1768I–ATARM–09-Jul-09

AT91RM9200

26.5.5 Debug Unit Interrupt Mask Register
Name: DBGU_IMR

Access Type: Read-only

• RXRDY: Mask RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Mask End of Receive Transfer Interrupt

• ENDTX: Mask End of Transmit Interrupt

• OVRE: Mask Overrun Error Interrupt

• FRAME: Mask Framing Error Interrupt

• PARE: Mask Parity Error Interrupt

• TXEMPTY: Mask TXEMPTY Interrupt

• TXBUFE: Mask TXBUFE Interrupt

• RXBUFF: Mask RXBUFF Interrupt

• COMMTX: Mask COMMTX Interrupt

• COMMRX: Mask COMMRX Interrupt

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

336
1768I–ATARM–09-Jul-09

AT91RM9200

26.5.6 Debug Unit Status Register
Name: DBGU_SR

Access Type: Read-only

• RXRDY: Receiver Ready

0 = No character has been received since the last read of the DBGU_RHR or the receiver is disabled.

1 = At least one complete character has been received, transferred to DBGU_RHR and not yet read.

• TXRDY: Transmitter Ready

0 = A character has been written to DBGU_THR and not yet transferred to the Shift Register, or the transmitter is disabled.

1 = There is no character written to DBGU_THR not yet transferred to the Shift Register.

• ENDRX: End of Receiver Transfer

0 = The End of Transfer signal from the receiver Peripheral DMA Controller channel is inactive.

1 = The End of Transfer signal from the receiver Peripheral DMA Controller channel is active.

• ENDTX: End of Transmitter Transfer

0 = The End of Transfer signal from the transmitter Peripheral DMA Controller channel is inactive.

1 = The End of Transfer signal from the transmitter Peripheral DMA Controller channel is active.

• OVRE: Overrun Error

0 = No overrun error has occurred since the last RSTSTA.

1 = At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error

0 = No framing error has occurred since the last RSTSTA.

1 = At least one framing error has occurred since the last RSTSTA.

• PARE: Parity Error
0 = No parity error has occurred since the last RSTSTA.

1 = At least one parity error has occurred since the last RSTSTA.

• TXEMPTY: Transmitter Empty

0 = There are characters in DBGU_THR, or characters being processed by the transmitter, or the transmitter is disabled.

1 = There are no characters in DBGU_THR and there are no characters being processed by the transmitter.

• TXBUFE: Transmission Buffer Empty

0 = The buffer empty signal from the transmitter PDC channel is inactive.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

337
1768I–ATARM–09-Jul-09

AT91RM9200

1 = The buffer empty signal from the transmitter PDC channel is active.

• RXBUFF: Receive Buffer Full
0 = The buffer full signal from the receiver PDC channel is inactive.

1 = The buffer full signal from the receiver PDC channel is active.

• COMMTX: Debug Communication Channel Write Status

0 = COMMTX from the ARM processor is inactive.

1 = COMMTX from the ARM processor is active.

• COMMRX: Debug Communication Channel Read Status

0 = COMMRX from the ARM processor is inactive.

1 = COMMRX from the ARM processor is active.

338
1768I–ATARM–09-Jul-09

AT91RM9200

26.5.7 Debug Unit Receiver Holding Register
Name: DBGU_RHR

Access Type: Read-only

• RXCHR: Received Character

Last received character if RXRDY is set.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

RXCHR

339
1768I–ATARM–09-Jul-09

AT91RM9200

Debug Unit Transmit Holding Register
Name: DBGU_THR

Access Type: Write-only

• TXCHR: Character to be Transmitted

Next character to be transmitted after the current character if TXRDY is not set.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXCHR

340
1768I–ATARM–09-Jul-09

AT91RM9200

26.5.8 Debug Unit Baud Rate Generator Register
Name: DBGU_BRGR

Access Type: Read/Write

• CD: Clock Divisor

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CD

7 6 5 4 3 2 1 0

CD

CD Baud Rate Clock

0 Disabled

1 MCK

2 to 65535 MCK / (CD x 16)

341
1768I–ATARM–09-Jul-09

AT91RM9200

26.5.9 Debug Unit Chip ID Register
Name: DBGU_CIDR

Access Type: Read-only

• VERSION: Version of the device

• EPROC: Embedded Processor

• NVPSIZ: Nonvolatile Program Memory Size

31 30 29 28 27 26 25 24

EXT NVPTYP ARCH

23 22 21 20 19 18 17 16

ARCH SRAMSIZ

15 14 13 12 11 10 9 8

0 0 0 0 NVPSIZ

7 6 5 4 3 2 1 0

EPROC VERSION

EPROC Processor

0 0 1 ARM946ES™

0 1 0 ARM7TDMI®

1 0 0 ARM920T

NVPSIZ Size

0 0 0 0 None

0 0 0 1 8K bytes

0 0 1 0 16K bytes

0 0 1 1 32K bytes

0 1 0 0 Reserved

0 1 0 1 64K bytes

0 1 1 0 Reserved

0 1 1 1 128K bytes

1 0 0 0 Reserved

1 0 0 1 256K bytes

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved

342
1768I–ATARM–09-Jul-09

AT91RM9200

• SRAMSIZ: Internal SRAM Size

• ARCH: Architecture Identifier

• NVPTYP: Nonvolatile Program Memory Type

• EXT: Extension Flag
0 = Chip ID has a single register definition without extension

1 = An extended Chip ID exists.

SRAMSIZ Size

0 0 0 0 Reserved

0 0 0 1 1K bytes

0 0 1 0 2K bytes

0 0 1 1 Reserved

0 1 0 0 112K bytes

0 1 0 1 4K bytes

0 1 1 0 80K bytes

0 1 1 1 160K bytes

1 0 0 0 8K bytes

1 0 0 1 16K bytes

1 0 1 0 32K bytes

1 0 1 1 64K bytes

1 1 0 0 128K bytes

1 1 0 1 256K bytes

1 1 1 0 96K bytes

1 1 1 1 512K bytes

ARCH

ArchitectureHex Dec

0x40 0100 0000 AT91x40 Series

0x63 0110 0011 AT91x63 Series

0x55 0101 0101 AT91x55 Series

0x42 0100 0010 AT91x42 Series

0x92 1001 0010 AT91x92 Series

0x34 0011 0100 AT91x34 Series

NVPTYP Memory

0 0 0 ROM

0 0 1 ROMless or on-chip Flash

1 0 0 SRAM emulating ROM

343
1768I–ATARM–09-Jul-09

AT91RM9200

26.5.10 Debug Unit Chip ID Extension Register
Name: DBGU_EXID

Access Type: Read-only

• EXID: Chip ID Extension
Reads 0 if the bit EXT in DBGU_CIDR is 0.

31 30 29 28 27 26 25 24

EXID

23 22 21 20 19 18 17 16

EXID

15 14 13 12 11 10 9 8

EXID

7 6 5 4 3 2 1 0

EXID

344
1768I–ATARM–09-Jul-09

AT91RM9200

345
1768I–ATARM–09-Jul-09

AT91RM9200

27. Parallel Input/Output Controller (PIO)

27.1 Overview
The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output
lines. Each I/O line may be dedicated as a general-purpose I/O or be assigned to a function of
an embedded peripheral. This assures effective optimization of the pins of a product.

Each I/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User
Interface.

Each I/O line of the PIO Controller features:

• An input change interrupt enabling level change on any I/O line.

• A glitch filter providing rejection of pulses lower than one-half of clock cycle.

• Multi-drive capability similar to an open drain I/O line.

• Control of the pull-up of the I/O line.

• Input visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a
single write operation.

Important features of the PIO also include:

• Up to 32 Programmable I/O Lines

• Fully Programmable through Set/Clear Registers

• Multiplexing of Two Peripheral Functions per I/O Line

• For each I/O Line (Whether Assigned to a Peripheral or Used as General Purpose I/O)

– Input Change Interrupt

– Glitch Filter

– Multi-drive Option Enables Driving in Open Drain

– Programmable Pull-up on Each I/O Line

– Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any Time

• Synchronous Output, Provides Set and Clear of Several I/O lines in a Single Write

346
1768I–ATARM–09-Jul-09

AT91RM9200

27.2 Block Diagram

Figure 27-1. Block Diagram

Figure 27-2. Application Block Diagram

Up to 32 pins

PMC

Embedded
Peripheral

Embedded
Peripheral

Embedded
Peripheral

Up to 32
peripheral IOs

Up to 32
peripheral IOs

PIO Clock

APB

PIN

PIN

PIN

AIC PIO Interrupt

PIO Controller

Embedded
Peripheral

Embedded
Peripheral

Embedded
Peripheral

On-chip Peripherals

PIO Controller

On-chip Peripheral Drivers
Control & Command

Driver
Keyboard Driver

Keyboard Driver General Purpose I/Os External Devices

347
1768I–ATARM–09-Jul-09

AT91RM9200

27.3 Product Dependencies

27.3.1 Pin Multiplexing
Each pin is configurable, according to product definition as either a general-purpose I/O line
only, or as an I/O line multiplexed with one or two peripheral I/Os. As the multiplexing is hard-
ware-defined and thus product-dependent, the hardware designer and programmer must
carefully determine the configuration of the PIO controllers required by their application. When
an I/O line is general-purpose only, i.e. not multiplexed with any peripheral I/O, programming of
the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Con-
troller can control how the pin is driven by the product.

27.3.2 External Interrupt Lines
The interrupt signals FIQ and IRQ0 to IRQn are most generally multiplexed through the PIO
Controllers. However, it is not necessary to assign the I/O line to the interrupt function as the
PIO Controller has no effect on inputs and the interrupt lines (FIQ or IRQs) are used only as
inputs.

27.3.3 Power Management
The Power Management Controller controls the PIO Controller clock in order to save power.
Writing any of the registers of the user interface does not require the PIO Controller clock to be
enabled. This means that the configuration of the I/O lines does not require the PIO Controller
clock to be enabled.

However, when the clock is disabled, not all of the features of the PIO Controller are available.
Note that the Input Change Interrupt and the read of the pin level require the clock to be
validated.

After a hardware reset, the PIO clock is disabled by default (see Power Management Controller).

The user must configure the Power Management Controller before any access to the input line
information.

27.3.4 Interrupt Generation
For interrupt handling, the PIO Controllers are considered as user peripherals. This means that
the PIO Controller interrupt lines are connected among the interrupt sources 2 to 31. Refer to the
PIO Controller peripheral identifier in the product description to identify the interrupt sources
dedicated to the PIO Controllers.

The PIO Controller interrupt can be generated only if the PIO Controller clock is enabled.

27.4 Functional Description
The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic asso-
ciated to each I/O is represented in Figure 27-3.

348
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 27-3. I/O Line Control Logic

27.4.1 Pull-up Resistor Control
Each I/O line is designed with an embedded pull-up resistor. The internal pull-ups have a typical
value of 200 kOhm (see the product electrical characteristics for more details about this value).
The pull-up resistor can be enabled or disabled by writing respectively PIO_PUER (Pull-up
Enable Register) and PIO_PUDR (Pull-up Disable Resistor). Writing in these registers results in
setting or clearing the corresponding bit in PIO_PUSR (Pull-up Status Register). Reading a 1 in
PIO_PUSR means the pull-up is disabled and reading a 0 means the pull-up is enabled.

Control of the pull-up resistor is possible regardless of the configuration of the I/O line.

Pad

1

0

Glitch
Filter

PIO_PUDR

PIO_PUSR

PIO_PUER

1

0

PIO_MDDR

PIO_MDSR

PIO_MDER

1

0

PIO_CODR

PIO_ODSR

PIO_SODR

1

0

PIO_PDR

PIO_PSR

PIO_PER

1

0

1

0

PIO_BSR

PIO_ABSR

PIO_ASR

Peripheral B
Output Enable

Peripheral A
Output Enable

Peripheral B
Output

Peripheral A
Output

PIO_ODR

PIO_OSR

PIO_OER

Peripheral B
Input

Peripheral A
Input

1

0

PIO_IFDR

PIO_IFSR

PIO_IFER

Edge
Detector

PIO_PDSR PIO_ISR

1

0

PIO_IDR

PIO_IMR

PIO_IER

PIO Interrupt

349
1768I–ATARM–09-Jul-09

AT91RM9200

After reset, all of the pull-ups are enabled, i.e. PIO_PUSR resets at the value 0x0.

27.4.2 I/O Line or Peripheral Function Selection
When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The regis-
ter PIO_PSR (PIO Status Register) is the result of the set and clear registers and indicates
whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A value of
0 indicates that the pin is controlled by the corresponding on-chip peripheral selected in the
PIO_ABSR (AB Select Status Register). A value of 1 indicates the pin is controlled by the PIO
controller.

If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral),
PIO_PER and PIO_PDR have no effect and PIO_PSR returns 1 for the corresponding bit.

After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PIO_PSR
resets at 1. However, in some events, it is important that PIO lines are controlled by the periph-
eral (as in the case of memory chip select lines that must be driven inactive after reset or for
address lines that must be driven low for booting out of an external memory). Thus, the reset
value of PIO_PSR is defined at the product level, depending on the multiplexing of the device.

27.4.3 Peripheral A or B Selection
The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The
selection is performed by writing PIO_ASR (A Select Register) and PIO_BSR (Select B Regis-
ter). PIO_ABSR (AB Select Status Register) indicates which peripheral line is currently selected.
For each pin, the corresponding bit at level 0 means peripheral A is selected whereas the corre-
sponding bit at level 1 indicates that peripheral B is selected.

Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral
input lines are always connected to the pin input.

After reset, PIO_ABSR is 0, thus indicating that all the PIO lines are configured on peripheral A.
However, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line
mode.

Writing in PIO_ASR and PIO_BSR manages PIO_ABSR regardless of the configuration of the
pin. However, assignment of a pin to a peripheral function requires a write in the corresponding
peripheral selection register (PIO_ASR or PIO_BSR) in addition to a write in PIO_PDR.

27.4.4 Output Control
When the I/0 line is assigned to a peripheral function, i.e. the corresponding bit in PIO_PSR is at
0, the drive of the I/O line is controlled by the peripheral. Peripheral A or B, depending on the
value in PIO_ABSR, determines whether the pin is driven or not.

When the I/O line is controlled by the PIO controller, the pin can be configured to be driven. This
is done by writing PIO_OER (Output Enable Register) and PIO_PDR (Output Disable Register).
The results of these write operations are detected in PIO_OSR (Output Status Register). When
a bit in this register is at 0, the corresponding I/O line is used as an input only. When the bit is at
1, the corresponding I/O line is driven by the PIO controller.

The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data
Register) and PIO_CODR (Clear Output Data Register). These write operations respectively set
and clear PIO_ODSR (Output Data Status Register), which represents the data driven on the I/O
lines. Writing in PIO_OER and PIO_ODR manages PIO_OSR whether the pin is configured to

350
1768I–ATARM–09-Jul-09

AT91RM9200

be controlled by the PIO controller or assigned to a peripheral function. This enables configura-
tion of the I/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it
defines the first level driven on the I/O line.

27.4.5 Synchronous Data Output
Using the write operations in PIO_SODR and PIO_CODR can require that several instructions
be executed in order to define values on several bits. Both clearing and setting I/O lines on an 8-
bit port, for example, cannot be done at the same time, and thus might limit the application cov-
ered by the PIO Controller.

To avoid these inconveniences, the PIO Controller features a Synchronous Data Output to clear
and set a number of I/O lines in a single write. This is performed by authorizing the writing of
PIO_ODSR (Output Data Status Register) from the register set PIO_OWER (Output Write
Enable Register), PIO_OWDR (Output Write Disable Register) and PIO_OWSR (Output Write
Status Register). The value of PIO_OWSR register is user-definable by writing in PIO_OWER
and PIO_OWDR. It is used by the PIO Controller as a PIO_ODSR write authorization mask.
Authorizing the write of PIO_ODSR on a user-definable number of bits is especially useful, as it
guarantees that the unauthorized bit will not be changed when writing it and thus avoids the
need of a time consuming read-modify-write operation.

After reset, the synchronous data output is disabled on all the I/O lines as PIO_OWSR resets at
0x0.

27.4.6 Multi Drive Control (Open Drain)
Each I/O can be independently programmed in Open Drain by using the Multi Drive feature. This
feature permits several drivers to be connected on the I/O line which is driven low only by each
device. An external pull-up resistor (or enabling of the internal one) is generally required to guar-
antee a high level on the line.

The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and
PIO_MDDR (Multi-driver Disable Register). The Multi Drive can be selected whether the I/O line
is controlled by the PIO controller or assigned to a peripheral function. PIO_MDSR (Multi-driver
Status Register) indicates the pins that are configured to support external drivers.

After reset, the Multi Drive feature is disabled on all pins, i.e. PIO_MDSR resets at value 0x0.

27.4.7 Output Line Timings
Figure 27-4 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by
directly writing PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is
set. Figure 27-4 also shows when the feedback in PIO_PDSR is available.

351
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 27-4. Output Line Timings

27.4.8 Inputs
The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This reg-
ister indicates the level of the I/O lines regardless of their configuration, whether uniquely as an
input or driven by the PIO controller or driven by a peripheral.

Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise
PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

27.4.9 Input Glitch Filtering
Optional input glitch filters are independently programmable on each I/O line. When the glitch fil-
ter is enabled, a glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automatically
rejected, while a pulse with a duration of 1 Master Clock cycle or more is accepted. For pulse
durations between 1/2 Master Clock cycle and 1 Master Clock cycle the pulse may or may not
be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to be
visible it must exceed 1 Master Clock cycle, whereas for a glitch to be reliably filtered out, its
duration must not exceed 1/2 Master Clock cycle. The filter introduces one Master Clock cycle
latency if the pin level change occurs before a rising edge. However, this latency does not
appear if the pin level change occurs before a falling edge. This is illustrated in Figure 27-5.

The glitch filters are controlled by the register set; PIO_IFER (Input Filter Enable Register),
PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing
PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register
enables the glitch filter on the I/O lines.

When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals.
It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The
glitch filters require that the PIO Controller clock is enabled.

Figure 27-5. Input Glitch Filter Timing

MCK

Write PIO_SODR
Write PIO_ODSR at 1

PIO_ODSR

PIO_PDSR

APB Access

APB Access
Write PIO_CODR

Write PIO_ODSR at 0

2 Cycles 2 Cycles

MCK

Pin Level

PIO_PDSR
if PIO_IFSR = 0

PIO_PDSR
if PIO_IFSR = 1

2 cycles

1 cycle1 cycle 1 cycle 1 cycle

1 cycle

352
1768I–ATARM–09-Jul-09

AT91RM9200

27.4.10 Input Change Interrupt
The PIO Controller can be programmed to generate an interrupt when it detects an input change
on an I/O line. The Input Change Interrupt is controlled by writing PIO_IER (Interrupt Enable
Register) and PIO_IDR (Interrupt Disable Register), which respectively enable and disable the
input change interrupt by setting and clearing the corresponding bit in PIO_IMR (Interrupt Mask
Register). As Input change detection is possible only by comparing two successive samplings of
the input of the I/O line, the PIO Controller clock must be enabled. The Input Change Interrupt is
available, regardless of the configuration of the I/O line, i.e. configured as an input only, con-
trolled by the PIO Controller or assigned to a peripheral function.

When an input change is detected on an I/O line, the corresponding bit in PIO_ISR (Interrupt
Status Register) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt
line is asserted. The interrupt signals of the thirty-two channels are ORed-wired together to gen-
erate a single interrupt signal to the Advanced Interrupt Controller.

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that
all the interrupts that are pending when PIO_ISR is read must be handled.

Figure 27-6. Input Change Interrupt Timings

27.5 I/O Lines Programming Example
The programing example shown in Table 27-1 below is used to define the following
configuration.

• 4-bit output port on I/O lines 0 to 3, (should be written in a single write operation), open-drain,
with pull-up resistor

• Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no
pull-up resistor

• Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up
resistors, glitch filters and input change interrupts

• Four input signals on I/O line 12 to 15 to read an external device status (polled, thus no input
change interrupt), no pull-up resistor, no glitch filter

• I/O lines 16 to 19 assigned to peripheral A functions with pull-up resistor

• I/O lines 20 to 23 assigned to peripheral B functions, no pull-up resistor

• I/O lines 24 to 27 assigned to peripheral A with Input Change Interrupt and pull-up resistor

MCK

PIO_PDSR

Read PIO_ISR APB Access

PIO_ISR

APB Access

Table 27-1. Programming Example

Register Value to be Written

PIO_PER 0x0000 FFFF

PIO_PDR 0x0FFF 0000

353
1768I–ATARM–09-Jul-09

AT91RM9200

PIO_OER 0x0000 00FF

PIO_ODR 0x0FFF FF00

PIO_IFER 0x0000 0F00

PIO_IFDR 0x0FFF F0FF

PIO_SODR 0x0000 0000

PIO_CODR 0x0FFF FFFF

PIO_IER 0x0F00 0F00

PIO_IDR 0x00FF F0FF

PIO_MDER 0x0000 000F

PIO_MDDR 0x0FFF FFF0

PIO_PUDR 0x00F0 00F0

PIO_PUER 0x0F0F FF0F

PIO_ASR 0x0F0F 0000

PIO_BSR 0x00F0 0000

PIO_OWER 0x0000 000F

PIO_OWDR 0x0FFF FFF0

Table 27-1. Programming Example

354
1768I–ATARM–09-Jul-09

AT91RM9200

27.6 Parallel Input/Output Controller (PIO) User Interface
Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Controller User Interface registers.
Each register is 32 bits wide. If a parallel I/O line is not defined, writing to the corresponding bits has no effect. Undefined
bits read zero. If the I/O line is not multiplexed with any peripheral, the I/O line is controlled by the PIO Controller and
PIO_PSR returns 1 systematically.

Table 27-2. PIO Register Mapping

Offset Register Name Access Reset Value

0x0000 PIO Enable Register PIO_PER Write-only –

0x0004 PIO Disable Register PIO_PDR Write-only –

0x0008 PIO Status Register (1) PIO_PSR Read-only 0x0000 0000

0x000C Reserved

0x0010 PIO Output Enable Register PIO_OER Write-only –

0x0014 PIO Output Disable Register PIO_ODR Write-only –

0x0018 PIO Output Status Register PIO_OSR Read-only 0x0000 0000

0x001C Reserved

0x0020 PIO Glitch Input Filter Enable Register PIO_IFER Write-only –

0x0024 PIO Glitch Input Filter Disable Register PIO_IFDR Write-only –

0x0028 PIO Glitch Input Filter Status Register PIO_IFSR Read-only 0x0000 0000

0x002C Reserved

0x0030 PIO Set Output Data Register PIO_SODR Write-only –

0x0034 PIO Clear Output Data Register PIO_CODR Write-only –

0x0038 PIO Output Data Status Register(2) PIO_ODSR Read-only 0x0000 0000

0x003C PIO Pin Data Status Register(3) PIO_PDSR Read-only

0x0040 PIO Interrupt Enable Register PIO_IER Write-only –

0x0044 PIO Interrupt Disable Register PIO_IDR Write-only –

0x0048 PIO Interrupt Mask Register PIO_IMR Read-only 0x0000 0000

0x004C PIO Interrupt Status Register(4) PIO_ISR Read-only 0x0000 0000

0x0050 PIO Multi-driver Enable Register PIO_MDER Write-only –

0x0054 PIO Multi-driver Disable Register PIO_MDDR Write-only –

0x0058 PIO Multi-driver Status Register PIO_MDSR Read-only 0x0000 0000

0x005C Reserved

0x0060 PIO Pull-up Disable Register PIO_PUDR Write-only –

0x0064 PIO Pull-up Enable Register PIO_PUER Write-only –

0x0068 PIO Pad Pull-up Status Register PIO_PUSR Read-only 0x0000 0000

0x006C Reserved

0x0070 PIO Peripheral A Select Register(5) PIO_ASR Write-only –

0x0074 PIO Peripheral B Select Register(5) PIO_BSR Write-only –

0x0078 PIO AB Status Register(5) PIO_ABSR Read-only 0x0000 0000

355
1768I–ATARM–09-Jul-09

AT91RM9200

Notes: 1. Reset value of PIO_PSR depends on the product implementation.

2. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR I/O lines.

3. Reset value of PIO_PDSR depends on the level of the I/O lines.

4. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have
occurred.

5. Only this set of registers clears the status by writing 1 in the first register and sets the status by writing 1 in the second
register.

0x007C

to
0x009C

Reserved

0x00A0 PIO Output Write Enable PIO_OWER Write-only –

0x00A4 PIO Output Write Disable PIO_OWDR Write-only –

0x00A8 PIO Output Write Status Register PIO_OWSR Read-only 0x0000 0000

0x00AC Reserved

Table 27-2. PIO Register Mapping (Continued)

Offset Register Name Access Reset Value

356
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.1 PIO Enable Register
Name: PIO_PER

Access Type: Write-only

• P0 - P31: PIO Enable
0 = No effect.

1 = Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

27.6.2 PIO Disable Register
Name: PIO_PDR

Access Type: Write-only

• P0 - P31: PIO Disable
0 = No effect.

1 = Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

357
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.3 PIO Status Register
Name: PIO_PSR

Access Type: Read-only

• P0 - P31: PIO Status
0 = PIO is inactive on the corresponding I/O line (peripheral is active).

1 = PIO is active on the corresponding I/O line (peripheral is inactive).

27.6.4 PIO Output Enable Register
Name: PIO_OER

Access Type: Write-only

• P0 - P31: Output Enable
0 = No effect.

1 = Enables the output on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

358
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.5 PIO Output Disable Register
Name: PIO_ODR

Access Type: Write-only

• P0 - P31: Output Disable
0 = No effect.

1 = Disables the output on the I/O line.

27.6.6 PIO Output Status Register
Name: PIO_OSR

Access Type: Read-only

• P0 - P31: Output Status
0 = The I/O line is a pure input.

1 = The I/O line is enabled in output.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

359
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.7 PIO Input Filter Enable Register
Name: PIO_IFER

Access Type: Write-only

• P0 - P31: Input Filter Enable
0 = No effect.

1 = Enables the input glitch filter on the I/O line.

27.6.8 PIO Input Filter Disable Register
Name: PIO_IFDR

Access Type: Write-only

• P0 - P31: Input Filter Disable
0 = No effect.

1 = Disables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

360
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.9 PIO Input Filter Status Register
Name: PIO_IFSR

Access Type: Read-only

• P0 - P31: Input Filer Status
0 = The input glitch filter is disabled on the I/O line.

1 = The input glitch filter is enabled on the I/O line.

27.6.10 PIO Set Output Data Register
Name: PIO_SODR

Access Type: Write-only

• P0 - P31: Set Output Data
0 = No effect.

1 = Sets the data to be driven on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

361
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.11 PIO Clear Output Data Register
Name: PIO_CODR

Access Type: Write-only

• P0 - P31: Set Output Data
0 = No effect.

1 = Clears the data to be driven on the I/O line.

27.6.12 PIO Output Data Status Register
Name: PIO_ODSR

Access Type: Read-only or Read/Write

• P0 - P31: Output Data Status
0 = The data to be driven on the I/O line is 0.

1 = The data to be driven on the I/O line is 1.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

362
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.13 PIO Pin Data Status Register
Name: PIO_PDSR

Access Type: Read-only

• P0 - P31: Output Data Status
0 = The I/O line is at level 0.

1 = The I/O line is at level 1.

27.6.14 PIO Interrupt Enable Register
Name: PIO_IER

Access Type: Write-only

• P0 - P31: Input Change Interrupt Enable
0 = No effect.

1 = Enables the Input Change Interrupt on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

363
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.15 PIO Interrupt Disable Register
Name: PIO_IDR

Access Type: Write-only

• P0 - P31: Input Change Interrupt Disable
0 = No effect.

1 = Disables the Input Change Interrupt on the I/O line.

27.6.16 PIO Interrupt Mask Register
Name: PIO_IMR

Access Type: Read-only

• P0 - P31: Input Change Interrupt Mask
0 = Input Change Interrupt is disabled on the I/O line.

1 = Input Change Interrupt is enabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

364
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.17 PIO Interrupt Status Register
Name: PIO_IMR

Access Type: Read-only

• P0 - P31: Input Change Interrupt Mask
0 = No Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.

1 = At least one Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.

27.6.18 PIO Multi-driver Enable Register
Name: PIO_MDER

Access Type: Write-only

• P0 - P31: Multi Drive Enable
0 = No effect.

1 = Enables Multi Drive on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

365
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.19 PIO Multi-driver Disable Register
Name: PIO_MDDR

Access Type: Write-only

• P0 - P31: Multi Drive Disable
0 = No effect.

1 = Disables Multi Drive on the I/O line.

27.6.20 PIO Multi-driver Status Register
Name: PIO_MDSR

Access Type: Read-only

• P0 - P31: Multi Drive Status
0 = The Multi Drive is disabled on the I/O line. The pin is driven at high and low level.

1 = The Multi Drive is enabled on the I/O line. The pin is driven at low level only.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

366
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.21 PIO Pull-Up Disable Register
Name: PIO_PUDR

Access Type: Write-only

• P0 - P31: Pull-Up Disable
0 = No effect.

1 = Disables the pull-up resistor on the I/O line.

27.6.22 PIO Pull-Up Enable Register
Name: PIO_PUER

Access Type: Write-only

• P0 - P31: Pull-Up Enable
0 = No effect.

1 = Enables the pull-up resistor on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

367
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.23 PIO Pad Pull-Up Status Register
Name: PIO_PUSR

Access Type: Read-only

• P0 - P31: Pull-Up Status
0 = Pull-up resistor is enabled on the I/O line.

1 = Pull-up resistor is disabled on the I/O line.

27.6.24 PIO Peripheral A Select Register
Name: PIO_ASR

Access Type: Write-only

• P0 - P31: Peripheral A Select
0 = No effect.

1 = Assigns the I/O line to the Peripheral A function.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

368
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.25 PIO Peripheral B Select Register
Name: PIO_BSR

Access Type: Write-only

• P0 - P31: Peripheral B Select
0 = No effect.

1 = Assigns the I/O line to the peripheral B function.

27.6.26 PIO Peripheral AB Status Register
Name: PIO_ABSR

Access Type: Read-only

• P0 - P31: Peripheral A B Status
0 = The I/O line is assigned to the Peripheral A.

1 = The I/O line is assigned to the Peripheral B.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

369
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.27 PIO Output Write Enable Register
Name: PIO_OWER

Access Type: Write-only

• P0 - P31: Output Write Enable
0 = No effect.

1 = Enables writing PIO_ODSR for the I/O line.

27.6.28 PIO Output Write Disable Register
Name: PIO_OWDR

Access Type: Write-only

• P0 - P31: Output Write Disable
0 = No effect.

1 = Disables writing PIO_ODSR for the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

370
1768I–ATARM–09-Jul-09

AT91RM9200

27.6.29 PIO Output Write Status Register
Name: PIO_OWSR

Access Type: Read-only

• P0 - P31: Output Write Status
0 = Writing PIO_ODSR does not affect the I/O line.

1 = Writing PIO_ODSR affects the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

371
1768I–ATARM–09-Jul-09

AT91RM9200

28. Serial Peripheral Interface (SPI)

28.1 Overview
The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also allows communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is a shift register that serially transmits data bits to other SPIs.
During a data transfer, one SPI system acts as the master that controls the data flow, while the
other system acts as the slave, having data shifted into and out of it by the master. Different
CPUs can take turn being masters (Multiple Master Protocol versus Single Master Protocol
where one CPU is always the master while all of the others are always slaves), and one master
may simultaneously shift data into multiple slaves. However, only one slave may drive its output
to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:

• Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input(s) of the slave(s).

• Master In Slave Out (MISO): This data line supplies the output data from a slave to the input
of the master. There may be no more than one slave transmitting data during any particular
transfer.

• Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the
data bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once
for each bit that is transmitted.

• Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.

The main features of the SPI are:

• Supports Communication with Serial External Devices

– 4 Chip Selects with External Decoder Support Allow Communication with Up to 15
Peripherals

– Serial Memories, such as DataFlash and 3-wire EEPROMs

– Serial Peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and
Sensors

– External Co-processors

• Master or Slave Serial Peripheral Bus Interface

– 8- to 16-bit Programmable Data Length Per Chip Select

– Programmable Phase and Polarity Per Chip Select

– Programmable Transfer Delays Between Consecutive Transfers and Between Clock
and Data Per Chip Select

– Programmable Delay Between Consecutive Transfers

– Selectable Mode Fault Detection

• Connection to PDC Channel Capabilities Optimizes Data Transfers

– One Channel for the Receiver, One Channel for the Transmitter

– Next Buffer Support

372
1768I–ATARM–09-Jul-09

AT91RM9200

28.2 Block Diagram

Figure 28-1. Block Diagram

SPI Interface

Interrupt Control

PIO

PDC

APB Bridge

PMC MCK

SPI Interrupt

SPCK

MISO

MOSI

NPCS0/NSS

NPCS1

NPCS2

NPCS3

ASB

APB

373
1768I–ATARM–09-Jul-09

AT91RM9200

28.3 Application Block Diagram

Figure 28-2. Application Block Diagram: Single Master/Multiple Slave Implementation

SPI Master

SPCK

MISO

MOSI

NPCS0

NPCS1

NPCS2

SPCK

MISO

MOSI

NSS

Slave 0

SPCK

MISO

MOSI

NSS

Slave 1

SPCK

MISO

MOSI

NSS

Slave 2

NC

NPCS3

Table 28-1. Signal Description

Pin Name Pin Description

Type

Master Slave

MISO Master In Slave Out Input Output

MOSI Master Out Slave In Output Input

SPCK Serial Clock Output Input

NPCS1-NPCS3 Peripheral Chip Selects Output Unused

NPCS0/NSS Peripheral Chip Select/Slave Select Output Input

374
1768I–ATARM–09-Jul-09

AT91RM9200

28.4 Product Dependencies

28.4.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the SPI pins to their peripheral
functions.

28.4.2 Power Management
The SPI may be clocked through the Power Management Controller (PMC), thus the program-
mer must first have to configure the PMC to enable the SPI clock.

28.4.3 Interrupt
The SPI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling the SPI interrupt requires programming the AIC before configuring the SPI.

28.5 Functional Description

28.5.1 Master Mode Operations
When configured in Master Mode, the Serial Peripheral Interface controls data transfers to and
from the slave(s) connected to the SPI bus. The SPI drives the chip select(s) to the slave(s) and
the serial clock (SPCK). After enabling the SPI, a data transfer begins when the core writes to
the SPI_TDR (Transmit Data Register).

Transmit and Receive buffers maintain the data flow at a constant rate with a reduced require-
ment for high-priority interrupt servicing. When new data is available in the SPI_TDR, the SPI
continues to transfer data. If the SPI_RDR (Receive Data Register) has not been read before
new data is received, the Overrun Error (OVRES) flag is set.

Note: As long as this flag is set, no data is loaded in the SPI_RDR. The user has to read the status reg-
ister to clear it.

The programmable delay between the activation of the chip select and the start of the data
transfer (DLYBS), as well as the delay between each data transfer (DLYBCT), can be pro-
grammed for each of the four external chip selects. All data transfer characteristics, including the
two timing values, are programmed in registers SPI_CSR0 to SPI_CSR3 (Chip Select
Registers).

In Master Mode, the peripheral selection can be defined in two different ways:

• Fixed Peripheral Select: SPI exchanges data with only one peripheral

• Variable Peripheral Select: Data can be exchanged with more than one peripheral

Figure 28-7 and Figure 28-8 show the operation of the SPI in Master Mode. For details concern-
ing the flag and control bits in these diagrams, see the “Serial Peripheral Interface (SPI) User
Interface” on page 382 and the subsequent register descriptions.

28.5.1.1 Fixed Peripheral Select
This mode is used for transferring memory blocks without the extra overhead in the transmit data
register to determine the peripheral.

Fixed Peripheral Select is activated by setting bit PS to zero in SPI_MR (Mode Register). The
peripheral is defined by the PCS field in SPI_MR.

This option is only available when the SPI is programmed in Master Mode.

375
1768I–ATARM–09-Jul-09

AT91RM9200

28.5.1.2 Variable Peripheral Select
Variable Peripheral Select is activated by setting bit PS to one. The PCS field in SPI_TDR is
used to select the destination peripheral. The data transfer characteristics are changed when
the selected peripheral changes, according to the associated chip select register.

The PCS field in the SPI_MR has no effect.

This option is only available when the SPI is programmed in Master Mode.

28.5.1.3 Chip Selects
The Chip Select lines are driven by the SPI only if it is programmed in Master Mode. These lines
are used to select the destination peripheral. The PCSDEC field in SPI_MR (Mode Register)
selects one to four peripherals (PCSDEC = 0) or up to 15 peripherals (PCSDEC = 1).

If Variable Peripheral Select is active, the chip select signals are defined for each transfer in the
PCS field in SPI_TDR. Chip select signals can thus be defined independently for each transfer.

If Fixed Peripheral Select is active, Chip Select signals are defined for all transfers by the field
PCS in SPI_MR. If a transfer with a new peripheral is necessary, the software must wait until the
current transfer is completed, then change the value of PCS in SPI_MR before writing new data
in SPI_TDR.

The value on the NPCS pins at the end of each transfer can be read in the SPI_RDR (Receive
Data Register).

By default, all NPCS signals are high (equal to one) before and after each transfer.

28.5.1.4 Clock Generation and Transfer Delays
The SPI Baud rate clock is generated by dividing the Master Clock (MCK) or the Master Clock
divided by 32 (if DIV32 is set in the Mode Register) by a value between 4 and 510. The divisor is
defined in the SCBR field in each Chip Select Register. The transfer speed can thus be defined
independently for each chip select signal.

Figure 28-3 shows a chip select transfer change and consecutive transfers on the same chip
selects. Three delays can be programmed to modify the transfer waveforms:

• Delay between chip selects, programmable only once for all the chip selects by writing the
field DLYBCS in the Mode Register. Allows insertion of a delay between release of one chip
select and before assertion of a new one.

• Delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed until after the chip select has been asserted.

• Delay between consecutive transfers, independently programmable for each chip select by
writing the field DLYBCT. Allows insertion of a delay between two transfers occurring on the
same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus
release time.

376
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 28-3. Programmable Delays

28.5.1.5 Mode Fault Detection
A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven
by an external master on the NPCS0/NSS signal.

When a mode fault is detected, the MODF bit in the SPI_SR is set until the SPI_SR is read and
the SPI is disabled until re-enabled by bit SPIEN in the SPI_CR (Control Register).

By default, Mode Fault Detection is enabled. It is disabled by setting the MODFDIS bit in the SPI
Mode Register.

Chip Select 1

Chip Select 2

SPCK

DLYBCS DLYBS DLYBCT DLYBCT

377
1768I–ATARM–09-Jul-09

AT91RM9200

28.5.1.6 Master Mode Flow Diagram

Figure 28-4. Master Mode Flow Diagram

SPI Enable

TDRE

PS

1

0

0

1

1

1

0

Same peripheral

New peripheral

NPCS = SPI_TDR(PCS) NPCS = SPI_MR(PCS)

Delay DLYBS

Serializer = SPI_TDR(TD)
TDRE = 1

Data Transfer

SPI_RDR(RD) = Serializer
RDRF = 1

TDRE

PS

NPCS = 0xF

Delay DLYBCS

SPI_TDR(PCS)

NPCS = 0xF

Delay DLYBCS

NPCS = SPI_TDR(PCS)

Fixed peripheral

Variable peripheral

Fixed peripheral

Variable peripheral

Delay DLYBCT

0

378
1768I–ATARM–09-Jul-09

AT91RM9200

28.5.1.7 Master Mode Block Diagram

Figure 28-5. Master Mode Block Diagram

0

1

SPI_MR(DIV32)

MCK

MCK/32

SPCK Clock Generator

SPI_CSRx[15:0]

S

R

Q

M
O
D
F

T
D
R
E

R
D
R
F

O
V
R
E

S
P
I
E
N
S

0

1

SPI_MR(PS)

PCS
SPI_RDR

SerializerMISO

SPI_MR(PCS)

SPIDIS SPIEN

SPI_MR(MSTR)

SPI_IER
SPI_IDR
SPI_IMR

SPI_SR

MOSI

NPCS3

NPCS2

NPCS1

NPCS0

LSB MSB

SPCK

SPI Interrupt

RD

PCS
SPI_TDR

TD

379
1768I–ATARM–09-Jul-09

AT91RM9200

28.5.2 SPI Slave Mode
In Slave Mode, the SPI waits for NSS to go active low before receiving the serial clock from an
external master.

In Slave Mode, CPOL, NCPHA and BITS fields of SPI_CSR0 are used to define the transfer
characteristics. The other Chip Select Registers are not used in Slave Mode.

In Slave Mode, the low and high pulse durations of the input clock on SPCK must be longer than
two Master Clock periods.

Figure 28-6. Slave Mode Block Diagram

S

R

Q

T
D
R
E

R
D
R
F

O
V
R
E

S
P
I
E
N
S

Serializer

SPCK

SPIDIS SPIEN

SPI_IER
SPI_IDR
SPI_IMR

SPI_SR

MISO

LSB MSB

NSS

MOSI

SPI_RDR
RD

SPI_TDR
TD

SPI Interrupt

380
1768I–ATARM–09-Jul-09

AT91RM9200

28.5.3 Data Transfer
Four modes are used for data transfers. These modes correspond to combinations of a pair of
parameters called clock polarity (CPOL) and clock phase (NCPHA) that determine the edges of
the clock signal on which the data are driven and sampled. Each of the two parameters has two
possible states, resulting in four possible combinations that are incompatible with one another.
Thus a master/slave pair must use the same parameter pair values to communicate. If multiple
slaves are used and fixed in different configurations, the master must reconfigure itself each
time it needs to communicate with a different slave.

Table 28-2 shows the four modes and corresponding parameter settings.

Figure 28-7 and Figure 28-8 show examples of data transfers.

Figure 28-7. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

Table 28-2. SPI Bus Protocol Mode

SPI Mode CPOL NCPHA

0 0 1

1 0 0

2 1 1

3 1 0

SPCK
(CPOL = 0)

(Mode 1)

SPCK
(CPOL = 1)

(Mode 3)

1 2 3 4 5 6 7

MOSI
(from master)

MISO
(from slave)

NSS (to slave)

SPCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

6

5

5

4

4

3

3

2

2

1

1 *

* Not defined, but normally MSB of previous character received.

381
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 28-8. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

SPCK
(CPOL = 0)

(Mode 0)

SPCK
(CPOL = 1)

(Mode 2)

1 2 3 4 5 6 7

MOSI
(from master)

MISO
(from slave)

NSS (to slave)

SPCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

6

5

5

4

4

3

3

2

2

1

1

* Not defined but normally LSB of previous character transmitted.

*

382
1768I–ATARM–09-Jul-09

AT91RM9200

28.6 Serial Peripheral Interface (SPI) User Interface

Table 28-3. SPI Register Mapping

Offset Register Register Name Access Reset

0x00 Control Register SPI_CR Write-only ---

0x04 Mode Register SPI_MR Read/Write 0x0

0x08 Receive Data Register SPI_RDR Read-only 0x0

0x0C Transmit Data Register SPI_TDR Write-only ---

0x10 Status Register SPI_SR Read-only 0x000000F0

0x14 Interrupt Enable Register SPI_IER Write-only ---

0x18 Interrupt Disable Register SPI_IDR Write-only ---

0x1C Interrupt Mask Register SPI_IMR Read-only 0x0

0x20 - 0x2C Reserved

0x30 Chip Select Register 0 SPI_CSR0 Read/Write 0x0

0x34 Chip Select Register 1 SPI_CSR1 Read/Write 0x0

0x38 Chip Select Register 2 SPI_CSR2 Read/Write 0x0

0x3C Chip Select Register 3 SPI_CSR3 Read/Write 0x0

0x40 - 0xFF Reserved

0x100 - 0x124 Reserved for the PDC

383
1768I–ATARM–09-Jul-09

AT91RM9200

28.6.1 SPI Control Register
Name: SPI_CR

Access Type: Write-only

• SPIEN: SPI Enable
0 = No effect.

1 = Enables the SPI to transfer and receive data.

• SPIDIS: SPI Disable
0 = No effect.

1 = Disables the SPI.

All pins are set in input mode and no data is received or transmitted.

If a transfer is in progress, the transfer is finished before the SPI is disabled.

If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled

• SWRST: SPI Software Reset
0 = No effect.

1 = Reset the SPI.

A software-triggered hardware reset of the SPI interface is performed.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SWRST – – – – – SPIDIS SPIEN

384
1768I–ATARM–09-Jul-09

AT91RM9200

28.6.2 SPI Mode Register
Name: SPI_MR

Access Type: Read/Write

• MSTR: Master/Slave Mode
0 = SPI is in Slave mode.

1 = SPI is in Master mode.

• PS: Peripheral Select
0 = Fixed Peripheral Select.

1 = Variable Peripheral Select.

• PCSDEC: Chip Select Decode
0 = The chip selects are directly connected to a peripheral device.

1 = The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 16 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder.

The Chip Select Registers define the characteristics of the 16 chip selects according to the following rules:

SPI_CSR0 defines peripheral chip select signals 0 to 3.
SPI_CSR1 defines peripheral chip select signals 4 to 7.

SPI_CSR2 defines peripheral chip select signals 8 to 11.

SPI_CSR3 defines peripheral chip select signals 12 to 15*.
*Note: The 16th state corresponds to a state in which all chip selects are inactive. This allows a different clock configuration
to be defined by each chip select register.

• DIV32: Clock Selection
0 = The SPI operates at MCK.

1 = The SPI operates at MCK/32.

• MODFDIS: Mode Fault Detection
0 = Mode fault detection is enabled.

1 = Mode fault detection is disabled.

• LLB: Local Loopback Enable

31 30 29 28 27 26 25 24

DLYBCS

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

LLB – – MODFDIS DIV32 PCSDEC PS MSTR

385
1768I–ATARM–09-Jul-09

AT91RM9200

0 = Local loopback path disabled

1 = Local loopback path enabled

LLB controls the local loopback on the data serializer for testing in Master Mode only.

• PCS: Peripheral Chip Select
This field is only used if Fixed Peripheral Select is active (PS = 0).

If PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS

• DLYBCS: Delay Between Chip Selects
This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-over-
lapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is less than or equal to six, six MCK periods (or 192 MCK periods if DIV32 is set) will be inserted by default.

Otherwise, the following equation determines the delay:

If DIV32 is 0:

If DIV32 is 1:

Delay Between Chip Selects DLYBCS MCK⁄=

Delay Between Chip Selects DLYBCS 32× MCK⁄=

386
1768I–ATARM–09-Jul-09

AT91RM9200

28.6.3 SPI Receive Data Register
Name: SPI_RDR

Access Type: Read-only

• RD: Receive Data
Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.

• PCS: Peripheral Chip Select
In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read
zero.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

RD

7 6 5 4 3 2 1 0

RD

387
1768I–ATARM–09-Jul-09

AT91RM9200

28.6.4 SPI Transmit Data Register
Name: SPI_TDR

Access Type: Write-only

• TD: Transmit Data
Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the
transmit data register in a right-justified format.

PCS: Peripheral Chip Select

This field is only used if Variable Peripheral Select is active (PS = 1).

If PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

TD

7 6 5 4 3 2 1 0

TD

388
1768I–ATARM–09-Jul-09

AT91RM9200

28.6.5 SPI Status Register
Name: SPI_SR

Access Type: Read-only

• RDRF: Receive Data Register Full
0 = No data has been received since the last read of SPI_RDR

1 = Data has been received and the received data has been transferred from the serializer to SPI_RDR since the last read
of SPI_RDR.

• TDRE: Transmit Data Register Empty

0 = Data has been written to SPI_TDR and not yet transferred to the serializer.

1 = The last data written in the Transmit Data Register has been transferred to the serializer.

TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

• MODF: Mode Fault Error

0 = No Mode Fault has been detected since the last read of SPI_SR.

1 = A Mode Fault occurred since the last read of the SPI_SR.

• OVRES: Overrun Error Status

0 = No overrun has been detected since the last read of SPI_SR.

1 = An overrun has occurred since the last read of SPI_SR.

An overrun occurs when SPI_RDR is loaded at least twice from the serializer since the last read of the SPI_RDR.

• ENDRX: End of RX buffer
0 = The Receive Counter Register has not reached 0 since the last write in SPI_RCR or SPI_RNCR.

1 = The Receive Counter Register has reached 0 since the last write in SPI_RCR or SPI_RNCR.

• ENDTX: End of TX buffer
0 = The Transmit Counter Register has not reached 0 since the last write in SPI_TCR or SPI_TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in SPI_TCR or SPI_TNCR.

• RXBUFF: RX Buffer Full
0 = SPI_RCR or SPI_RNCR have a value other than 0.

1 = Both SPI_RCR and SPI_RNCR have a value of 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – SPIENS

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

389
1768I–ATARM–09-Jul-09

AT91RM9200

• TXBUFE: TX Buffer Empty
0 = SPI_TCR or SPI_TNCR have a value other than 0.

1 = Both SPI_TCR and SPI_TNCR have a value of 0.

• SPIENS: SPI Enable Status

0 = SPI is disabled.

1 = SPI is enabled.

390
1768I–ATARM–09-Jul-09

AT91RM9200

28.6.6 SPI Interrupt Enable Register
Name: SPI_IER

Access Type: Write-only

• RDRF: Receive Data Register Full Interrupt Enable

• TDRE: SPI Transmit Data Register Empty Interrupt Enable

• MODF: Mode Fault Error Interrupt Enable

• OVRES: Overrun Error Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable
0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

391
1768I–ATARM–09-Jul-09

AT91RM9200

28.6.7 SPI Interrupt Disable Register
Name: SPI_IDR

Access Type: Write-only

• RDRF: Receive Data Register Full Interrupt Disable

• TDRE: SPI Transmit Data Register Empty Interrupt Disable

• MODF: Mode Fault Error Interrupt Disable

• OVRES: Overrun Error Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

392
1768I–ATARM–09-Jul-09

AT91RM9200

28.6.8 SPI Interrupt Mask Register
Name: SPI_IMR

Access Type: Read-only

• RDRF: Receive Data Register Full Interrupt Mask

• TDRE: SPI Transmit Data Register Empty Interrupt Mask

• MODF: Mode Fault Error Interrupt Mask

• OVRES: Overrun Error Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask
0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

393
1768I–ATARM–09-Jul-09

AT91RM9200

28.6.9 SPI Chip Select Register
Name: SPI_CSR0... SPI_CSR3

Access Type: Read/Write

• CPOL: Clock Polarity

0 = The inactive state value of SPCK is logic level zero.

1 = The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.

• NCPHA: Clock Phase

0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.

• BITS: Bits Per Transfer

The BITS field determines the number of data bits transferred. Reserved values should not be used.

31 30 29 28 27 26 25 24

DLYBCT

23 22 21 20 19 18 17 16

DLYBS

15 14 13 12 11 10 9 8

SCBR

7 6 5 4 3 2 1 0

BITS – – NCPHA CPOL

BITS[3:0] Bits Per Transfer

0000 8

0001 9

0010 10

0011 11

0100 12

0101 13

0110 14

0111 15

1000 16

1001 Reserved

1010 Reserved

1011 Reserved

1100 Reserved

1101 Reserved

1110 Reserved

1111 Reserved

394
1768I–ATARM–09-Jul-09

AT91RM9200

• SCBR: Serial Clock Baud Rate

In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 2 to 255 in the field SCBR. The following equation determines the SPCK baud
rate:

If DIV32 is 0:

If DIV32 is 1:

Giving SCBR a value of zero or one disables the baud rate generator. SPCK is disabled and assumes its inactive state
value. No serial transfers may occur. At reset, baud rate is disabled.

• DLYBS: Delay Before SPCK

This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.

Otherwise, the following equations determine the delay:

If DIV32 is 0:

If DIV32 is 1:

• DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, a minimum delay of four MCK cycles are inserted (or 128 MCK cycles when DIV32 is set)
between two consecutive characters.

Otherwise, the following equation determines the delay:

If DIV32 is 0:

If DIV32 is 1:

SPCK Baudrate MCK 2 SCBR×()⁄=

SPCK Baudrate MCK 64 SCBR×()⁄=

Delay Before SPCK DLYBS MCK⁄=

Delay Before SPCK 32 DLYBS× MCK⁄=

Delay Between Consecutive Transfers 32 DLYBCT× MCK⁄=

Delay Between Consecutive Transfers 1024 DLYBCT× MCK⁄=

395
1768I–ATARM–09-Jul-09

AT91RM9200

29. Two-wire Interface (TWI)

29.1 Overview
The Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up of
one clock line and one data line with speeds of up to 400 Kbits per second, based on a byte-ori-
ented transfer format. It can be used with any Atmel two-wire bus serial EEPROM. The TWI is
programmable as a master with sequential or single-byte access.

A configurable baud rate generator permits the output data rate to be adapted to a wide range of
core clock frequencies.

The main features of the TWI are:

• Compatibility with standard two-wire serial memory

• One, two or three bytes for slave address

• Sequential Read/Write operations

29.2 Block Diagram

Figure 29-1. Block Diagram

29.3 Application Block Diagram

Figure 29-2. Application Block Diagram

APB Bridge

PMC MCK

Two-wire
Interface

PIO

AIC
TWI

Interrupt

TWCK

TWD

Host with
TWI

Interface

TWD

TWCK

AT24LC16
U1

AT24LC16
U2

LCD Controller
U3

Slave 1 Slave 2 Slave 3

R R

VDD

396
1768I–ATARM–09-Jul-09

AT91RM9200

29.4 Product Dependencies

29.4.1 I/O Lines
Both TWD and TWCK are bi-directional lines, connected to a positive supply voltage via a cur-
rent source or pull-up resistor (see Figure 29-2 on page 395). When the bus is free, both lines
are high. The output stages of devices connected to the bus must have an open-drain or open-
collector to perform the wired-AND function.

TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the programmer
must perform the following steps:

• Program the PIO controller to:

– Dedicate TWD and TWCK as peripheral lines.

– Define TWD and TWCK as open-drain.

29.4.2 Power Management

• Enable the peripheral clock.

The TWI interface may be clocked through the Power Management Controller (PMC), thus the
programmer must first configure the PMC to enable the TWI clock.

29.4.3 Interrupt
The TWI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). In
order to handle interrupts, the AIC must be programmed before configuring the TWI.

29.5 Functional Description

29.5.1 Transfer Format
The data put on the TWD line must be eight bits long. Data is transferred MSB first; each byte
must be followed by an acknowledgement. The number of bytes per transfer is unlimited (see
Figure 29-4 on page 397).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure
29-3 on page 397).

• A high-to-low transition on the TWD line while TWCK is high defines the START condition.

• A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Table 29-1. I/O Lines Description

Pin Name Pin Description Type

TWD Two-wire Serial Data Input/Output

TWCK Two-wire Serial Clock Input/Output

397
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 29-3. START and STOP Conditions

Figure 29-4. Transfer Format

29.5.2 Modes of Operation
The TWI has two modes of operations:

• Master transmitter mode

• Master receiver mode

The TWI Control Register (TWI_CR) allows configuration of the interface in Master Mode. In this
mode, it generates the clock according to the value programmed in the Clock Waveform Gener-
ator Register (TWI_CWGR). This register defines the TWCK signal completely, enabling the
interface to be adapted to a wide range of clocks.

29.5.3 Transmitting Data
After the master initiates a Start condition, it sends a 7-bit slave address, configured in the Mas-
ter Mode register (DADR in TWI_MMR), to notify the slave device. The bit following the slave
address indicates the transfer direction (write or read). If this bit is 0, it indicates a write operation
(transmit operation). If the bit is 1, it indicates a request for data read (receive operation).

The TWI transfers require the slave to acknowledge each received byte. During the acknowl-
edge clock pulse, the master releases the data line (HIGH), enabling the slave to pull it down in
order to generate the acknowledge. The master polls the data line during this clock pulse and
sets the NAK bit in the status register if the slave does not acknowledge the byte. As with the
other status bits, an interrupt can be generated if enabled in the interrupt enable register
(TWI_IER). After writing in the transmit-holding register (TWI_THR), setting the START bit in the
control register starts the transmission. The data is shifted in the internal shifter and when an
acknowledge is detected, the TXRDY bit is set until a new write in the TWI_THR (see Figure 29-
6 on page 398). The master generates a stop condition to end the transfer.

The read sequence begins by setting the START bit. When the RXRDY bit is set in the status
register, a character has been received in the receive-holding register (TWI_RHR). The RXRDY
bit is reset when reading the TWI_RHR.

The TWI interface performs various transfer formats (7-bit slave address, 10-bit slave address).
The three internal address bytes are configurable through the Master Mode register
(TWI_MMR). If the slave device supports only a 7-bit address, the IADRSZ must be set to 0. For

TWD

TWCK

Start Stop

TWD

TWCK

Start Address R/W Ack Data Ack Data Ack Stop

398
1768I–ATARM–09-Jul-09

AT91RM9200

slave address higher than seven bits, the user must configure the address size (IADRSZ) and
set the other slave address bits in the internal address register (TWI_IADR).

Figure 29-5. Master Write with One, Two or Three Bytes Internal Address and One Data Byte

Figure 29-6. Master Write with One Byte Internal Address and Multiple Data Bytes

Figure 29-7. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

Figure 29-8. Master Read with One Byte Internal Address and Multiple Data Bytes

• S = Start

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A DATA A P

S DADR W A IADR(15:8) A IADR(7:0) A PDATA A

A IADR(7:0) A PDATA AS DADR W

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

TWD

TWD

A IADR(7:0) A DATA AS DADR W DATA A PDATA A

TXCOMP

TXRDY

Write THR

Write THR Write THR Write THR

TWD

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A

S DADR W A IADR(15:8) A IADR(7:0) A

A IADR(7:0) AS DADR W

DATA N P

S DADR R A

S DADR R A DATA N P

S DADR R A DATA N P

TWD

TWD

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

A IADR(7:0) AS DADR W S DADR R A DATA A DATA N P

TXCOMP

Write START Bit

RXRDY

Write STOP Bit

Read RHR Read RHR

TWD

399
1768I–ATARM–09-Jul-09

AT91RM9200

• P = Stop

• W = Write

• R = Read

• A = Acknowledge

• N = Not Acknowledge

• DADR= Device Address

• IADR = Internal Address

Figure 29-9 shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates the use of
internal addresses to access the device.

Figure 29-9. Internal Address Usage

29.5.4 Read/Write Flowcharts
The following flowcharts shown in Figure 29-10 on page 400 and in Figure 29-11 on page 401
give examples for read and write operations in Master Mode. A polling or interrupt method can
be used to check the status bits. The interrupt method requires that the interrupt enable register
(TWI_IER) be configured first.

S
T
A
R
T

M
S
B

Device
Address

0

L
S
B

R
/

W

A
C
K

M
S
B

W
R
I
T
E

A
C
K

A
C
K

L
S
B

A
C
K

FIRST
WORD ADDRESS

SECOND
WORD ADDRESS DATA

S
T
O
P

400
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 29-10. TWI Write in Master Mode

Set TWI clock:
TWI_CWGR = clock

Set the control register:
- Master enable

TWI_CR = TWI_MSEN

Set the Master Mode register:
- Device slave address
- Internal address size
- Transfer direction bit

Write ==> bit MREAD = 0

Internal address size = 0?

Load transmit register
TWI_THR = Data to send

Start the transfer
TWI_CR = TWI_START

Stop the transfer
TWI_CR = TWI_STOP

Read status register

TXRDY = 0?

Data to send?

Read status register

TXCOMP = 0?

END

START

Set the internal address
TWI_IADR = address

Yes

TWI_THR = data to send

Yes

Yes

401
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 29-11. TWI Read in Master Mode

Set TWI clock:
TWI_CWGR = clock

Set the control register:
- Master enable

TWI_CR = TWI_MSEN

Set the Master Mode register:
- Device slave address
- Internal address size
- Transfer direction bit

Read ==> bit MREAD = 0

Internal address size = 0?

Start the transfer
TWI_CR = TWI_START

Stop the transfer
TWI_CR = TWI_STOP

Read status register

RXRDY = 0?

Data to read?

Read status register

TXCOMP = 0?

END

START

Set the internal address
TWI_IADR = address

Yes

Yes

Yes

Yes

402
1768I–ATARM–09-Jul-09

AT91RM9200

29.6 Two-wire Interface (TWI) User Interface

Table 29-2. TWI Register Mapping

Offset Register Name Access Reset Value

0x0000 Control Register TWI_CR Write-only N/A

0x0004 Master Mode Register TWI_MMR Read/Write 0x0000

0x0008 Reserved

0x000C Internal Address Register TWI_IADR Read/Write 0x0000

0x0010 Clock Waveform Generator Register TWI_CWGR Read/Write 0x0000

0x0020 Status Register TWI_SR Read-only 0x0008

0x0024 Interrupt Enable Register TWI_IER Write-only N/A

0x0028 Interrupt Disable Register TWI_IDR Write-only N/A

0x002C Interrupt Mask Register TWI_IMR Read-only 0x0000

0x0030 Receive Holding Register TWI_RHR Read-only 0x0000

0x0034 Transmit Holding Register TWI_THR Read/Write 0x0000

403
1768I–ATARM–09-Jul-09

AT91RM9200

29.6.1 TWI Control Register
Register Name: TWI_CR

Access Type: Write-only

• START: Send a START Condition
0 = No effect.

1 = A frame beginning with a START bit is transmitted according to the features defined in the mode register.

This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a
write operation, a frame is sent with the mode register as soon as the user writes a character in the holding register.

• STOP: Send a STOP Condition
0 = No effect.

1 = STOP Condition is sent just after completing the current byte transmission in master read or write mode.

In single data byte master read or write, the START and STOP must both be set.

In multiple data bytes master read or write, the STOP must be set before ACK/NACK bit transmission.

In master read mode, if a NACK bit is received, the STOP is automatically performed.

In multiple data write operation, when both THR and shift register are empty, a STOP condition is automatically sent.

• MSEN: TWI Master Transfer Enabled
0 = No effect.

1 = If MSDIS = 0, the master data transfer is enabled.

• MSDIS: TWI Master Transfer Disabled
0 = No effect.

1 = The master data transfer is disabled, all pending data is transmitted. The shifter and holding characters (if it contains
data) are transmitted in case of write operation. In read operation, the character being transferred must be completely
received before disabling.

• SWRST: Software Reset
0 = No effect.

1 = Equivalent to a system reset.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0

SWRST – – – MSDIS MSEN STOP START

404
1768I–ATARM–09-Jul-09

AT91RM9200

29.6.2 TWI Master Mode Register
Register Name: TWI_MMR

Address Type: Read/Write

• IADRSZ: Internal Device Address Size

• MREAD: Master Read Direction
0 = Master write direction.

1 = Master read direction.

• DADR: Device Address
The device address is used in Master Mode to access slave devices in read or write mode.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– DADR

15 14 13 12 11 10 9 8
– – – MREAD – – IADRSZ

7 6 5 4 3 2 1 0

– – – – – – – –

IADRSZ[9:8]

0 0 No internal device address (Byte command protocol)

0 1 One-byte internal device address

1 0 Two-byte internal device address

1 1 Three-byte internal device address

405
1768I–ATARM–09-Jul-09

AT91RM9200

29.6.3 TWI Internal Address Register
Register Name: TWI_IADR

Access Type: Read/Write

• IADR: Internal Address
0, 1, 2 or 3 bytes depending on IADRSZ. Low significant byte address in 10-bit mode addresses.

29.6.4 TWI Clock Waveform Generator Register
Register Name: TWI_CWGR

Access Type: Read/Write

• CLDIV: Clock Low Divider
The TWCK low period is defined as follows:

• CHDIV: Clock High Divider
The TWCK high period is defined as follows:

• CKDIV: Clock Divider
The CKDIV is used to increase both TWCK high and low periods.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

IADR

15 14 13 12 11 10 9 8
IADR

7 6 5 4 3 2 1 0

IADR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – CKDIV

15 14 13 12 11 10 9 8
CHDIV

7 6 5 4 3 2 1 0

CLDIV

Tlow CLDIV(2CKDIV×() 3)+ TMCK×=

Thigh CHDIV(2CKDIV×() 3)+ TMCK×=

406
1768I–ATARM–09-Jul-09

AT91RM9200

29.6.5 TWI Status Register
Register Name: TWI_SR

Access Type: Read-only

• TXCOMP: Transmission Completed
0 = In master, during the length of the current frame. In slave, from START received to STOP received.

1 = When both holding and shifter registers are empty and STOP condition has been sent (in Master) or when MSEN is set
(enable TWI).

• RXRDY: Receive Holding Register Ready
0 = No character has been received since the last TWI_RHR read operation.

1 = A byte has been received in the TWI_RHR since the last read.

• TXRDY: Transmit Holding Register Ready
0 = The transmit holding register has not been transferred into shift register. Set to 0 when writing into TWI_THR register.

1 = As soon as data byte is transferred from TWI_THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).

• OVRE: Overrun Error
0 = TWI_RHR has not been loaded while RXRDY was set

1 = TWI_RHR has been loaded while RXRDY was set. Reset by read in TWI_SR when TXCOMP is set.

• UNRE: Underrun Error
0 = No underrun error

1 = No valid data in TWI_THR (TXRDY set) while trying to load the data shifter. This action automatically generated a
STOP bit in Master Mode. Reset by read in TWI_SR when TXCOMP is set.

• NACK: Not Acknowledged
0 = Each data byte has been correctly received by the far-end side TWI slave component.

1 = A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP. Reset after read.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – NACK

7 6 5 4 3 2 1 0

UNRE OVRE – – – TXRDY RXRDY TXCOMP

407
1768I–ATARM–09-Jul-09

AT91RM9200

29.6.6 TWI Interrupt Enable Register
Register Name: TWI_IER

Access Type: Write-only

• TXCOMP: Transmission Completed

• RXRDY: Receive Holding Register Ready

• TXRDY: Transmit Holding Register Ready

• OVRE: Overrun Error

• UNRE: Underrun Error

• NACK: Not Acknowledge
0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – NACK

7 6 5 4 3 2 1 0

UNRE OVRE – – – TXRDY RXRDY TXCOMP

408
1768I–ATARM–09-Jul-09

AT91RM9200

29.6.7 TWI Interrupt Disable Register
Register Name: TWI_IDR

Access Type: Write-only

• TXCOMP: Transmission Completed

• RXRDY: Receive Holding Register Ready

• TXRDY: Transmit Holding Register Ready

• OVRE: Overrun Error

• UNRE: Underrun Error

• NACK: Not Acknowledge
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – NACK

7 6 5 4 3 2 1 0

UNRE OVRE – – – TXRDY RXRDY TXCOMP

409
1768I–ATARM–09-Jul-09

AT91RM9200

29.6.8 TWI Interrupt Mask Register
Register Name: TWI_IMR

Access Type: Read-only

• TXCOMP: Transmission Completed

• RXRDY: Receive Holding Register Ready

• TXRDY: Transmit Holding Register Ready

• OVRE: Overrun Error

• UNRE: Underrun Error

• NACK: Not Acknowledge
0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

29.6.9 TWI Receive Holding Register
Register Name: TWI_RHR

Access Type: Read-only

• RXDATA: Master or Slave Receive Holding Data

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – NACK

7 6 5 4 3 2 1 0

UNRE OVRE – – – TXRDY RXRDY TXCOMP

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
RXDATA

410
1768I–ATARM–09-Jul-09

AT91RM9200

29.6.10 TWI Transmit Holding Register
Register Name: TWI_THR

Access Type: Read/Write

• TXDATA: Master or Slave Transmit Holding Data

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0

TXDATA

411
1768I–ATARM–09-Jul-09

AT91RM9200

30. Universal Synchronous Asynchronous Receiver Transceiver (USART)

30.1 Overview
The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full
duplex universal synchronous asynchronous serial link. Data frame format is widely programma-
ble (data length, parity, number of stop bits) to support a maximum of standards. The receiver
implements parity error, framing error and overrun error detection. The receiver time-out enables
handling variable-length frames and the transmitter timeguard facilitates communications with
slow remote devices. Multi-drop communications are also supported through address bit han-
dling in reception and transmission.

The USART features three test modes: remote loopback, local loopback and automatic echo.

The USART supports specific operating modes providing interfaces on RS485 busses, with
ISO7816 T = 0 or T = 1 smart card slots, infrared transceivers and connection to modem ports.
The hardware handshaking feature enables an out-of-band flow control by automatic manage-
ment of the pins RTS and CTS.

The USART supports the connection to the Peripheral DMA Controller, which enables data
transfers to the transmitter and from the receiver. The PDC provides chained buffer manage-
ment without any intervention of the processor.

Important features of the USART are:

• Programmable Baud Rate Generator

• 5- to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications(1)

– 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous Mode

– Parity Generation and Error Detection

– Framing Error Detection, Overrun Error Detection

– MSB- or LSB-first

– Optional Break Generation and Detection

– By 8 or by-16 Over-sampling Receiver Frequency

– Optional Hardware Handshaking RTS-CTS

– Optional Modem Signal Management DTR-DSR-DCD-RI

– Receiver Time-out and Transmitter Timeguard

– Optional Multi-Drop Mode with Address Generation and Detection

• RS485 with driver control signal

• ISO7816, T = 0 or T = 1 Protocols for Interfacing with Smart Cards

– NACK Handling, Error Counter with Repetition and Iteration Limit

• IrDA Modulation and Demodulation

– Communication at up to 115.2 Kbps

• Test Modes

– Remote Loopback, Local Loopback, Automatic Echo

• Supports Connection of Two Peripheral DMA Controller Channels (PDC)

– Offer Buffer Transfer without Processor Intervention

Note: 1. The 9-bit Character Length Mode cannot be used with the peripheral DMA Controller (PDC)

412
1768I–ATARM–09-Jul-09

AT91RM9200

30.2 Block Diagram

Figure 30-1. USART Block Diagram

Peripheral Data
Controller

Channel Channel

AIC

Receiver

APB

USART
Interrupt

RXD

TXD

SCK

USART PIO
Controller

CTS

RTS

DTR

DSR

DCD

RI

Transmitter

Modem
Signals
Control

Baud Rate
Generator

User Interface

PMC
MCK

SLCK

DIV
MCK/DIV

413
1768I–ATARM–09-Jul-09

AT91RM9200

30.3 Application Block Diagram

Figure 30-2. Application Block Diagram

30.4 I/O Lines Description

30.5 Product Dependencies

30.5.1 I/O Lines
The pins used for interfacing the USART may be multiplexed with the PIO lines. The program-
mer must first program the PIO controller to assign the desired USART pins to their peripheral
function. If I/O lines of the USART are not used by the application, they can be used for other
purposes by the PIO Controller.

All the pins of the modems may or may not be implemented on the USART within a product. Fre-
quently, only the USART1 is fully equipped with all the modem signals. For the other USARTs of
the product not equipped with the corresponding pin, the associated control bits and statuses
have no effect on the behavior of the USART.

Smart
Card
Slot

USART

RS232
Drivers

Modem

RS485
Drivers

Differential
Bus

IrDA
Transceivers

Modem
Driver

Field Bus
Driver

EMV
Driver IrDA

Driver

IrLAP

RS232
Drivers

Serial
Port

Serial
Driver

PPP

PSTN

Table 30-1. I/O Line Description

Name Description Type Active Level

SCK Serial Clock I/O

TXD Transmit Serial Data I/O

RXD Receive Serial Data Input

RI Ring Indicator Input Low

DSR Data Set Ready Input Low

DCD Data Carrier Detect Input Low

DTR Data Terminal Ready Output Low

CTS Clear to Send Input Low

RTS Request to Send Output Low

414
1768I–ATARM–09-Jul-09

AT91RM9200

30.5.2 Power Management
The USART is not continuously clocked. The programmer must first enable the USART Clock in
the Power Management Controller (PMC) before using the USART. However, if the application
does not require USART operations, the USART clock can be stopped when not needed and be
restarted later. In this case, the USART will resume its operations where it left off.

Configuring the USART does not require the USART clock to be enabled.

30.5.3 Interrupt
The USART interrupt line is connected on one of the internal sources of the Advanced Interrupt
Controller. Using the USART interrupt requires the AIC to be programmed first. Note that it is not
recommended to use the USART interrupt line in edge sensitive mode.

30.6 Functional Description
The USART is capable of managing several types of serial synchronous or asynchronous
communications.

It supports the following communication modes.

• 5- to 9-bit full-duplex asynchronous serial communication:

– MSB- or LSB-first

– 1, 1.5 or 2 stop bits

– Parity even, odd, marked, space or none

– By-8 or by-16 over-sampling receiver frequency

– Optional hardware handshaking

– Optional modem signals management

– Optional break management

– Optional multi-drop serial communication

• High-speed 5- to 9-bit full-duplex synchronous serial communication:

– MSB- or LSB-first

– 1 or 2 stop bits

– Parity even, odd, marked, space or none

– by 8 or by-16 over-sampling frequency

– Optional Hardware handshaking

– Optional Modem signals management

– Optional Break management

– Optional Multi-Drop serial communication

• RS485 with driver control signal

• ISO7816, T0 or T1 protocols for interfacing with smart cards

– NACK handling, error counter with repetition and iteration limit

• InfraRed IrDA Modulation and Demodulation

• Test modes

– remote loopback, local loopback, automatic echo

415
1768I–ATARM–09-Jul-09

AT91RM9200

30.6.1 Baud Rate Generator
The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the
receiver and the transmitter.

The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode
Register (US_MR) between:

• the Master Clock MCK

• A division of the Master Clock, the divider being product dependent, but generally set to 8

• the external clock, available on the SCK pin

The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field
of the Baud Rate Generator Register (US_BRGR). If CD is programmed at 0, the Baud Rate
Generator does not generate any clock. If CD is programmed at 1, the divider is bypassed and
becomes inactive.

If the external SCK clock is selected, the duration of the low and high levels of the signal pro-
vided on the SCK pin must be longer than a Master Clock (MCK) period. The frequency of the
signal provided on SCK must be at least 4.5 times lower than MCK.

Figure 30-3. Baud Rate Generator

30.6.1.1 Baud Rate in Asynchronous Mode
If the USART is programmed to operate in asynchronous mode, the selected clock is first
divided by CD, which is field programmed in the Baud Rate Generator Register (US_BRGR).
The resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8,
depending on the programming of the OVER bit in US_MR.

If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is
cleared, the sampling is performed at 16 times the baud rate clock.

The following formula performs the calculation of the Baud Rate.

This gives a maximum baud rate of MCK divided by 8, assuming that MCK is the highest possi-
ble clock and that OVER is programmed at 1.

MCK/DIV
16-bit Counter

0

Baud Rate
Clock

CD

CD

Sampling
Divider

0

1

>1

Sampling
Clock

Reserved

MCK

SCK

USCLKS

OVER

SCK

SYNC

SYNC

USCLKS = 3

1

0

2

3
0

1

0

1

FIDI

Baudrate SelectedClock
8 2 Over–()CD()

--=

416
1768I–ATARM–09-Jul-09

AT91RM9200

Baud Rate Calculation Example

Table 30-2 shows calculations of CD to obtain a baud rate at 38400 bauds for different source
clock frequencies. This table also shows the actual resulting baud rate and the error.

The baud rate is calculated with the following formula:

The baud rate error is calculated with the following formula. It is not recommended to work with
an error higher than 5%.

30.6.1.2 Baud Rate in Synchronous Mode
If the USART is programmed to operate in synchronous mode, the selected clock is simply
divided by the field CD in US_BRGR.

Table 30-2. Baud Rate Example (OVER = 0)

Source Clock
Expected
Baud Rate

Calculation
Result CD

Actual
Baud Rate Error

MHz Bit/s Bit/s

3 686 400 38 400 6.00 6 38 400.00 0.00%

4 915 200 38 400 8.00 8 38 400.00 0.00%

5 000 000 38 400 8.14 8 39 062.50 1.70%

7 372 800 38 400 12.00 12 38 400.00 0.00%

8 000 000 38 400 13.02 13 38 461.54 0.16%

12 000 000 38 400 19.53 20 37 500.00 2.40%

12 288 000 38 400 20.00 20 38 400.00 0.00%

14 318 180 38 400 23.30 23 38 908.10 1.31%

14 745 600 38 400 24.00 24 38 400.00 0.00%

18 432 000 38 400 30.00 30 38 400.00 0.00%

24 000 000 38 400 39.06 39 38 461.54 0.16%

24 576 000 38 400 40.00 40 38 400.00 0.00%

25 000 000 38 400 40.69 40 38 109.76 0.76%

32 000 000 38 400 52.08 52 38 461.54 0.16%

32 768 000 38 400 53.33 53 38 641.51 0.63%

33 000 000 38 400 53.71 54 38 194.44 0.54%

40 000 000 38 400 65.10 65 38 461.54 0.16%

50 000 000 38 400 81.38 81 38 580.25 0.47%

60 000 000 38 400 97.66 98 38 265.31 0.35%

70 000 000 38 400 113.93 114 38 377.19 0.06%

BaudRate MCK CD 16×⁄=

Error 1
ExpectedBaudRate

ActualBaudRate
---⎝ ⎠

⎛ ⎞–=

417
1768I–ATARM–09-Jul-09

AT91RM9200

In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided
directly by the signal on the USART SCK pin. No division is active. The value written in
US_BRGR has no effect. The external clock frequency must be at least 4.5 times lower than the
system clock.

When either the external clock SCK or the internal clock divided (MCK/DIV) is selected, the
value programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on the
SCK pin. If the internal clock MCK is selected, the Baud Rate Generator ensures a 50:50 duty
cycle on the SCK pin, even if the value programmed in CD is odd.

30.6.1.3 Baud Rate in ISO 7816 Mode
The ISO7816 specification defines the bit rate with the following formula:

where:

• B is the bit rate

• Di is the bit-rate adjustment factor

• Fi is the clock frequency division factor

• f is the ISO7816 clock frequency (Hz)

Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 30-3.

Fi is a binary value encoded on a 4-bit field, named FI, as represented in Table 30-4.

Table 30-5 shows the resulting Fi/Di Ratio, which is the ratio between the ISO7816 clock and the
baud rate clock.

BaudRate SelectedClock
CD

--------------------------------------=

B Di
Fi
------ f×=

Table 30-3. Binary and Decimal Values for D

DI field 0001 0010 0011 0100 0101 0110 1000 1001

Di (decimal) 1 2 4 8 16 32 12 20

Table 30-4. Binary and Decimal Values for F

FI field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101

Fi (decimal 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048

Table 30-5. Possible Values for the Fi/Di Ratio

Fi/Di 372 558 774 1116 1488 1806 512 768 1024 1536 2048

1 372 558 744 1116 1488 1860 512 768 1024 1536 2048

2 186 279 372 558 744 930 256 384 512 768 1024

4 93 139.5 186 279 372 465 128 192 256 384 512

8 46.5 69.75 93 139.5 186 232.5 64 96 128 192 256

16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128

418
1768I–ATARM–09-Jul-09

AT91RM9200

If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the
Mode Register (US_MR) is first divided by the value programmed in the field CD in the Baud
Rate Generator Register (US_BRGR). The resulting clock can be provided to the SCK pin to
feed the smart card clock inputs. This means that the CLKO bit can be set in US_MR.

This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio
register (US_FIDI). This is performed by the Sampling Divider, which performs a division by up
to 2047 in ISO7816 Mode. The non-integer values of the Fi/Di Ratio are not supported and the
user must program the FI_DI_RATIO field to a value as close as possible to the expected value.

The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common
divider between the ISO7816 clock and the bit rate (Fi = 372, Di = 1).

Figure 30-4 shows the relation between the Elementary Time Unit, corresponding to a bit time,
and the ISO 7816 clock.

Figure 30-4. Elementary Time Unit (ETU)

30.6.2 Receiver and Transmitter Control
After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit
in the Control Register (US_CR). However, the receiver registers can be programmed before the
receiver clock is enabled.

After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the
Control Register (US_CR). However, the transmitter registers can be programmed before being
enabled.

The Receiver and the Transmitter can be enabled together or independently.

At any time, the software can perform a reset on the receiver or the transmitter of the USART by
setting the corresponding bit, RSTRX and RSTTX respectively, in the Control Register
(US_CR). The reset commands have the same effect as a hardware reset on the corresponding
logic. Regardless of what the receiver or the transmitter is performing, the communication is
immediately stopped.

The user can also independently disable the receiver or the transmitter by setting RXDIS and
TXDIS respectively in US_CR. If the receiver is disabled during a character reception, the
USART waits until the end of reception of the current character, then the reception is stopped. If

32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64

12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6

20 18.6 27.9 37.2 55.8 74.4 93 25.6 38.4 51.2 76.8 102.4

Table 30-5. Possible Values for the Fi/Di Ratio (Continued)

1 ETU

ISO7816 Clock
on SCK

ISO7816 I/O Line
on TXD

FI_DI_RATIO
ISO7816 Clock Cycles

419
1768I–ATARM–09-Jul-09

AT91RM9200

the transmitter is disabled while it is operating, the USART waits the end of transmission of both
the current character and character being stored in the Transmit Holding Register (US_THR). If
a time guard is programmed, it is handled normally.

30.6.3 Synchronous and Asynchronous Modes

30.6.3.1 Transmitter Operations
The transmitter performs the same in both synchronous and asynchronous operating modes
(SYNC = 0 or SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two
stop bits are successively shifted out on the TXD pin at each falling edge of the programmed
serial clock.

The number of data bits is selected by the CHRL field and the MODE9 bit in the Mode Register
(US_MR). Nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The
parity bit is set according to the PAR field in US_MR. The even, odd, space, marked or none
parity bit can be configured. The MSBF field in US_MR configures which data bit is sent first. If
written at 1, the most significant bit is sent first. At 0, the less significant bit is sent first. The num-
ber of stop bits is selected by the NBSTOP field in US_MR. The 1.5 stop bit is supported in
asynchronous mode only.

Figure 30-5. Character Transmit

The characters are sent by writing in the Transmit Holding Register (US_THR). The transmitter
reports two status bits in the Channel Status Register (US_CSR): TXRDY (Transmitter Ready),
which indicates that US_THR is empty and TXEMPTY, which indicates that all the characters
written in US_THR have been processed. When the current character processing is completed,
the last character written in US_THR is transferred into the Shift Register of the transmitter and
US_THR becomes empty, thus TXRDY raises.

Both TXRDY and TXEMPTY bits are low since the transmitter is disabled. Writing a character in
US_THR while TXRDY is active has no effect and the written character is lost.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled One Stop

Baud Rate
 Clock

420
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 30-6. Transmitter Status

30.6.3.2 Asynchronous Receiver
If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver over-
samples the RXD input line. The oversampling is either 16 or 8 times the Baud Rate clock,
depending on the OVER bit in the Mode Register (US_MR).

The receiver samples the RXD line. If the line is sampled during one half of a bit time at 0, a start
bit is detected and data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16, (OVER at 0), a start is detected at the eighth sample at 0. Then, data
bits, parity bit and stop bit are sampled on each 16 sampling clock cycle. If the oversampling is 8
(OVER at 1), a start bit is detected at the fourth sample at 0. Then, data bits, parity bit and stop
bit are sampled on each 8 sampling clock cycle.

The number of data bits, first bit sent and parity mode are selected by the same fields and bits
as the transmitter, i.e. respectively CHRL, MODE9, MSBF and PAR. The number of stop bits
has no effect on the receiver as it considers only one stop bit, regardless of the field NBSTOP,
so that resynchronization between the receiver and the transmitter can occur. Moreover, as
soon as the stop bit is sampled, the receiver starts looking for a new start bit so that resynchroni-
zation can also be accomplished when the transmitter is operating with one stop bit.

Figure 30-7 and Figure 30-8 illustrate start detection and character reception when USART
operates in asynchronous mode.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit

TXRDY

TXEMPTY

421
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 30-7. Asynchronous Start Detection

Figure 30-8. Asynchronous Character Reception

30.6.3.3 Synchronous Receiver
In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of
the Baud Rate Clock. If a low level is detected, it is considered as a start. All data bits, the parity
bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode
operations provide a high speed transfer capability.

Configuration fields and bits are the same as in asynchronous mode.

Figure 30-9 illustrates a character reception in synchronous mode.

Sampling
Clock (x16)

RXD

Start
Detection

Sampling

Baud Rate
Clock

RXD

Start
Rejection

Sampling

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 0 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
D0

Sampling

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled

Baud Rate
Clock

Start
Detection

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

422
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 30-9. Synchronous Mode Character Reception

30.6.3.4 Receiver Operations
When a character reception is completed, it is transferred to the Receive Holding Register
(US_RHR) and the RXRDY bit in the Status Register (US_CSR) rises. If a character is com-
pleted while the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is
transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing
the Control Register (US_CR) with the RSTSTA (Reset Status) bit at 1.

Figure 30-10. Receiver Status

30.6.3.5 Parity
The USART supports five parity modes selected by programming the PAR field in the Mode
Register (US_MR). The PAR field also enables the Multi-drop Mode, see “Multi-drop Mode” on
page 423. Even and odd parity bit generation and error detection are supported.

If even parity is selected, the parity generator of the transmitter drives the parity bit at 0 if a num-
ber of 1s in the character data bit is even, and at 1 if the number of 1s is odd. Accordingly, the
receiver parity checker counts the number of received 1s and reports a parity error if the sam-
pled parity bit does not correspond. If odd parity is selected, the parity generator of the
transmitter drives the parity bit at 1 if a number of 1s in the character data bit is even, and at 0 if
the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received
1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is
used, the parity generator of the transmitter drives the parity bit at 1 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 0. If the space parity is

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Sampling

Parity Bit
Stop Bit

Example: 8-bit, Parity Enabled 1 Stop

Baud Rate
Clock

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

RXRDY

OVRE

D0 D1 D2 D3 D4 D5 D6 D7
Start

Bit
Parity

Bit
Stop
Bit

RSTSTA = 1

Read
US_RHR

423
1768I–ATARM–09-Jul-09

AT91RM9200

used, the parity generator of the transmitter drives the parity bit at 0 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 1. If parity is disabled, the
transmitter does not generate any parity bit and the receiver does not report any parity error.

Table 30-6 shows an example of the parity bit for the character 0x41 (character ASCII “A”)
depending on the configuration of the USART. Because there are two bits at 1, 1 bit is added
when a parity is odd, or 0 is added when a parity is even. I

When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status
Register (US_CSR). The PARE bit can be cleared by writing the Control Register (US_CR) with
the RSTSTA bit at 1. Figure 30-11 illustrates the parity bit status setting and clearing.

Figure 30-11. Parity Error

30.6.3.6 Multi-drop Mode
If the PAR field in the Mode Register (US_MR) is programmed to the value 0x6 or 0x7, the
USART runs in Multi-drop mode. This mode differentiates the data characters and the address
characters. Data is transmitted with the parity bit at 0 and addresses are transmitted with the
parity bit at 1.

If the USART is configured in multi-drop mode, the receiver sets the PARE parity error bit when
the parity bit is high and the transmitter is able to send a character with the parity bit high when
the Control Register is written with the SENDA bit at 1.

To handle parity error, the PARE bit is cleared when the Control Register is written with the bit
RSTSTA at 1.

Table 30-6. Parity Bit Examples

Character Hexa Binary Parity Bit Parity Mode

A 0x41 0100 0001 1 Odd

A 0x41 0100 0001 0 Even

A 0x41 0100 0001 1 Mark

A 0x41 0100 0001 0 Space

A 0x41 0100 0001 None None

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Bad
Parity

Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

PARE

RXRDY

RSTSTA = 1

424
1768I–ATARM–09-Jul-09

AT91RM9200

The transmitter sends an address byte (parity bit set) when SENDA is written to US_CR. In this
case, the next byte written to US_THR is transmitted as an address. Any character written in
US_THR without having written the command SENDA is transmitted normally with the parity at
0.

30.6.3.7 Transmitter Timeguard
The timeguard feature enables the USART interface with slow remote devices.

The timeguard function enables the transmitter to insert an idle state on the TXD line between
two characters. This idle state actually acts as a long stop bit.

The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Regis-
ter (US_TTGR). When this field is programmed at zero no timeguard is generated. Otherwise,
the transmitter holds a high level on TXD after each transmitted byte during the number of bit
periods programmed in TG in addition to the number of stop bits.

As illustrated in Figure 30-12, the behavior of TXRDY and TXEMPTY status bits is modified by
the programming of a timeguard. TXRDY rises only when the start bit of the next character is
sent, and thus remains at 0 during the timeguard transmission if a character has been written in
US_THR. TXEMPTY remains low until the timeguard transmission is completed as the time-
guard is part of the current character being transmitted.

Figure 30-12. Timeguard Operations

Table 30-7 indicates the maximum length of a timeguard period that the transmitter can handle
in relation to the function of the Baud Rate.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

TG = 4

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit

TXRDY

TXEMPTY

TG = 4

Table 30-7. Maximum Timeguard Length Depending on Baud Rate

Baud Rate Bit time Timeguard

bit/sec µs ms

1 200 833 212.50

9 600 104 26.56

14400 69.4 17.71

19200 52.1 13.28

28800 34.7 8.85

33400 29.9 7.63

425
1768I–ATARM–09-Jul-09

AT91RM9200

30.6.3.8 Receiver Time-out
The Receiver Time-out provides support in handling variable-length frames. This feature detects
an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel
Status Register (US_CSR) rises and can generate an interrupt, thus indicating to the driver an
end of frame.

The time-out delay period (during which the receiver waits for a new character) is programmed
in the TO field of the Receiver Time-out Register (US_RTOR). If the TO field is programmed at
0, the Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in US_CSR
remains at 0. Otherwise, the receiver loads a 16-bit counter with the value programmed in TO.
This counter is decremented at each bit period and reloaded each time a new character is
received. If the counter reaches 0, the TIMEOUT bit in the Status Register rises.

The user can either:

• Obtain an interrupt when a time-out is detected after having received at least one character.
This is performed by writing the Control Register (US_CR) with the STTTO (Start Time-out)
bit at 1.

• Obtain a periodic interrupt while no character is received. This is performed by writing
US_CR with the RETTO (Reload and Start Time-out) bit at 1.

If STTTO is performed, the counter clock is stopped until a first character is received. The idle
state on RXD before the start of the frame does not provide a time out. This prevents having to
obtain a periodic interrupt and enables a wait of the end of frame when the idle state on RXD is
detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This
enables generation of a periodic interrupt so that a user time-out can be handled, for example
when no key is pressed on a keyboard.

Figure 30-13 shows the block diagram of the Receiver Time out feature.

Figure 30-13. Receiver Time-out Block Diagram

56000 17.9 4.55

57600 17.4 4.43

115200 8.7 2.21

Table 30-7. Maximum Timeguard Length Depending on Baud Rate (Continued)

Baud Rate Bit time Timeguard

16-bit Time-out
Counter

0

TO

TIMEOUT

Baud Rate
Clock

=

Character
Received

RETTO

Load

Clock

16-bit
Value

STTTO

D Q1

Clear

426
1768I–ATARM–09-Jul-09

AT91RM9200

Table 30-8 gives the maximum time-out period for some standard baud rates.t

30.6.3.9 Framing Error
The receiver is capable of detecting framing errors. A framing error happens when the stop bit of
a received character is detected at level 0. This can occur if the receiver and the transmitter are
fully desynchronized.

A framing error is reported on the FRAME bit of the Channel Status Register (US_CSR). The
FRAME bit is asserted in the middle of the stop bit as soon as the framing error is detected. It is
cleared by writing the Control Register (US_CR) with the RSTSTA bit at 1.

Figure 30-14. Framing Error Status

30.6.3.10 Transmit Break
The user can request the transmitter to generate a break condition on the TXD line. A break con-
dition drives the TXD line low during at least one complete character. It appears the same as a

Table 30-8. Maximum Time-out Period

Baud Rate Bit Time Time -out

bit/sec µs ms

600 1 667 109 225

1 200 833 54 613

2 400 417 27 306

4 800 208 13 653

9 600 104 6 827

14400 69 4 551

19200 52 3 413

28800 35 2 276

33400 30 1 962

56000 18 1 170

57600 17 1 138

200000 5 328

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

FRAME

RXRDY

RSTSTA = 1

427
1768I–ATARM–09-Jul-09

AT91RM9200

0x00 character sent with the parity and the stop bits at 0. However, the transmitter holds the
TXD line at least during one character until the user requests the break condition to be removed.

A break is transmitted by writing the Control Register (US_CR) with the STTBRK bit at 1. This
can be performed at any time, either while the transmitter is empty (no character in either the
Shift Register or in US_THR) or when a character is being transmitted. If a break is requested
while a character is being shifted out, the character is first completed before the TXD line is held
low.

Once STTBRK command is requested further STTBRK commands are ignored until the end of
the break is completed.

The break condition is removed by writing US_CR with the STPBRK bit at 1. If the STPBRK is
requested before the end of the minimum break duration (one character, including start, data,
parity and stop bits), the transmitter ensures that the break condition completes.

The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK
commands are taken into account only if the TXRDY bit in US_CSR is at 1 and the start of the
break condition clears the TXRDY and TXEMPTY bits as if a character is processed.

Writing US_CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable
result. All STPBRK commands requested without a previous STTBRK command are ignored. A
byte written into the Transmit Holding Register while a break is pending, but not started, is
ignored.

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times.
Thus, the transmitter ensures that the remote receiver detects correctly the end of break and the
start of the next character. If the timeguard is programmed with a value higher than 12, the TXD
line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 30-15 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STP BRK)
commands on the TXD line.

Figure 30-15. Break Transmission

30.6.3.11 Receive Break
The receiver detects a break condition when all data, parity and stop bits are low. This corre-
sponds to detecting a framing error with data at 0x00, but FRAME remains low.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

TXRDY

TXEMPTY

STPBRK = 1STTBRK = 1

Break Transmission End of Break

428
1768I–ATARM–09-Jul-09

AT91RM9200

When the low stop bit is detected, the receiver asserts the RXBRK bit in US_CSR. This bit may
be cleared by writing the Control Register (US_CR) with the bit RSTSTA at 1.

An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchro-
nous operating mode or one sample at high level in synchronous operating mode. The end of
break detection also asserts the RXBRK bit.

30.6.3.12 Hardware Handshaking
The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins
are used to connect with the remote device, as shown in Figure 30-16.

Figure 30-16. Connection with a Remote Device for Hardware Handshaking

Setting the USART to operate with hardware handshaking is performed by writing the
USART_MODE field in the Mode Register (US_MR) to the value 0x2.

The USART behavior when hardware handshaking is enabled is the same as the behavior in
standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as
described below and the level on the CTS pin modifies the behavior of the transmitter as
described below. Using this mode requires using the PDC channel for reception. The transmitter
can handle hardware handshaking in any case.

Figure 30-17 shows how the receiver operates if hardware handshaking is enabled. The RTS
pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer Full) com-
ing from the PDC channel is high. Normally, the remote device does not start transmitting while
its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls, indicating
to the remote device that it can start transmitting. Defining a new buffer to the PDC clears the
status bit RXBUFF and, as a result, asserts the pin RTS low.

Figure 30-17. Receiver Behavior when Operating with Hardware Handshaking

Figure 30-18 shows how the transmitter operates if hardware handshaking is enabled. The CTS
pin disables the transmitter. If a character is being processing, the transmitter is disabled only
after the completion of the current character and transmission of the next character happens as
soon as the pin CTS falls.

USART

TXD

CTS

Remote
Device

RXD

TXDRXD

RTS

RTS

CTS

RTS

RXBUFF

Write
US_CR

RXEN = 1

RXD

RXDIS = 1

429
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 30-18. Transmitter Behavior when Operating with Hardware Handshaking

30.6.4 ISO7816 Mode
The USART features an ISO7816-compatible operating mode. This mode permits interfacing
with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link.
Both T = 0 and T = 1 protocols defined by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in the
Mode Register (US_MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T =
1.

30.6.4.1 ISO7816 Mode overview
The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see “Baud Rate Generator”
on page 415).

The USART connects to a smart card. as shown in Figure 30-19. The TXD line becomes bidirec-
tional and the Baud Rate Generator feeds the ISO7816 clock on the SCK pin. As the TXD pin
becomes bidirectional, its output remains driven by the output of the transmitter but only when
the transmitter is active while its input is directed to the input of the receiver. The USART is con-
sidered as the master of the communication as it generates the clock.

Figure 30-19. Connection of a Smart Card to the USART

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values pro-
grammed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit LSB
or MSB first.

The USART cannot operate concurrently in both receiver and transmitter modes as the commu-
nication is unidirectional at a time. It has to be configured according to the required mode by
enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver
and the transmitter at the same time in ISO7816 mode may lead to unpredictable results.

The ISO7816 specification defines an inverse transmission format. Data bits of the character
must be transmitted on the I/O line at their negative value. The USART does not support this for-
mat and the user has to perform an exclusive OR on the data before writing it in the Transmit
Holding Register (US_THR) or after reading it in the Receive Holding Register (US_RHR).

CTS

TXD

Smart
Card

SCK
CLK

TXD
I/O

USART

430
1768I–ATARM–09-Jul-09

AT91RM9200

30.6.4.2 Protocol T = 0
In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one
guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the
I/O line during the guard time.

If no parity error is detected, the I/O line remains at 1 during the guard time and the transmitter
can continue with the transmission of the next character, as shown in Figure 30-20.

If a parity error is detected by the receiver, it drives the I/O line at 0 during the guard time, as
shown in Figure 30-21. This error bit is also named NACK, for Non Acknowledge. In this case,
the character lasts 1 bit time more, as the guard time length is the same and is added to the
error bit time which lasts 1 bit time.

When the USART is the receiver and it detects an error, it does not load the erroneous character
in the Receive Holding Register (US_RHR). It appropriately sets the PARE bit in the Status Reg-
ister (US_SR) so that the software can handle the error.

Figure 30-20. T = 0 Protocol without Parity Error

Figure 30-21. T = 0 Protocol with Parity Error

Receive Error Counter
The USART receiver also records the total number of errors. This can be read in the Number of
Error (US_NER) register. The NB_ERRORS field can record up to 255 errors. Reading US_NER
automatically clears the NB_ERRORS field.

Receive NACK Inhibit
The USART can also be configured to inhibit an error. This can be achieved by setting the
INACK bit in the Mode Register (US_MR). If INACK is at 1, no error signal is driven on the I/O
line even if a parity bit is detected, but the INACK bit is set in the Status Register (US_SR). The
INACK bit can be cleared by writing the Control Register (US_CR) with the RSTNACK bit at 1.

Moreover, if INACK is reset, the erroneous received character is stored in the Receive Holding
Register, as if no error occurred. However, the RXRDY bit does not raise.

Transmit Character Repetition
When the USART is transmitting a character and gets a NACK, it can automatically repeat the
character before moving on to the next one. Repetit ion is enabled by writ ing the

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Next
Start

Bit

Guard
Time 2

D0 D1 D2 D3 D4 D5 D6 D7

I/O

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Start
Bit

Guard
Time 2

D0 D1

Error

Repetition

431
1768I–ATARM–09-Jul-09

AT91RM9200

MAX_ITERATION field in the Mode Register (US_MR) at a value higher than 0. Each character
can be transmitted up to eight times; the first transmission plus seven repetitions.

If MAX_ITERATION does not equal zero, the USART repeats the character as many times as
the value loaded in MAX_ITERATION.

When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in the
Channel Status Register (US_CSR). If the repetition of the character is acknowledged by the
receiver, the repetitions are stopped and the iteration counter is cleared.

The ITERATION bit in US_CSR can be cleared by writing the Control Register with the RSIT bit
at 1.

Disable Successive Receive NACK
The receiver can limit the number of successive NACKs sent back to the remote transmitter.
This is programmed by setting the bit DSNACK in the Mode Register (US_MR). The maximum
number of NACK transmitted is programmed in the MAX_ITERATION field. As soon as
MAX_ITERATION is reached, the character is considered as correct, an acknowledge is sent on
the line and the ITERATION bit in the Channel Status Register is set.

30.6.4.3 Protocol T = 1
When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous for-
mat with only one stop bit. The parity is generated when transmitting and checked when
receiving. Parity error detection sets the PARE bit in the Channel Status Register (US_CSR).

30.6.5 IrDA Mode
The USART features an IrDA mode supplying half-duplex point-to-point wireless communica-
tion. It embeds the modulator and demodulator which allows a glueless connection to the
infrared transceivers, as shown in Figure 30-22. The modulator and demodulator are compliant
with the IrDA specification version 1.1 and support data transfer speeds ranging from 2,4 Kbps
to 115,2 Kbps.

The USART IrDA mode is enabled by setting the USART_MODE field in the Mode Register
(US_MR) to the value 0x8. The IrDA Filter Register (US_IF) allows configuring the demodulator
filter. The USART transmitter and receiver operate in a normal asynchronous mode and all
parameters are accessible. Note that the modulator and the demodulator are activated.

Figure 30-22. Connection to IrDA Transceivers

IrDA
Transceivers

RXD RX

TXD

TX

USART

Demodulator

Modulator

Receiver

Transmitter

432
1768I–ATARM–09-Jul-09

AT91RM9200

The receiver and the transmitter must be enabled or disabled according to the direction of the
transmission to be managed.

30.6.5.1 IrDA Modulation
For baud rates up to and including 115.2 Kbits/sec, the RZI modulation scheme is used. “0” is
represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration are
shown in Table 30-9.

Figure 30-23 shows an example of character transmission.

Figure 30-23. IrDA Modulation

30.6.5.2 IrDA Baud Rate
Table 30-10 gives some examples of CD values, baud rate error and pulse duration. Note that
the requirement on the maximum acceptable error of +/- 1.87% must be met.

Table 30-9. IrDA Pulse Duration

Baud Rate
Pulse Duration
(3/16)

2.4 Kb/s 78.13 µs

9.6 Kb/s 19.53 µs

19.2 Kb/s 9.77 µs

38.4 Kb/s 4.88 µs

57.6 Kb/s 3.26 µs

115.2 Kb/s 1.63 µs

Bit Period Bit Period3
16

Start
Bit

Data Bits Start
Bit

0 00 0 01 11 11
Transmitter

Output

TXD

Table 30-10. IrDA Baud Rate Error

Peripheral Clock Baud rate CD Baud rate Error Pulse time

3 686 400 115 200 2 0.00% 1.63

20 000 000 115 200 11 1.38% 1.63

32 768 000 115 200 18 1.25% 1.63

40 000 000 115 200 22 1.38% 1.63

3 686 400 57 600 4 0.00% 3.26

20 000 000 57 600 22 1.38% 3.26

32 768 000 57 600 36 1.25% 3.26

433
1768I–ATARM–09-Jul-09

AT91RM9200

30.6.5.3 IrDA Demodulator
The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is
loaded with the value programmed in US_IF. When a falling edge is detected on the RXD pin,
the Filter Counter starts counting down at the Master Clock (MCK) speed. If a rising edge is
detected on the RXD pin, the counter stops and is reloaded with US_IF. If no rising edge is
detected when the counter reaches 0, the input of the receiver is driven low during one bit time.

Figure 30-24 illustrates the operations of the IrDA demodulator.

Figure 30-24. IrDA Demodulator Operations

As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in
US_FIDI must be set to a value higher than 0 in order to assure IrDA communications operate
correctly.

40 000 000 57 600 43 0.93% 3.26

3 686 400 38 400 6 0.00% 4.88

20 000 000 38 400 33 1.38% 4.88

32 768 000 38 400 53 0.63% 4.88

40 000 000 38 400 65 0.16% 4.88

3 686 400 19 200 12 0.00% 9.77

20 000 000 19 200 65 0.16% 9.77

32 768 000 19 200 107 0.31% 9.77

40 000 000 19 200 130 0.16% 9.77

3 686 400 9 600 24 0.00% 19.53

20 000 000 9 600 130 0.16% 19.53

32 768 000 9 600 213 0.16% 19.53

40 000 000 9 600 260 0.16% 19.53

3 686 400 2 400 96 0.00% 78.13

20 000 000 2 400 521 0.03% 78.13

32 768 000 2 400 853 0.04% 78.13

Table 30-10. IrDA Baud Rate Error

Peripheral Clock Baud rate CD Baud rate Error Pulse time

MCK

RXD

Receiver
Input

Pulse
Rejected

6 5 4 3 2 6 1

Driven Low During 16 Baud Rate Clock Cycles

6 5 4 3 2 0
Pulse

Accepted
Counter

Value

434
1768I–ATARM–09-Jul-09

AT91RM9200

30.6.6 RS485 Mode
The USART features the RS485 mode to enable line driver control. While operating in RS485
mode, the USART behaves as though in asynchronous or synchronous mode and configuration
of all the parameters are possible. The difference is that the RTS pin is driven high when the
transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical
connection of the USART to an RS485 bus is shown in Figure 30-25.

Figure 30-25. Typical Connection to an RS485 bus.

The USART is set in RS485 mode by programming the USART_MODE field in the Mode Regis-
ter (US_MR) to the value 0x1.

The RTS pin is at a level inverse of the TXEMPTY bit. Significantly, the RTS pin remains high
when a timeguard is programmed so that the line can remain driven after the last character com-
pletion. Figure 30-26 gives an example of the RTS waveform during a character transmission
when the timeguard is enabled.

Figure 30-26. Example of RTS Drive with Timeguard

30.6.7 Modem Mode
The USART features modem mode, which enables control of the signals: DTR (Data Terminal
Ready), DSR (Data Set Ready), RTS (Request to Send), CTS (Clear to Send), DCD (Data Car-
rier Detect) and RI (Ring Indicator). While operating in modem mode, the USART behaves as a

USART

RTS

TXD

RXD

Differential
Bus

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

TG = 4

Write
US_THR

TXRDY

TXEMPTY

RTS

435
1768I–ATARM–09-Jul-09

AT91RM9200

DTE (Data Terminal Equipment) as it drives DTR and RTS and can detect level change on DSR,
DCD, CTS and RI.

Setting the USART in modem mode is performed by writing the USART_MODE field in the Mode
Register (US_MR) to the value 0x3. While operating in modem mode the USART behaves as
though in asynchronous mode and all the parameter configurations are available.

Table 30-11 gives the correspondence of the USART signals with modem connection standards.

The control of the RTS and DTR output pins is performed by witting the Control Register
(US_CR) with the RTSDIS, RTSEN, DTRDIS and DTREN bits respectively at 1. The disable
command forces the corresponding pin to its inactive level, i.e. high. The enable commands
force the corresponding pin to its active level, i.e. low.

The level changes are detected on the RI, DSR, DCD and CTS pins. If an input change is
detected, the RIIC, DSRIC, DCDIC and CTSIC bits in the Channel Status Register (US_CSR)
are set respectively and can trigger an interrupt. The status is automatically cleared when
US_CSR is read. Furthermore, the CTS automatically disables the transmitter when it is
detected at its inactive state. If a character is being transmitted when the CTS rises, the charac-
ter transmission is completed before the transmitter is actually disabled.

30.6.8 Test Modes
The USART can be programmed to operate in three different test modes. The internal loopback
capability allows on-board diagnostics. In the loopback mode the USART interface pins are dis-
connected or not and reconfigured for loopback internally or externally.

30.6.8.1 Normal Mode
As a reminder, the normal mode simply connects the RXD pin on the receiver input and the
transmitter output on the TXD pin.

Figure 30-27. Normal Mode Configuration

Table 30-11. Circuit References

USART pin V24 CCITT Direction

TXD 2 103 From terminal to modem

RTS 4 105 From terminal to modem

DTR 20 108.2 From terminal to modem

RXD 3 104 From modem to terminal

CTS 5 106 From terminal to modem

DSR 6 107 From terminal to modem

DCD 8 109 From terminal to modem

RI 22 125 From terminal to modem

Receiver

Transmitter

RXD

TXD

436
1768I–ATARM–09-Jul-09

AT91RM9200

30.6.8.2 Automatic Echo
Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it
is sent to the TXD pin, as shown in Figure 30-28. Programming the transmitter has no effect on
the TXD pin. The RXD pin is still connected to the receiver input, thus the receiver remains
active.

Figure 30-28. Automatic Echo

30.6.8.3 Local Loopback
The local loopback mode connects the output of the transmitter directly to the input of the
receiver, as shown in Figure 30-29. The TXD and RXD pins are not used. The RXD pin has no
effect on the receiver and the TXD pin is continuously driven high, as in idle state.

Figure 30-29. Local Loopback

30.6.8.4 Remote Loopback
Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 30-30.
The transmitter and the receiver are disabled and have no effect. This mode allows bit-by-bit
retransmission.

Figure 30-30. Remote Loopback

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD
1

Receiver

Transmitter

RXD

TXD

1

437
1768I–ATARM–09-Jul-09

AT91RM9200

30.7 USART User Interface

Table 30-12. USART Memory Map

Offset Register Name Access Reset State

0x0000 Control Register US_CR Write-only –

0x0004 Mode Register US_MR Read/Write –

0x0008 Interrupt Enable Register US_IER Write-only –

0x000C Interrupt Disable Register US_IDR Write-only –

0x0010 Interrupt Mask Register US_IMR Read-only 0x0

0x0014 Channel Status Register US_CSR Read-only –

0x0018 Receiver Holding Register US_RHR Read-only 0x0

0x001C Transmitter Holding Register US_THR Write-only –

0x0020 Baud Rate Generator Register US_BRGR Read/Write 0x0

0x0024 Receiver Time-out Register US_RTOR Read/Write 0x0

0x0028 Transmitter Timeguard Register US_TTGR Read/Write 0x0

0x2C

to
0x3C

Reserved – – –

0x0040 FI DI Ratio Register US_FIDI Read/Write 0x174

0x0044 Number of Errors Register US_NER Read-only –

0x0048 Reserved – – –

0x004C IrDA Filter Register US_IF Read/Write 0x0

0x5C

to
0xFC

Reserved – – –

0x100
to

0x128

Reserved for PDC Registers – – –

438
1768I–ATARM–09-Jul-09

AT91RM9200

30.7.1 USART Control Register
Name: US_CR

Access Type: Write-only

• RSTRX: Reset Receiver
0 = No effect.

1 = Resets the receiver.

• RSTTX: Reset Transmitter
0 = No effect.

1 = Resets the transmitter.

• RXEN: Receiver Enable
0 = No effect.

1 = Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable
0 = No effect.

1 = Disables the receiver.

• TXEN: Transmitter Enable
0 = No effect.

1 = Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable
0 = No effect.

1 = Disables the transmitter.

• RSTSTA: Reset Status Bits
0 = No effect.

1 = Resets the status bits PARE, FRAME, OVRE and RXBRK in the US_CSR.

• STTBRK: Start Break

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RTSDIS RTSEN DTRDIS DTREN

15 14 13 12 11 10 9 8

RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –

439
1768I–ATARM–09-Jul-09

AT91RM9200

0 = No effect.

1 = Starts transmission of a break after the characters present in US_THR and the Transmit Shift Register have been
transmitted. No effect if a break is already being transmitted.

• STPBRK: Stop Break
0 = No effect.

1 = Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit peri-
ods. No effect if no break is being transmitted.

• STTTO: Start Time-out
0 = No effect

1 = Starts waiting for a character before clocking the time-out counter.

• SENDA: Send Address
0 = No effect.

1 = In Multi-drop Mode only, the next character written to the US_THR is sent with the address bit set.

• RSTIT: Reset Iterations
0 = No effect.

1 = Resets ITERATION in US_CSR. No effect if the ISO7816 is not enabled.

• RSTNACK: Reset Non Acknowledge
0 = No effect

1 = Resets NACK in US_CSR.

• RETTO: Rearm Time-out
0 = No effect

1 = Restart Time-out

• DTREN: Data Terminal Ready Enable
0 = No effect.

1 = Drives the pin DTR at 0.

• DTRDIS: Data Terminal Ready Disable
0 = No effect.

1 = Drives the pin DTR to 1.

• RTSEN: Request to Send Enable
0 = No effect.

1 = Drives the pin RTS to 0.

• RTSDIS: Request to Send Disable
0 = No effect.

440
1768I–ATARM–09-Jul-09

AT91RM9200

1 = Drives the pin RTS to 1.

441
1768I–ATARM–09-Jul-09

AT91RM9200

30.7.2 USART Mode Register
Name: US_MR

Access Type: Read/Write

• USART_MODE

• USCLKS: Clock Selection

31 30 29 28 27 26 25 24
– – – FILTER – MAX_ITERATION

23 22 21 20 19 18 17 16

– – DSNACK INACK OVER CLKO MODE9 MSBF

15 14 13 12 11 10 9 8

CHMODE NBSTOP PAR SYNC

7 6 5 4 3 2 1 0

CHRL USCLKS USART_MODE

USART_MODE Mode of the USART

0 0 0 0 Normal

0 0 0 1 RS485

0 0 1 0 Hardware Handshaking

0 0 1 1 Modem

0 1 0 0 IS07816 Protocol: T = 0

0 1 0 1 Reserved

0 1 1 0 IS07816 Protocol: T = 1

0 1 1 1 Reserved

1 0 0 0 IrDA

1 1 x x Reserved

USCLKS Selected Clock

0 0 MCK

0 1 MCK / DIV

1 0 Reserved

1 1 SCK

442
1768I–ATARM–09-Jul-09

AT91RM9200

• CHRL: Character Length.

• SYNC: Synchronous Mode Select
0 = USART operates in Asynchronous Mode.

1 = USART operates in Synchronous Mode

• PAR: Parity Type

• NBSTOP: Number of Stop Bits

• CHMODE: Channel Mode

• MSBF: Bit Order
0 = Least Significant Bit is sent/received first.

1 = Most Significant Bit is sent/received first.

CHRL Character Length

0 0 5 bits

0 1 6 bits

1 0 7 bits

1 1 8 bits

PAR Parity Type

0 0 0 Even parity

0 0 1 Odd parity

0 1 0 Parity forced to 0 (Space)

0 1 1 Parity forced to 1 (Mark)

1 0 x No parity

1 1 x Multi-drop mode

NBSTOP Asynchronous (SYNC = 0) Synchronous (SYNC = 1)

0 0 1 stop bit 1 stop bit

0 1 1.5 stop bits Reserved

1 0 2 stop bits 2 stop bits

1 1 Reserved Reserved

CHMODE Mode Description

0 0 Normal Mode

0 1 Automatic Echo. Receiver input is connected to the TXD pin.

1 0 Local Loopback. Transmitter output is connected to the Receiver Input..

1 1 Remote Loopback. RXD pin is internally connected to the TXD pin.

443
1768I–ATARM–09-Jul-09

AT91RM9200

• MODE9: 9-bit Character Length
0 = CHRL defines character length.

1 = 9-bit character length.

• CKLO: Clock Output Select
0 = The USART does not drive the SCK pin.

1 = The USART drives the SCK pin if USCLKS does not select the external clock SCK.

• OVER: Oversampling Mode
0 = 16x Oversampling.

1 = 8x Oversampling.

• INACK: Inhibit Non Acknowledge
0 = The NACK is generated.

1 = The NACK is not generated.

• DSNACK: Disable Successive NACK
0 = NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).

1 = Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors gener-
ate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag
ITERATION is asserted.

• MAX_ITERATION
Defines the maximum number of iterations in mode ISO7816, protocol T = 0.

• FILTER: Infrared Receive Line Filter
0 = The USART does not filter the receive line.

1 = The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).

444
1768I–ATARM–09-Jul-09

AT91RM9200

30.7.3 USART Interrupt Enable Register
Name: US_IER

Access Type: Write-only

• RXRDY: RXRDY Interrupt Enable

• TXRDY: TXRDY Interrupt Enable

• RXBRK: Receiver Break Interrupt Enable

• ENDRX: End of Receive Transfer Interrupt Enable

• ENDTX: End of Transmit Interrupt Enable

• OVRE: Overrun Error Interrupt Enable

• FRAME: Framing Error Interrupt Enable

• PARE: Parity Error Interrupt Enable

• TIMEOUT: Time-out Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Enable

• ITERATION: Iteration Interrupt Enable

• TXBUFE: Buffer Empty Interrupt Enable

• RXBUFF: Buffer Full Interrupt Enable

• NACK: Non Acknowledge Interrupt Enable

• RIIC: Ring Indicator Input Change Enable

• DSRIC: Data Set Ready Input Change Enable

• DCDIC: Data Carrier Detect Input Change Interrupt Enable

• CTSIC: Clear to Send Input Change Interrupt Enable
0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

445
1768I–ATARM–09-Jul-09

AT91RM9200

30.7.4 USART Interrupt Disable Register
Name: US_IDR

Access Type: Write-only

• RXRDY: RXRDY Interrupt Disable

• TXRDY: TXRDY Interrupt Disable

• RXBRK: Receiver Break Interrupt Disable

• ENDRX: End of Receive Transfer Interrupt Disable

• ENDTX: End of Transmit Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• FRAME: Framing Error Interrupt Disable

• PARE: Parity Error Interrupt Disable

• TIMEOUT: Time-out Interrupt Disable

• TXEMPTY: TXEMPTY Interrupt Disable

• ITERATION: Iteration Interrupt Disable

• TXBUFE: Buffer Empty Interrupt Disable

• RXBUFF: Buffer Full Interrupt Disable

• NACK: Non Acknowledge Interrupt Disable

• RIIC: Ring Indicator Input Change Disable

• DSRIC: Data Set Ready Input Change Disable

• DCDIC: Data Carrier Detect Input Change Interrupt Disable

• CTSIC: Clear to Send Input Change Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

446
1768I–ATARM–09-Jul-09

AT91RM9200

30.7.5 USART Interrupt Mask Register
Name: US_IMR

Access Type: Read-only

• RXRDY: RXRDY Interrupt Mask

• TXRDY: TXRDY Interrupt Mask

• RXBRK: Receiver Break Interrupt Mask

• ENDRX: End of Receive Transfer Interrupt Mask

• ENDTX: End of Transmit Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• FRAME: Framing Error Interrupt Mask

• PARE: Parity Error Interrupt Mask

• TIMEOUT: Time-out Interrupt Mask

• TXEMPTY: TXEMPTY Interrupt Mask

• ITERATION: Iteration Interrupt Mask

• TXBUFE: Buffer Empty Interrupt Mask

• RXBUFF: Buffer Full Interrupt Mask

• NACK: Non Acknowledge Interrupt Mask

• RIIC: Ring Indicator Input Change Mask

• DSRIC: Data Set Ready Input Change Mask

• DCDIC: Data Carrier Detect Input Change Interrupt Mask

• CTSIC: Clear to Send Input Change Interrupt Mask
0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

447
1768I–ATARM–09-Jul-09

AT91RM9200

30.7.6 USART Channel Status Register
Name: US_CSR

Access Type: Read-only

• RXRDY: Receiver Ready
0 = No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were
being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1 = At least one complete character has been received and US_RHR has not yet been read.

• TXRDY: Transmitter Ready
0 = A character is in the US_THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has
been requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1 = There is no character in the US_THR.

• RXBRK: Break Received/End of Break
0 = No Break received or End of Break detected since the last RSTSTA.

1 = Break Received or End of Break detected since the last RSTSTA.

• ENDRX: End of Receiver Transfer
0 = The End of Transfer signal from the Receive PDC channel is inactive.

1 = The End of Transfer signal from the Receive PDC channel is active.

• ENDTX: End of Transmitter Transfer
0 = The End of Transfer signal from the Transmit PDC channel is inactive.

1 = The End of Transfer signal from the Transmit PDC channel is active.

• OVRE: Overrun Error
0 = No overrun error has occurred since the last RSTSTA.

1 = At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error
0 = No stop bit has been detected low since the last RSTSTA.

1 = At least one stop bit has been detected low since the last RSTSTA.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

CTS DCD DSR RI CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

448
1768I–ATARM–09-Jul-09

AT91RM9200

• PARE: Parity Error
0 = No parity error has been detected since the last RSTSTA.

1 = At least one parity error has been detected since the last RSTSTA.

• TIMEOUT: Receiver Time-out
0 = There has not been a time-out since the last Start Time-out command or the Time-out Register is 0.

1 = There has been a time-out since the last Start Time-out command.

• TXEMPTY: Transmitter Empty
0 = There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.

1 = There is at least one character in either US_THR or the Transmit Shift Register.

• ITERATION: Max number of Repetitions Reached
0 = Maximum number of repetitions has not been reached since the last RSIT.

1 = Maximum number of repetitions has been reached since the last RSIT.

• TXBUFE: Transmission Buffer Empty
0 = The signal Buffer Empty from the Transmit PDC channel is inactive.

1 = The signal Buffer Empty from the Transmit PDC channel is active.

• RXBUFF: Reception Buffer Full
0 = The signal Buffer Full from the Receive PDC channel is inactive.

1 = The signal Buffer Full from the Receive PDC channel is active.

• NACK: Non Acknowledge
0 = No Non Acknowledge has not been detected since the last RSTNACK.

1 = At least one Non Acknowledge has been detected since the last RSTNACK.

• RIIC: Ring Indicator Input Change Flag
0 = No input change has been detected on the RI pin since the last read of US_CSR.

1 = At least one input change has been detected on the RI pin since the last read of US_CSR.

• DSRIC: Data Set Ready Input Change Flag
0 = No input change has been detected on the DSR pin since the last read of US_CSR.

1 = At least one input change has been detected on the DSR pin since the last read of US_CSR.

• DCDIC: Data Carrier Detect Input Change Flag
0 = No input change has been detected on the DCD pin since the last read of US_CSR.

1 = At least one input change has been detected on the DCD pin since the last read of US_CSR.

• CTSIC: Clear to Send Input Change Flag
0 = No input change has been detected on the CTS pin since the last read of US_CSR.

1 = At least one input change has been detected on the CTS pin since the last read of US_CSR.

• RI: Image of RI Input

449
1768I–ATARM–09-Jul-09

AT91RM9200

0 = RI is at 0.

1 = RI is at 1.

• DSR: Image of DSR Input
0 = DSR is at 0

1 = DSR is at 1.

• DCD: Image of DCD Input
0 = DCD is at 0.

1 = DCD is at 1.

• CTS: Image of CTS Input
0 = CTS is at 0.

1 = CTS is at 1.

450
1768I–ATARM–09-Jul-09

AT91RM9200

30.7.7 USART Receive Holding Register
Name: US_RHR

Access Type: Read-only

• RXCHR: Received Character
Last character received if RXRDY is set.

30.7.8 USART Transmit Holding Register
Name: US_THR

Access Type: Write-only

• TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – RXCHR

7 6 5 4 3 2 1 0

RXCHR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – TXCHR

7 6 5 4 3 2 1 0

TXCHR

451
1768I–ATARM–09-Jul-09

AT91RM9200

30.7.9 USART Baud Rate Generator Register
Name: US_BRGR

Access Type: Read/Write

• CD: Clock Divider

30.7.10 USART Receiver Time-out Register
Name: US_RTOR

Access Type: Read/Write

• TO: Time-out Value
0: The Receiver Time-out is disabled.

1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CD

7 6 5 4 3 2 1 0

CD

CD

USART_MODE ≠ ISO7816
USART_MODE =

ISO7816
SYNC = 0 SYNC = 1

OVER = 0 OVER = 1

0 Baud Rate Clock Disabled

1 to 65535
Baud Rate =

Selected Clock/16/CD

Baud Rate =

Selected Clock/8/CD
Baud Rate = Selected
Clock /CD

Baud Rate = Selected
Clock/CD/FI_DI_RATIO

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TO

7 6 5 4 3 2 1 0
TO

452
1768I–ATARM–09-Jul-09

AT91RM9200

30.7.11 USART Transmitter Timeguard Register
Name: US_TTGR

Access Type: Read/Write

• TG: Timeguard Value

0: The Transmitter Timeguard is disabled.

1 - 255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.

30.7.12 USART FI DI RATIO Register
Name: US_FIDI

Access Type: Read/Write

Reset Value : 0x174

• FI_DI_RATIO: FI Over DI Ratio Value
0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.

1-2047: If ISO7816 mode is selected, the Baud Rate is the clock provided on SCK divided by FI_DI_RATIO.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TG

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – FI_DI_RATIO

7 6 5 4 3 2 1 0

FI_DI_RATIO

453
1768I–ATARM–09-Jul-09

AT91RM9200

30.7.13 USART Number of Errors Register
Name: US_NER

Access Type: Read-only

• NB_ERRORS: Number of Errors
Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.

30.7.14 USART IrDA FILTER Register
Name: US_IF

Access Type: Read/Write

• IRDA_FILTER: IrDA Filter
Sets the filter of the IrDA demodulator.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

NB_ERRORS

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

IRDA_FILTER

454
1768I–ATARM–09-Jul-09

AT91RM9200

455
1768I–ATARM–09-Jul-09

AT91RM9200

31. Serial Synchronous Controller (SSC)

31.1 Overview
The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link
with external devices. It supports many serial synchronous communication protocols generally
used in audio and telecom applications such as I2S, Short Frame Sync, Long Frame Sync, etc.

The SSC contains an independent receiver and transmitter and a common clock divider. The
receiver and the transmitter each interface with three signals: the TD/RD signal for data, the
TK/RK signal for the clock and the TF/RF signal for the Frame Sync. Transfers contain up to 16
data of up to 32 bits. they can be programmed to start automatically or on different events
detected on the Frame Sync signal.

The SSC’s high-level of programmability and its two dedicated PDC channels of up to 32 bits
permit a continuous high bit rate data transfer without processor intervention.

Featuring connection to two PDC channels, the SSC permits interfacing with low processor
overhead to the following:

• CODECs in master or slave mode

• DAC through dedicated serial interface, particularly I2S

• Magnetic card reader

Features of the SSC are:

• Provides Serial Synchronous Communication Links Used in Audio and Telecom Applications

• Contains an Independent Receiver and Transmitter and a Common Clock Divider

• Interfaced with Two PDC Channels (DMA Access) to Reduce Processor Overhead

• Offers a Configurable Frame Sync and Data Length

• Receiver and Transmitter can be Programmed to Start Automatically or on Detection of
Different Event on the Frame Sync Signal

• Receiver and Transmitter Include a Data Signal, a Clock Signal and a Frame Synchronization
Signal

456
1768I–ATARM–09-Jul-09

AT91RM9200

31.2 Block Diagram

Figure 31-1. Block Diagram

31.3 Application Block Diagram

Figure 31-2. Application Block Diagram

SSC Interface

PDC

APB Bridge

MCK

ASB

APB

PIO

TF

TK

TD

RF

RK

RD
Interrupt Control

SSC Interrupt

PMC

Interrupt
Management

Power
 Management

Test
Management

SSC

Serial AUDIO

OS or RTOS Driver

Codec
Frame

Management
Line Interface

Time Slot
Management

457
1768I–ATARM–09-Jul-09

AT91RM9200

31.4 Pin Name List

31.5 Product Dependencies

31.5.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC
receiver I/O lines to the SSC peripheral mode.

Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC
transmitter I/O lines to the SSC peripheral mode.

31.5.2 Power Management
The SSC is not continuously clocked. The SSC interface may be clocked through the Power
Management Controller (PMC), therefore the programmer must first configure the PMC to
enable the SSC clock.

31.5.3 Interrupt
The SSC interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling interrupts requires programming the AIC before configuring the SSC.

All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each
pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt ser-
vice routine can get the interrupt origin by reading the SSC interrupt status register.

31.6 Functional Description
This chapter contains the functional description of the following: SSC Functional Block, Clock
Management, Data format, Start, Transmitter, Receiver and Frame Sync.

The receiver and transmitter operate separately. However, they can work synchronously by pro-
gramming the receiver to use the transmit clock and/or to start a data transfer when transmission
starts. Alternatively, this can be done by programming the transmitter to use the receive clock
and/or to start a data transfer when reception starts. The transmitter and the receiver can be pro-
grammed to operate with the clock signals provided on either the TK or RK pins. This allows the
SSC to support many slave-mode data transfers. The maximum clock speed allowed on the TK
and RK pins is the master clock divided by 2. Each level of the clock must be stable for at least
two master clock periods.

Table 31-1. I/O Lines Description

Pin Name Pin Description Type

RF Receiver Frame Synchro Input/Output

RK Receiver Clock Input/Output

RD Receiver Data Input

TF Transmitter Frame Synchro Input/Output

TK Transmitter Clock Input/Output

TD Transmitter Data Output

458
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 31-3. SSC Functional Block Diagram

31.6.1 Clock Management
The transmitter clock can be generated by:

• an external clock received on the TK I/O pad

• the receiver clock

• the internal clock divider

The receiver clock can be generated by:

• an external clock received on the RK I/O pad

• the transmitter clock

• the internal clock divider

Furthermore, the transmitter block can generate an external clock on the TK I/O pad, and the
receiver block can generate an external clock on the RK I/O pad.

This allows the SSC to support many Master and Slave-mode data transfers.

Interrupt Control

AIC

User
Interface

APB

Transmitter

TD

TF

TK
Clock Output

Controller

Frame Sync
Controller

Transmit Clock
Controller

Transmit Shift Register
Start

Selector

Transmit Sync
Holding Register

Transmit Holding
Register

Load Shift

RX clock

TX clock
TK Input

TF

TX PDC

RF

RD

RF

RK
Clock Output

Controller

Frame Sync
Controller

Receive Clock
Controller

Receive Shift RegisterStart
Selector

Receive Sync
Holding Register

Receive Holding
Register

Load Shift

TX Clock

RX ClockRK Input

RF

RX PDC

Receiver

TF

MCK Clock
Divider

PDC

459
1768I–ATARM–09-Jul-09

AT91RM9200

31.6.1.1 Clock Divider

Figure 31-4. Divided Clock Block Diagram

The Master Clock divider is determined by the 12-bit field DIV counter and comparator (so its
maximal value is 4095) in the Clock Mode Register SSC_CMR, allowing a Master Clock division
by up to 8190. The Divided Clock is provided to both the Receiver and Transmitter. When this
field is programmed to 0, the Clock Divider is not used and remains inactive.

When DIV is set to a value equal or greater to 1, the Divided Clock has a frequency of Master
Clock divided by 2 times DIV. Each level of the Divided Clock has a duration of the Master Clock
multiplied by DIV. This ensures a 50% duty cycle for the Divided Clock regardless if the DIV
value is even or odd.

Figure 31-5. Divided Clock Generation

31.6.1.2 Transmitter Clock Management
The transmitter clock is generated from the receiver clock or the divider clock or an external
clock scanned on the TK I/O pad. The transmitter clock is selected by the CKS field in
SSC_TCMR (Transmit Clock Mode Register). Transmit Clock can be inverted independently by
the CKI bits in SSC_TCMR.

The transmitter can also drive the TK I/O pad continuously or be limited to the actual data trans-
fer. The clock output is configured by the SSC_TCMR register. The Transmit Clock Inversion
(CKI) bits have no effect on the clock outputs. Programming the TCMR register to select TK pin

Table 31-2. Bit Rate

Maximum Minimum

MCK / 2 MCK / 8190

MCK Divided Clock

Clock Divider

/ 2 12-bit Counter

SSC_CMR

Master Clock

Divided Clock
DIV = 1

Master Clock

Divided Clock
DIV = 3

Divided Clock Frequency = MCK/2

Divided Clock Frequency = MCK/6

460
1768I–ATARM–09-Jul-09

AT91RM9200

(CKS field) and at the same time Continuous Transmit Clock (CKO field) might lead to unpredict-
able results.

Figure 31-6. Transmitter Clock Management

31.6.1.3 Receiver Clock Management
The receiver clock is generated from the transmitter clock or the divider clock or an external
clock scanned on the RK I/O pad. The Receive Clock is selected by the CKS field in
SSC_RCMR (Receive Clock Mode Register). Receive Clocks can be inverted independently by
the CKI bits in SSC_RCMR.

The receiver can also drive the RK I/O pad continuously or be limited to the actual data transfer.
The clock output is configured by the SSC_RCMR register. The Receive Clock Inversion (CKI)
bits have no effect on the clock outputs. Programming the RCMR register to select RK pin (CKS
field) and at the same time Continuous Receive Clock (CKO field) might lead to unpredictable
results.

Figure 31-7. Receiver Clock Management

31.6.2 Transmitter Operations
A transmitted frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured by setting the Transmit Clock Mode Register (SSC_TCMR). (See
Section 31.6.4 ”Start” on page 462.)

The frame synchronization is configured setting the Transmit Frame Mode Register
(SSC_TFMR). (See Section 31.6.5 ”Frame Sync” on page 463.)

To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and
the start mode selected in the SSC_TCMR. Data is written by the application to the SSC_THR
register then transferred to the shift register according to the data format selected.

When both the SSC_THR and the transmit shift register are empty, the status flag TXEMPTY is
set in SSC_SR. When the Transmit Holding register is transferred in the Transmit shift register,

Receiver Clock

Divider Clock
Transmitter Clock

SSC_TCMR.CKI

SSC_TCMR.CKS

TK

SSC_TCMR.CKO

1

0

TK

Transmitter Clock

Divider Clock
Receiver Clock

SSC_RCMR.CKI

SSC_RCMR.CKS

RK

SSC_RCMR.CKO

RK

1

0

461
1768I–ATARM–09-Jul-09

AT91RM9200

the status flag TXRDY is set in SSC_SR and additional data can be loaded in the holding
register.

Figure 31-8. Transmitter Block Diagram

31.6.3 Receiver Operations
A received frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured setting the Receive Clock Mode Register (SSC_RCMR). (See Sec-
tion 31.6.4 ”Start” on page 462.)

The frame synchronization is configured setting the Receive Frame Mode Register
(SSC_RFMR). (See Section 31.6.5 ”Frame Sync” on page 463.)

The receiver uses a shift register clocked by the receiver clock signal and the start mode
selected in the SSC_RCMR. The data is transferred from the shift register in function of data for-
mat selected.

When the receiver shift register is full, the SSC transfers this data in the holding register, the sta-
tus flag RXRDY is set in SSC_SR and the data can be read in the receiver holding register, if
another transfer occurs before read the RHR register, the status flag OVERUN is set in SSC_SR
and the receiver shift register is transferred in the RHR register.

Transmit Shift RegisterStart
Selector

SSC_TSHRSSC_THR

Transmitter Clock

TD

SSC_TFMR.FSLENSSC_TFMR.DATLEN

SSC_CR.TXEN

SSC_CR.TXDIS

SSC_TCMR.STTDLY
SSC_TFMR.FSDEN
SSC_TFMR.DATNB

SSC_SR.TXEN

0

1

10

SSC_TFMR.DATDEF

SSC_TFMR.MSBF

SSC_TCMR.STTDLY
SSC_TFMR.FSDEN

RF TF

462
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 31-9. Receiver Block Diagram

31.6.4 Start
The transmitter and receiver can both be programmed to start their operations when an event
occurs, respectively in the Transmit Start Selection (START) field of SSC_TCMR and in the
Receive Start Selection (START) field of SSC_RCMR.

Under the following conditions the start event is independently programmable:

• Continuous. In this case, the transmission starts as soon as a word is written in SSC_THR
and the reception starts as soon as the Receiver is enabled.

• Synchronously with the transmitter/receiver

• On detection of a falling/rising edge on TK/RK

• On detection of a low level/high level on TK/RK

• On detection of a level change or an edge on TK/RK

A start can be programmed in the same manner on either side of the Transmit/Receive Clock
Register (RCMR/TCMR). Thus, the start could be on TF (Transmit) or RF (Receive).

Detection on TF/RF input/output is done through the field FSOS of the Transmit / Receive
Frame Mode Register (TFMR/RFMR).

Generating a Frame Sync signal is not possible without generating it on its related output.

Receive Shift RegisterStart
Selector

SSC_RHRSSC_RSHR

Receiver Clock
RD

SSC_RFMR.FSLEN SSC_RFMR.DATLEN

RF

SSC_CR.RXEN

SSC_CR.RXDIS

SSC_SR.RXEN

SSC_RFMR.MSBF

SSC_RCMR.STTDLY

SSC_RFMR.DATNB
TF

463
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 31-10. Transmit Start Mode

Figure 31-11. Receive Pulse/Edge Start Modes

31.6.5 Frame Sync
The Transmitter and Receiver Frame Sync pins, TF and RF, can be programmed to generate
different kinds of frame synchronization signals. The Frame Sync Output Selection (FSOS) field
in the Receive Frame Mode Register (SSC_RFMR) and in the Transmit Frame Mode Register
(SSC_TFMR) are used to select the required waveform.

• Programmable low or high levels during data transfer are supported.

• Programmable high levels before the start of data transfers or toggling are also supported.

X

TK

TF
(Input)

TD
(Output)

TD
(Output)

TD
(Output)

TD
(Output)

TD
(Output)

TD
(Output)

X BO B1

X BO B1

BO B1

BO B1

BO B1BO B1

BO B1B1BO

X

X

X

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY
Start = Falling Edge on TF

Start = Rising Edge on TF

Start = Low Level on TF

Start = High Level on TF

Start = Any Edge on TF

Start = Level Change on TF

RK

RF
(Input)

RD
(Input)

RD
(Input)

RD
(Input)

RD
(Input)

RD
(Input)

RD
(Input)

X BO B1

X BO B1

BO B1

BO B1

BO B1BO B1

BO B1B1BO

X

X

X

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY
Start = Falling Edge on RF

Start = Rising Edge on RF

Start = Low Level on RF

Start = High Level on RF

Start = Any Edge on RF

Start = Level Change on RF

X

464
1768I–ATARM–09-Jul-09

AT91RM9200

If a pulse waveform is selected, the Frame Sync Length (FSLEN) field in SSC_RFMR and
SSC_TFMR programs the length of the pulse, from 1-bit time up to 16-bit time.

The periodicity of the Receive and Transmit Frame Sync pulse output can be programmed
through the Period Divider Selection (PERIOD) field in SSC_RCMR and SSC_TCMR.

31.6.5.1 Frame Sync Data
Frame Sync Data transmits or receives a specific tag during the Frame Synchro signal.

During the Frame Sync signal, the Receiver can sample the RD line and store the data in the
Receive Sync Holding Register and the transmitter can transfer Transmit Sync Holding Register
in the Shifter Register. The data length to be sampled/shifted out during the Frame Sync signal
is programmed by the FSLEN field in SSC_RFMR/SSC_TFMR.

Concerning the Receive Frame Sync Data operation, if the Frame Sync Length is equal to or
lower than the delay between the start event and the actual data reception, the data sampling
operation is performed in the Receive Sync Holding Register through the Receive Shift Register.

The Transmit Frame Sync Operation is performed by the transmitter only if the bit Frame Sync
Data Enable (FSDEN) in SSC_TFMR is set. If the Frame Sync length is equal to or lower than
the delay between the start event and the actual data transmission, the normal transmission has
priority and the data contained in the Transmit Sync Holding Register is transferred in the Trans-
mit Register then shifted out.

31.6.5.2 Frame Sync Edge Detection
The F rame Sync Edge de tec t i on i s p rogrammed by the FSEDGE f ie ld i n
SSC_RFMR/SSC_TFMR. This sets the corresponding flags RXSYN/TXSYN in the SSC Status
Register (SSC_SR) on frame synchro edge detection (signals RF/TF).

31.6.6 Data Format
The data framing format of both the transmitter and the receiver are largely programmable
through the Transmitter Frame Mode Register (SSC_TFMR) and the Receiver Frame Mode
Register (SSC_RFMR). In either case, the user can independently select:

• The event that starts the data transfer (START).

• The delay in number of bit periods between the start event and the first data bit (STTDLY).

• The length of the data (DATLEN)

• The number of data to be transferred for each start event (DATNB).

• The length of Synchronization transferred for each start event (FSLEN).

• The bit sense: most or lowest significant bit first (MSBF).

Additionally, the transmitter can be used to transfer Synchronization and select the level
driven on the TD pin while not in data transfer operation. This is done respectively by the
Frame Sync Data Enable (FSDEN) and by the Data Default Value (DATDEF) bits in
SSC_TFMR.

465
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 31-12. Transmit and Receive Frame Format in Edge/Pulse Start Modes

Note: 1. Input on falling edge on TF/RF example.

Figure 31-13. Transmit Frame Format in Continuous Mode

Note: 1. STTDLY is set to 0. In this example, SSC_THR is loaded twice. The value of FSDEN has no
effect on transmission. SyncData cannot be output in continuous mode.

Table 31-3. Data Frame Registers

Transmitter Receiver Field Length Comment

SSC_TFMR SSC_RFMR DATLEN Up to 32 Size of word

SSC_TFMR SSC_RFMR DATNB Up to 16 Number Word transmitter in frame

SSC_TFMR SSC_RFMR MSBF 1 most significant bit in first

SSC_TFMR SSC_RFMR FSLEN Up to 16 Size of Synchro data register

SSC_TFMR DATDEF 0 or 1 Data default value ended

SSC_TFMR FSDEN Enable send SSC_TSHR

SSC_TCMR SSC_RCMR PERIOD up to 512 Frame size

SSC_TCMR SSC_RCMR STTDLY up to 255 Size of transmit start delay

Sync Data Default

STTDLY

Sync Data IgnoredRD

Default

Data

DATLEN

Data

Data

Data

DATLEN

Data

Data Default

Default

Ignored

Sync Data

Sync Data

FSLEN

TF/RF(1)

StartStart

From SSC_TSHR From SSC_THR

From SSC_THR

From SSC_THR

From SSC_THR

To SSC_RHR To SSC_RHRTo SSC_RSHR

TD
(If FSDEN = 0)

TD
(If FSDEN = 1)

DATNB

PERIOD

FromDATDEF FromDATDEF

From DATDEF From DATDEF

DATLEN

Data

DATLEN

Data Default

Start

From SSC_THR From SSC_THR

TD

Start: 1. TXEMPTY set to 1
 2. Write to the SSC_THR

466
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 31-14. Receive Frame Format in Continuous Mode

Note: 1. STTDLY is set to 0.

31.6.7 Loop Mode
The receiver can be programmed to receive transmissions from the transmitter. This is done by
setting the Loop Mode (LOOP) bit in SSC_RFMR. In this case, RD is connected to TD, RF is
connected to TF and RK is connected to TK.

31.6.8 Interrupt
Most bits in SSC_SR have a corresponding bit in interrupt management registers.

The SSC Controller can be programmed to generate an interrupt when it detects an event. The
Interrupt is controlled by writing SSC_IER (Interrupt Enable Register) and SSC_IDR (Interrupt
Disable Register), which respectively enable and disable the corresponding interrupt by setting
and clearing the corresponding bit in SSC_IMR (Interrupt Mask Register), which controls the
generation of interrupts by asserting the SSC interrupt line connected to the AIC.

Figure 31-15. Interrupt Block Diagram

31.7 SSC Application Examples
The SSC can support several serial communication modes used in audio or high speed serial
links. Some standard applications are shown in the following figures. All serial link applications
supported by the SSC are not listed here.

Data

DATLEN

Data

DATLEN

Start = Enable Receiver

To SSC_RHR To SSC_RHR

RD

PDC

Interrupt
Control

SSC Interrupt

TXBUFE

ENDTX

RXBUFF
ENDRX

RXRDY
OVRUN

RXSYNC

Receiver

Transmitter

TXRDY
TXEMPTY
TXSYNC

SSC_IER SSC_IDR

SSC_IMR

Set Clear

467
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 31-16. Audio Application Block Diagram

Figure 31-17. Codec Application Block Diagram

SSC

RK

RF

RD

TD

TF

TK
Clock SCK

Word Select WS

Data SD

I2S
RECEIVER

Clock SCK

Word Select WS

Data SD

Right ChannelLeft Channel

MSB MSBLSB

SSC

RK

RF

RD

TD

TF

TK
Serial Data Clock (SCLK)

Frame sync (FSYNC)

Serial Data Out

Serial Data In

CODEC

Serial Data Clock (SCLK)

Frame sync (FSYNC)

Serial Data Out

Serial Data In

First Time Slot

Dstart Dend

468
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 31-18. Time Slot Application Block Diagram

SSC

RK

RF

RD

TD

TF

TK
SCLK

FSYNC

Data Out

 Data in

CODEC
First

Time Slot

Serial Data Clock (SCLK)

Frame sync (FSYNC)

Serial Data Out

Serial Data in

CODEC
Second

Time Slot

First Time Slot Second Time Slot

Dstart Dend

469
1768I–ATARM–09-Jul-09

AT91RM9200

31.8 Serial Synchronous Controller (SSC) User Interface

Table 31-4. SSC Register Mapping

Offset Register Register Name Access Reset

0x0 Control Register SSC_CR Write –

0x4 Clock Mode Register SSC_CMR Read/Write 0x0

0x8 Reserved – – –

0xC Reserved – – –

0x10 Receive Clock Mode Register SSC_RCMR Read/Write 0x0

0x14 Receive Frame Mode Register SSC_RFMR Read/Write 0x0

0x18 Transmit Clock Mode Register SSC_TCMR Read/Write 0x0

0x1C Transmit Frame Mode Register SSC_TFMR Read/Write 0x0

0x20 Receive Holding Register SSC_RHR Read 0x0

0x24 Transmit Holding Register SSC_THR Write –

0x28 Reserved – – –

0x2C Reserved – – –

0x30 Receive Sync. Holding Register SSC_RSHR Read 0x0

0x34 Transmit Sync. Holding Register SSC_TSHR Read/Write 0x0

0x38 Reserved – – –

0x3C Reserved – – –

0x40 Status Register SSC_SR Read 0x000000CC

0x44 Interrupt Enable Register SSC_IER Write –

0x48 Interrupt Disable Register SSC_IDR Write –

0x4C Interrupt Mask Register SSC_IMR Read 0x0

0x50-0xFF Reserved – – –

0x100- 0x124 Reserved for Peripheral DMA Controller (PDC) – – –

470
1768I–ATARM–09-Jul-09

AT91RM9200

31.8.1 SSC Control Register
Register Name: SSC_CR

Access Type: Write-only

• RXEN: Receive Enable
0: No effect.

1: Enables Data Receive if RXDIS is not set(1).

• RXDIS: Receive Disable
0: No effect.

1: Disables Data Receive(1).

• TXEN: Transmit Enable
0: No effect.

1: Enables Data Transmit if TXDIS is not set(1).

• TXDIS: Transmit Disable
0: No effect.

1: Disables Data Transmit(1).

• SWRST: Software Reset
0: No effect.

1: Performs a software reset. Has priority on any other bit in SSC_CR.

Note: 1. Only the data management is affected

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
SWRST – – – – – TXDIS TXEN

7 6 5 4 3 2 1 0

– – – – – – RXDIS RXEN

471
1768I–ATARM–09-Jul-09

AT91RM9200

31.8.2 SSC Clock Mode Register
Register Name: SSC_CMR

Access Type: Read/Write

• DIV: Clock Divider
0: The Clock Divider is not active.

Any Other Value: The Divided Clock equals the Master Clock divided by 2 times DIV. The maximum bit rate is MCK/2. The
minimum bit rate is MCK/2 x 4095 = MCK/8190.

31.8.3 SSC Receive Clock Mode Register
Register Name: SSC_RCMR

Access Type: Read/Write

• CKS: Receive Clock Selection

• CKO: Receive Clock Output Mode Selection

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – DIV

7 6 5 4 3 2 1 0

DIV

31 30 29 28 27 26 25 24

PERIOD
23 22 21 20 19 18 17 16

STTDLY

15 14 13 12 11 10 9 8
– – – – START

7 6 5 4 3 2 1 0

– – CKI CKO CKS

CKS Selected Receive Clock

0x0 Divided Clock

0x1 TK Clock Signal

0x2 RK Pin

0x3 Reserved

CKO Receive Clock Output Mode RK pin

0x0 None Input-only

0x1 Continuous Receive Clock Output

0x2-0x7 Reserved

472
1768I–ATARM–09-Jul-09

AT91RM9200

• CKI: Receive Clock Inversion
0: The data and the Frame Sync signal are sampled on Receive Clock falling edge.

1: The data and the Frame Sync signal are shifted out on Receive Clock rising edge.

CKI does not affects the RK output clock signal.

• START: Receive Start Selection

• STTDLY: Receive Start Delay
If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception.
When the Receiver is programmed to start synchronously with the Transmitter, the delay is also applied.

Please Note: It is very important that STTDLY be set carefully. If STTDLY must be set, it should be done in relation to TAG
(Receive Sync Data) reception.

• PERIOD: Receive Period Divider Selection
This field selects the divider to apply to the selected Receive Clock in order to generate a new Frame Sync Signal. If 0, no
PERIOD signal is generated. If not 0, a PERIOD signal is generated each 2 x (PERIOD+1) Receive Clock.

START Receive Start

0x0 Continuous, as soon as the receiver is enabled, and immediately after the end of transfer of the previous data.

0x1 Transmit Start

0x2 Detection of a low level on RF input

0x3 Detection of a high level on RF input

0x4 Detection of a falling edge on RF input

0x5 Detection of a rising edge on RF input

0x6 Detection of any level change on RF input

0x7 Detection of any edge on RF input

0x8-0xF Reserved

473
1768I–ATARM–09-Jul-09

AT91RM9200

31.8.4 SSC Receive Frame Mode Register
Register Name: SSC_RFMR

Access Type: Read/Write

• DATLEN: Data Length
0x0 is not supported. The value of DATLEN can be set between 0x1 and 0x1F.

The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the PDC assigned to the
Receiver.

If DATLEN is less than or equal to 7, data transfers are in bytes. If DATLEN is between 8 and 15 (included), half-words are
transferred. For any other value, 32-bit words are transferred.

• LOOP: Loop Mode
0: Normal operating mode.

1: RD is driven by TD, RF is driven by TF and TK drives RK.

• MSBF: Most Significant Bit First
0: The lowest significant bit of the data register is sampled first in the bit stream.

1: The most significant bit of the data register is sampled first in the bit stream.

• DATNB: Data Number per Frame
This field defines the number of data words to be received after each transfer start. If 0, only 1 data word is transferred. Up
to 16 data words can be transferred.

• FSLEN: Receive Frame Sync Length
This field defines the length of the Receive Frame Sync Signal and the number of bits sampled and stored in the Receive
Sync Data Register. Only when FSOS is set on negative or positive pulse.

• FSOS: Receive Frame Sync Output Selection

31 30 29 28 27 26 25 24
– – – – – – – FSEDGE

23 22 21 20 19 18 17 16

– FSOS FSLEN

15 14 13 12 11 10 9 8
– – – – DATNB

7 6 5 4 3 2 1 0

MSBF – LOOP DATLEN

FSOS Selected Receive Frame Sync Signal RF pin

0x0 None Input-only

0x1 Negative Pulse Output

0x2 Positive Pulse Output

0x3 Driven Low during data transfer Output

0x4 Driven High during data transfer Output

0x5 Toggling at each start of data transfer Output

0x6-0x7 Reserved Undefined

474
1768I–ATARM–09-Jul-09

AT91RM9200

• FSEDGE: Frame Sync Edge Detection
Determines which edge on Frame Sync sets RXSYN in the SSC Status Register.

FSEDGE Frame Sync Edge Detection

0x0 Positive Edge Detection

0x1 Negative Edge Detection

475
1768I–ATARM–09-Jul-09

AT91RM9200

31.8.5 SSC Transmit Clock Mode Register
Register Name: SSC_TCMR

Access Type: Read/Write

• CKS: Transmit Clock Selection

• CKO: Transmit Clock Output Mode Selection

• CKI: Transmit Clock Inversion
0: The data and the Frame Sync signal are shifted out on Transmit Clock falling edge.

1: The data and the Frame Sync signal are shifted out on Transmit Clock rising edge.

CKI affects only the Transmit Clock and not the output clock signal.

• START: Transmit Start Selection

31 30 29 28 27 26 25 24
PERIOD

23 22 21 20 19 18 17 16

STTDLY

15 14 13 12 11 10 9 8
– – – – START

7 6 5 4 3 2 1 0

– – CKI CKO CKS

CKS Selected Transmit Clock

0x0 Divided Clock

0x1 RK Clock signal

0x2 TK Pin

0x3 Reserved

CKO Transmit Clock Output Mode TK pin

0x0 None Input-only

0x1 Continuous Transmit Clock Output

0x2-0x7 Reserved

START Transmit Start

0x0
Continuous, as soon as a word is written in the SSC_THR Register (if Transmit is enabled) and
immediately after the end of transfer of the previous data.

0x1 Receive Start

0x2 Detection of a low level on TF signal

0x3 Detection of a high level on TF signal

0x4 Detection of a falling edge on TF signal

0x5 Detection of a rising edge on TF signal

0x6 Detection of any level change on TF signal

0x7 Detection of any edge on TF signal

0x8-0xF Reserved

476
1768I–ATARM–09-Jul-09

AT91RM9200

• STTDLY: Transmit Start Delay
If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of transmission
of data. When the Transmitter is programmed to start synchronously with the Receiver, the delay is also applied.

Please Note: STTDLY must be set carefully. If STTDLY is too short in respect to TAG (Transmit Sync Data) emission, data
is emitted instead of the end of TAG.

• PERIOD: Transmit Period Divider Selection
This field selects the divider to apply to the selected Transmit Clock to generate a new Frame Sync Signal. If 0, no period
signal is generated. If not 0, a period signal is generated at each 2 x (PERIOD+1) Transmit Clock.

477
1768I–ATARM–09-Jul-09

AT91RM9200

31.8.6 SSC Transmit Frame Mode Register
Register Name: SSC_TFMR

Access Type: Read/Write

• DATLEN: Data Length
0x0 is not supported. The value of DATLEN can be set between 0x1 and 0x1F.

The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the PDC assigned to the
Receiver.

If DATLEN is less than or equal to 7, data transfers are in bytes. If DATLEN is between 8 and 15 (included), half-words are
transferred. For any other value, 32-bit words are transferred.

• DATDEF: Data Default Value
This bit defines the level driven on the TD pin while out of transmission. Note that if the pin is defined as multi-drive by the
PIO Controller, the pin is enabled only if the SCC TD output is 1.

• MSBF: Most Significant Bit First
0: The lowest significant bit of the data register is shifted out first in the bit stream.

1: The most significant bit of the data register is shifted out first in the bit stream.

• DATNB: Data Number per frame
This field defines the number of data words to be transferred after each transfer start. If 0, only 1 data word is transferred
and up to 16 data words can be transferred.

• FSLEN: Transmit Frame Sync Length
This field defines the length of the Transmit Frame Sync signal and the number of bits shifted out from the Transmit Sync
Data Register if FSDEN is 1. If 0, the Transmit Frame Sync signal is generated during one Transmit Clock period and up to
16 clock period pulse length is possible.

• FSOS: Transmit Frame Sync Output Selection

31 30 29 28 27 26 25 24
– – – – – – – FSEDGE

23 22 21 20 19 18 17 16

FSDEN FSOS FSLEN

15 14 13 12 11 10 9 8
– – – – DATNB

7 6 5 4 3 2 1 0

MSBF – DATDEF DATLEN

FSOS Selected Transmit Frame Sync Signal TF pin

0x0 None Input-only

0x1 Negative Pulse Output

0x2 Positive Pulse Output

0x3 Driven Low during data transfer Output

0x4 Driven High during data transfer Output

0x5 Toggling at each start of data transfer Output

0x6-0x7 Reserved Undefined

478
1768I–ATARM–09-Jul-09

AT91RM9200

• FSDEN: Frame Sync Data Enable
0: The TD line is driven with the default value during the Transmit Frame Sync signal.

1: SSC_TSHR value is shifted out during the transmission of the Transmit Frame Sync signal.

• FSEDGE: Frame Sync Edge Detection
Determines which edge on frame sync sets TXSYN (Status Register).

31.8.7 SSC Receive Holding Register
Register Name: SSC_RHR

Access Type: Read-only

• RDAT: Receive Data
Right aligned regardless of the number of data bits defined by DATLEN in SSC_RFMR.

31.8.8 SSC Transmit Holding Register
Register Name: SSC_THR

Access Type: Write only

TDAT: Transmit Data

Right aligned regardless of the number of data bits defined by DATLEN in SSC_TFMR.

FSEDGE Frame Sync Edge Detection

0x0 Positive Edge Detection

0x1 Negative Edge Detection

31 30 29 28 27 26 25 24
RDAT

23 22 21 20 19 18 17 16

RDAT
15 14 13 12 11 10 9 8

RDAT

7 6 5 4 3 2 1 0
RDAT

31 30 29 28 27 26 25 24
TDAT

23 22 21 20 19 18 17 16

TDAT
15 14 13 12 11 10 9 8

TDAT

7 6 5 4 3 2 1 0
TDAT

479
1768I–ATARM–09-Jul-09

AT91RM9200

31.8.9 SSC Receive Synchronization Holding Register
Register Name: SSC_RSHR

Access Type: Read/Write

• RSDAT: Receive Synchronization Data
Right aligned regardless of the number of data bits defined by FSLEN in SSC_RFMR.

31.8.10 SSC Transmit Synchronization Holding Register
Name: SSC_TSHR

Access Type: Read/Write

• TSDAT: Transmit Synchronization Data
Right aligned regardless of the number of data bits defined by FSLEN in SSC_TFMR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
RSDAT

7 6 5 4 3 2 1 0

RSDAT

31 30 29 28 27 26 25 24

– – – – – – – –
23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
TSDAT

7 6 5 4 3 2 1 0

TSDAT

480
1768I–ATARM–09-Jul-09

AT91RM9200

31.8.11 SSC Status Register
Register Name: SSC_SR

Access Type: Read-only

• TXRDY: Transmit Ready
0: Data has been loaded in SSC_THR and is waiting to be loaded in the Transmit Shift Register.

1: SSC_THR is empty.

• TXEMPTY: Transmit Empty
0: Data remains in SSC_THR or is currently transmitted from Transmit Shift Register.

1: Last data written in SSC_THR has been loaded in Transmit Shift Register and transmitted by it.

• ENDTX: End of Transmission
0: The register SSC_TCR has not reached 0 since the last write in SSC_TCR or SSC_TNCR.

1: The register SSC_TCR has reached 0 since the last write in SSC_TCR or SSC_TNCR.

• TXBUFE: Transmit Buffer Empty
0: SSC_TCR or SSC_TNCR have a value other than 0.

1: Both SSC_TCR and SSC_TNCR have a value of 0.

• RXRDY: Receive Ready
0: SSC_RHR is empty.

1: Data has been received and loaded in SSC_RHR.

• OVRUN: Receive Overrun
0: No data has been loaded in SSC_RHR while previous data has not been read since the last read of the Status Register.

1: Data has been loaded in SSC_RHR while previous data has not yet been read since the last read of the Status Register.

• ENDRX: End of Reception
0: Data is written on the Receive Counter Register or Receive Next Counter Register.

1: End of PDC transfer when Receive Counter Register has arrived at zero.

• RXBUFF: Receive Buffer Full
0: SSC_RCR or SSC_RNCR have a value other than 0.

1: Both SSC_RCR and SSC_RNCR have a value of 0.

• TXSYN: Transmit Sync

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – RXEN TXEN

15 14 13 12 11 10 9 8
– – – – RXSYN TXSYN – –

7 6 5 4 3 2 1 0

RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

481
1768I–ATARM–09-Jul-09

AT91RM9200

0: A Tx Sync has not occurred since the last read of the Status Register.

1: A Tx Sync has occurred since the last read of the Status Register.

• RXSYN: Receive Sync
0: A Rx Sync has not occurred since the last read of the Status Register.

1: A Rx Sync has occurred since the last read of the Status Register.

• TXEN: Transmit Enable
0: Transmit data is disabled.

1: Transmit data is enabled.

• RXEN: Receive Enable
0: Receive data is disabled.

1: Receive data is enabled.

482
1768I–ATARM–09-Jul-09

AT91RM9200

31.8.12 SSC Interrupt Enable Register
Register Name: SSC_IER

Access Type: Write-only

• TXRDY: Transmit Ready

• TXEMPTY: Transmit Empty

• ENDTX: End of Transmission

• TXBUFE: Transmit Buffer Empty

• RXRDY: Receive Ready

• OVRUN: Receive Overrun

• ENDRX: End of Reception

• RXBUFF: Receive Buffer Full

• TXSYN: Tx Sync

• RXSYN: Rx Sync
0: No effect.

1: Enables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – RXSYN TXSYN – –

7 6 5 4 3 2 1 0

RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

483
1768I–ATARM–09-Jul-09

AT91RM9200

31.8.13 SSC Interrupt Disable Register
Register Name: SSC_IDR

Access Type: Write-only

• TXRDY: Transmit Ready

• TXEMPTY: Transmit Empty

• ENDTX: End of Transmission

• TXBUFE: Transmit Buffer Empty

• RXRDY: Receive Ready

• OVRUN: Receive Overrun

• ENDRX: End of Reception

• RXBUFF: Receive Buffer Full

• TXSYN: Tx Sync

• RXSYN: Rx Sync
0: No effect.

1: Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – RXSYN TXSYN – –

7 6 5 4 3 2 1 0

RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

484
1768I–ATARM–09-Jul-09

AT91RM9200

31.8.14 SSC Interrupt Mask Register
Register Name: SSC_IMR

Access Type: Read-only

• TXRDY: Transmit Ready

• TXEMPTY: Transmit Empty

• ENDTX: End of Transmission

• TXBUFE: Transmit Buffer Empty

• RXRDY: Receive Ready

• OVRUN: Receive Overrun

• ENDRX: End of Reception

• RXBUFF: Receive Buffer Full

• TXSYN: Tx Sync

• RXSYN: Rx Sync
0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – RXSYN TXSYN – –

7 6 5 4 3 2 1 0

RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

485
1768I–ATARM–09-Jul-09

AT91RM9200

32. Timer Counter (TC)

32.1 Overview
The Timer Counter (TC) includes three identical 16-bit Timer Counter channels.

Each channel can be independently programmed to perform a wide range of functions including
frequency measurement, event counting, interval measurement, pulse generation, delay timing
and pulse width modulation.

Each channel has three external clock inputs, five internal clock inputs and two multi-purpose
input/output signals which can be configured by the user. Each channel drives an internal inter-
rupt signal which can be programmed to generate processor interrupts.

The Timer Counter block has two global registers which act upon all three TC channels.

The Block Control Register allows the three channels to be started simultaneously with the same
instruction.

The Block Mode Register defines the external clock inputs for each channel, allowing them to be
chained.

Key Features of the Timer Counter are:

• Three 16-bit Timer Counter Channels

• A Wide Range of Functions Including:

– Frequency Measurement

– Event Counting

– Interval Measurement

– Pulse Generation

– Delay Timing

– Pulse Width Modulation

– Up/down Capabilities

• Each Channel is User-configurable and Contains:

– Three External Clock Inputs

– Five Internal Clock Inputs

– Two Multi-purpose Input/Output Signals

• Internal Interrupt Signal

Two Global Registers that Act on All Three TC Channels

486
1768I–ATARM–09-Jul-09

AT91RM9200

32.2 Block Diagram

Figure 32-1. Timer Counter Block Diagram

Table 32-1. Signal Name Description

Block/Channel Signal Name Description

Channel Signal

XC0, XC1, XC2 External Clock Inputs

TIOA
Capture Mode: General-purpose Input
Waveform Mode: General-purpose Output

TIOB
Capture Mode: General-purpose Input
Waveform Mode: General-purpose Input/output

INT Interrupt Signal Output

SYNC Synchronization Input Signal

Block Signal

TCLK0, TCLK1, TCLK2 External Clock Inputs

TIOA0 TIOA Signal for Channel 0

TIOB0 TIOB Signal for Channel 0

TIOA1 TIOA Signal for Channel 1

TIOB1 TIOB Signal for Channel 1

TIOA2 TIOA Signal for Channel 2

TIOB2 TIOB Signal for Channel 2

Timer/Counter
Channel 0

Timer/Counter
Channel 1

Timer/Counter
Channel 2

SYNC

Parallel I/O
Controller

TC1XC1S

TC0XC0S

TC2XC2S

INT0

INT1

INT2

TIOA0

TIOA1

TIOA2

TIOB0

TIOB1

TIOB2

XC0

XC1

XC2

XC0

XC1

XC2

XC0

XC1

XC2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TIOA1

TIOA2

TIOA0

TIOA2

TIOA0

TIOA1

Advanced
Interrupt

Controller

TCLK0
TCLK1
TCLK2

TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Timer Counter

TIOA

TIOB

TIOA

TIOB

TIOA

TIOB

SYNC

SYNC

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

TIMER_CLOCK1

487
1768I–ATARM–09-Jul-09

AT91RM9200

32.3 Pin Name List

32.4 Product Dependencies
For further details on the Timer Counter hardware implementation, see the specific Product
Properties document.

32.4.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the TC pins to their peripheral
functions.

32.4.2 Power Management
The TC must be clocked through the Power Management Controller (PMC), thus the program-
mer must first configure the PMC to enable the Timer Counter.

32.4.3 Interrupt
The TC interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling the TC interrupt requires programming the AIC before configuring the TC.

32.5 Functional Description

32.5.1 TC Description
The three channels of the Timer Counter are independent and identical in operation. The regis-
ters for channel programming are listed in Table 32-2 on page 487.

32.5.1.1 16-bit Counter
Each channel is organized around a 16-bit counter. The value of the counter is incremented at
each positive edge of the selected clock. When the counter has reached the value 0xFFFF and
passes to 0x0000, an overflow occurs and the COVFS bit in TC_SR (Status Register) is set.

The current value of the counter is accessible in real time by reading the Counter Value Regis-
ter, TC_CV. The counter can be reset by a trigger. In this case, the counter value passes to
0x0000 on the next valid edge of the selected clock.

32.5.1.2 Clock Selection
At block level, input clock signals of each channel can either be connected to the external inputs
TCLK0, TCLK1 or TCLK2, or be connected to the configurable I/O signals TIOA0, TIOA1 or
TIOA2 for chaining by programming the TC_BMR (Block Mode). See Figure 32-2.

Each channel can independently select an internal or external clock source for its counter:

• Internal clock signals: TIMER_CLOCK1, TIMER_CLOCK2, TIMER_CLOCK3,
TIMER_CLOCK4, TIMER_CLOCK5

Table 32-2. Timer Counter pin list

Pin Name Description Type

TCLK0-TCLK2 External Clock Input Input

TIOA0-TIOA2 I/O Line A I/O

TIOB0-TIOB2 I/O Line B I/O

488
1768I–ATARM–09-Jul-09

AT91RM9200

• External clock signals: XC0, XC1 or XC2

This selection is made by the TCCLKS bits in the TC Channel Mode Register (Capture Mode).

The selected clock can be inverted with the CLKI bit in TC_CMR (Capture Mode). This allows
counting on the opposite edges of the clock.

The burst function allows the clock to be validated when an external signal is high. The BURST
parameter in the Mode Register defines this signal (none, XC0, XC1, XC2).

Note: In all cases, if an external clock is used, the duration of each of its levels must be longer than the
master clock period. The external clock frequency must be at least 2.5 times lower than the mas-
ter clock

Figure 32-2. Clock Selection

32.5.1.3 Clock Control
The clock of each counter can be controlled in two different ways: it can be enabled/disabled
and started/stopped. See Figure 32-3.

• The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS
commands in the Control Register. In Capture Mode it can be disabled by an RB load event if
LDBDIS is set to 1 in TC_CMR. In Waveform Mode, it can be disabled by an RC Compare
event if CPCDIS is set to 1 in TC_CMR. When disabled, the start or the stop actions have no
effect: only a CLKEN command in the Control Register can re-enable the clock. When the
clock is enabled, the CLKSTA bit is set in the Status Register.

• The clock can also be started or stopped: a trigger (software, synchro, external or compare)
always starts the clock. The clock can be stopped by an RB load event in Capture Mode
(LDBSTOP = 1 in TC_CMR) or a RC compare event in Waveform Mode (CPCSTOP = 1 in
TC_CMR). The start and the stop commands have effect only if the clock is enabled.

TIMER_CLOCK1

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

XC0

XC1

XC2

TCCLKS

CLKI

BURST

1

Selected
Clock

489
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 32-3. Clock Control

32.5.1.4 TC Operating Modes
Each channel can independently operate in two different modes:

• Capture Mode provides measurement on signals.

• Waveform Mode provides wave generation.

The TC Operating Mode is programmed with the WAVE bit in the TC Channel Mode Register.

In Capture Mode, TIOA and TIOB are configured as inputs.

In Waveform Mode, TIOA is always configured to be an output and TIOB is an output if it is not
selected to be the external trigger.

32.5.1.5 Trigger
A trigger resets the counter and starts the counter clock. Three types of triggers are common to
both modes, and a fourth external trigger is available to each mode.

The following triggers are common to both modes:

• Software Trigger: Each channel has a software trigger, available by setting SWTRG in
TC_CCR.

• SYNC: Each channel has a synchronization signal SYNC. When asserted, this signal has the
same effect as a software trigger. The SYNC signals of all channels are asserted
simultaneously by writing TC_BCR (Block Control) with SYNC set.

• Compare RC Trigger: RC is implemented in each channel and can provide a trigger when the
counter value matches the RC value if CPCTRG is set in TC_CMR.

The channel can also be configured to have an external trigger. In Capture Mode, the external
trigger signal can be selected between TIOA and TIOB. In Waveform Mode, an external event
can be programmed on one of the following signals: TIOB, XC0, XC1 or XC2. This external
event can then be programmed to perform a trigger by setting ENETRG in TC_CMR.

If an external trigger is used, the duration of the pulses must be longer than the master clock
period in order to be detected.

Q S

R

S

R

Q

CLKSTA CLKEN CLKDIS

Stop
Event

Disable
EventCounter

Clock

Selected
Clock Trigger

490
1768I–ATARM–09-Jul-09

AT91RM9200

Regardless of the trigger used, it will be taken into account at the following active edge of the
selected clock. This means that the counter value can be read differently from zero just after a
trigger, especially when a low frequency signal is selected as the clock.

32.5.2 Capture Operating Mode
This mode is entered by clearing the WAVE parameter in TC_CMR (Channel Mode Register).

Capture Mode allows the TC channel to perform measurements such as pulse timing, fre-
quency, period, duty cycle and phase on TIOA and TIOB signals which are considered as
inputs.

Figure 32-4 shows the configuration of the TC channel when programmed in Capture Mode.

32.5.2.1 Capture Registers A and B
Registers A and B (RA and RB) are used as capture registers. This means that they can be
loaded with the counter value when a programmable event occurs on the signal TIOA.

The LDRA parameter in TC_CMR defines the TIOA edge for the loading of register A, and the
LDRB parameter defines the TIOA edge for the loading of Register B.

RA is loaded only if it has not been loaded since the last trigger or if RB has been loaded since
the last loading of RA.

RB is loaded only if RA has been loaded since the last trigger or the last loading of RB.

Loading RA or RB before the read of the last value loaded sets the Overrun Error Flag (LOVRS)
in TC_SR (Status Register). In this case, the old value is overwritten.

32.5.2.2 Trigger Conditions
In addition to the SYNC signal, the software trigger and the RC compare trigger, an external trig-
ger can be defined.

The ABETRG bit in TC_CMR selects TIOA or TIOB input signal as an external trigger. The
ETRGEDG parameter defines the edge (rising, falling or both) detected to generate an external
trigger. If ETRGEDG = 0 (none), the external trigger is disabled.

491
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 32-4. Capture Mode

T
IM

E
R

_C
LO

C
K

1

T
IM

E
R

_C
LO

C
K

2

T
IM

E
R

_C
LO

C
K

3

T
IM

E
R

_C
LO

C
K

4

T
IM

E
R

_C
LO

C
K

5

X
C

0

X
C

1

X
C

2

T
C

C
LK

S

C
LK

I

Q
S R

S R

Q

C
LK

S
T

A
C

LK
E

N
C

LK
D

IS

B
U

R
S

T

T
IO

B

R
eg

is
te

r
C

C
ap

tu
re

R

eg
is

te
r

A

C
ap

tu
re

R

eg
is

te
r

B
C

om
pa

re
 R

C
 =

16
-b

it
C

ou
nt

er

A
B

E
T

R
G

S
W

T
R

G

E
T

R
G

E
D

G
C

P
C

T
R

G

TC1_IMR

T
rig

LDRBS

LDRAS

ETRGS

TC1_SR

LOVRS

COVFS

S
Y

N
C

1

M
T

IO
B

T
IO

A

M
T

IO
A

LD
R

A

LD
B

S
T

O
P

If
R

A
 is

 n
ot

 lo
ad

ed
or

 R
B

 is
 L

oa
de

d
If

R
A

 is
 L

oa
de

d

LD
B

D
IS

CPCS

IN
T

E
dg

e
D

et
ec

to
r

E
dg

e
D

et
ec

to
r

LD
R

B

E
dg

e
D

et
ec

to
r

C
LK

O
V

F

R
E

S
E

T

T
im

er
/C

ou
nt

er
 C

ha
nn

el

492
1768I–ATARM–09-Jul-09

AT91RM9200

32.6 Waveform Operating Mode
Waveform operating mode is entered by setting the WAVE parameter in TC_CMR (Channel
Mode Register).

In Waveform Operating Mode the TC channel generates 1 or 2 PWM signals with the same fre-
quency and independently programmable duty cycles, or generates different types of one-shot
or repetitive pulses.

In this mode, TIOA is configured as an output and TIOB is defined as an output if it is not used
as an external event (EEVT parameter in TC_CMR).

Figure 32-5 shows the configuration of the TC channel when programmed in Waveform Operat-
ing Mode.

32.6.0.3 Waveform Selection
Depending on the WAVSEL parameter in TC_CMR (Channel Mode Register), the behavior of
TC_CV varies.

With any selection, RA, RB and RC can all be used as compare registers.

RA Compare is used to control the TIOA output, RB Compare is used to control the TIOB output
(if correctly configured) and RC Compare is used to control TIOA and/or TIOB outputs.

493
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 32-5. Waveform Mode

T
C

C
LK

S

C
LK

I

Q
S R

S R

Q

C
LK

S
T

A
C

LK
E

N
C

LK
D

IS

C
P

C
D

IS

B
U

R
S

T

T
IO

B

R
eg

is
te

r
A

R
eg

is
te

r
B

R
eg

is
te

r
C

C
om

pa
re

 R
A

 =

C
om

pa
re

 R
B

 =

C
om

pa
re

 R
C

 =

C
P

C
S

T
O

P

16
-b

it
C

ou
nt

er

E
E

V
T

E
E

V
T

E
D

G

S
Y

N
C

S
W

T
R

G

E
N

E
T

R
G

W
A

V
S

E
L

TC1_IMR
T

rig

A
C

P
C

A
C

P
A

A
E

E
V

T

A
S

W
T

R
G

B
C

P
C

B
C

P
B

B
E

E
V

T

B
S

W
T

R
G

T
IO

A

M
T

IO
A

T
IO

B

M
T

IO
B

CPAS

COVFS

ETRGS

TC1_SR

CPCS

CPBS
C

LK
O

V
F

R
E

S
E

T

Output Controller Output Controller

IN
T

1

E
dg

e
D

et
ec

to
r

T
im

er
/C

ou
nt

er
 C

ha
nn

el

T
IM

E
R

_C
LO

C
K

1

T
IM

E
R

_C
LO

C
K

2

T
IM

E
R

_C
LO

C
K

3

T
IM

E
R

_C
LO

C
K

4

T
IM

E
R

_C
LO

C
K

5

X
C

0

X
C

1

X
C

2

W
A

V
S

E
L

494
1768I–ATARM–09-Jul-09

AT91RM9200

WAVSEL = 00

When WAVSEL = 00, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF has
been reached, the value of TC_CV is reset. Incrementation of TC_CV starts again and the cycle
continues. See Figure 32-6.

An external event trigger or a software trigger can reset the value of TC_CV. It is important to
note that the trigger may occur at any time. See Figure 32-7.

RC Compare cannot be programmed to generate a trigger in this configuration. At the same
time, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the
counter clock (CPCDIS = 1 in TC_CMR).

Figure 32-6. WAVSEL= 00 without trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

495
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 32-7. WAVSEL= 00 with trigger

WAVSEL = 10

When WAVSEL = 10, the value of TC_CV is incremented from 0 to the value of RC, then auto-
matically reset on a RC Compare. Once the value of TC_CV has been reset, it is then
incremented and so on. See Figure 32-8.

It is important to note that TC_CV can be reset at any time by an external event or a software
trigger if both are programmed correctly. See Figure 32-9.

In addition, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable
the counter clock (CPCDIS = 1 in TC_CMR).

Figure 32-8. WAVSEL = 10 Without Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter cleared by trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC
0xFFFF

Waveform Examples

496
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 32-9. WAVSEL = 10 With Trigger

WAVSEL = 01

When WAVSEL = 01, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF is
reached, the value of TC_CV is decremented to 0, then re-incremented to 0xFFFF and so on.
See Figure 32-10.

A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trig-
ger occurs while TC_CV is incrementing, TC_CV then decrements. If a trigger is received while
TC_CV is decrementing, TC_CV then increments. See Figure 32-11.

RC Compare cannot be programmed to generate a trigger in this configuration.

At the same time, RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the
counter clock (CPCDIS = 1).

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC
0xFFFF

Waveform Examples

Counter cleared by trigger

497
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 32-10. WAVSEL = 01 Without Trigger

Figure 32-11. WAVSEL = 01 With Trigger

WAVSEL = 11

When WAVSEL = 11, the value of TC_CV is incremented from 0 to RC. Once RC is reached, the
value of TC_CV is decremented to 0, then re-incremented to RC and so on. See Figure 32-12.

A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trig-
ger occurs while TC_CV is incrementing, TC_CV then decrements. If a trigger is received while
TC_CV is decrementing, TC_CV then increments. See Figure 32-13.

RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock
(CPCDIS = 1).

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA

498
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 32-12. WAVSEL = 11 Without Trigger

Figure 32-13. WAVSEL = 11 With Trigger

32.6.0.4 External Event/Trigger Conditions
An external event can be programmed to be detected on one of the clock sources (XC0, XC1,
XC2) or TIOB. The external event selected can then be used as a trigger.

The parameter EEVT parameter in TC_CMR selects the external trigger. The EEVTEDG param-
eter defines the trigger edge for each of the possible external triggers (rising, falling or both). If
EEVTEDG is cleared (none), no external event is defined.

If TIOB is defined as an external event signal (EEVT = 0), TIOB is no longer used as an output
and the TC channel can only generate a waveform on TIOA.

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with RC

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with RC

0xFFFF

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA

499
1768I–ATARM–09-Jul-09

AT91RM9200

When an external event is defined, it can be used as a trigger by setting bit ENETRG in
TC_CMR.

As in Capture Mode, the SYNC signal and the software trigger are also available as triggers. RC
Compare can also be used as a trigger depending on the parameter WAVSEL.

32.6.0.5 Output Controller
The output controller defines the output level changes on TIOA and TIOB following an event.
TIOB control is used only if TIOB is defined as output (not as an external event).

The following events control TIOA and TIOB: software trigger, external event and RC compare.
RA compare controls TIOA and RB compare controls TIOB. Each of these events can be pro-
grammed to set, clear or toggle the output as defined in the corresponding parameter in
TC_CMR.

500
1768I–ATARM–09-Jul-09

AT91RM9200

32.7 Timer Counter (TC) User Interface

TC_BCR (Block Control Register) and TC_BMR (Block Mode Register) control the whole TC block. TC channels are con-
trolled by the registers listed in Table 32-4. The offset of each of the channel registers in Table 32-4 is in relation to the offset
of the corresponding channel as mentioned in Table 32-4.

Notes: 1. Read only if WAVE = 0

Table 32-3. Timer Counter Global Memory Map

Offset Channel/Register Name Access Reset Value

0x00 TC Channel 0 See Table 32-4

See Table 32-4

See Table 32-4

0x40 TC Channel 1

0x80 TC Channel 2

0xC0 TC Block Control Register TC_BCR Write-only –

0xC4 TC Block Mode Register TC_BMR Read/Write 0

Table 32-4. Timer Counter Channel Memory Map

Offset Register Name Access Reset Value

0x00 Channel Control Register TC_CCR Write-only –

0x04 Channel Mode Register TC_CMR Read/Write 0

0x08 Reserved –

0x0C Reserved –

0x10 Counter Value TC_CV Read-only 0

0x14 Register A TC_RA Read/Write(1) 0

0x18 Register B TC_RB Read/Write(1) 0

0x1C Register C TC_RC Read/Write 0

0x20 Status Register TC_SR Read-only 0

0x24 Interrupt Enable Register TC_IER Write-only –

0x28 Interrupt Disable Register TC_IDR Write-only –

0x2C Interrupt Mask Register TC_IMR Read-only 0

501
1768I–ATARM–09-Jul-09

AT91RM9200

32.7.1 TC Block Control Register
Register Name: TC_BCR

Access Type: Write-only

• SYNC: Synchro Command

0 = No effect.

1 = Asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – SYNC

502
1768I–ATARM–09-Jul-09

AT91RM9200

32.7.2 TC Block Mode Register
Register Name: TC_BMR

Access Type: Read/Write

• TC0XC0S: External Clock Signal 0 Selection

• TC1XC1S: External Clock Signal 1 Selection

• TC2XC2S: External Clock Signal 2 Selection

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – TC2XC2S TCXC1S TC0XC0S

TC0XC0S Signal Connected to XC0

0 0 TCLK0

0 1 none

1 0 TIOA1

1 1 TIOA2

TC1XC1S Signal Connected to XC1

0 0 TCLK1

0 1 none

1 0 TIOA0

1 1 TIOA2

TC2XC2S Signal Connected to XC2

0 0 TCLK2

0 1 none

1 0 TIOA0

1 1 TIOA1

503
1768I–ATARM–09-Jul-09

AT91RM9200

32.7.3 TC Channel Control Register
Register Name: TC_CCR

Access Type: Write-only

• CLKEN: Counter Clock Enable Command

0 = No effect.

1 = Enables the clock if CLKDIS is not 1.

• CLKDIS: Counter Clock Disable Command

0 = No effect.

1 = Disables the clock.

• SWTRG: Software Trigger Command

0 = No effect.

1 = A software trigger is performed: the counter is reset and the clock is started.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – SWTRG CLKDIS CLKEN

504
1768I–ATARM–09-Jul-09

AT91RM9200

32.7.4 TC Channel Mode Register: Capture Mode
Register Name: TC_CMR

Access Type: Read/Write

• TCCLKS: Clock Selection

• CLKI: Clock Invert

0 = Counter is incremented on rising edge of the clock.

1 = Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

• LDBSTOP: Counter Clock Stopped with RB Loading

0 = Counter clock is not stopped when RB loading occurs.

1 = Counter clock is stopped when RB loading occurs.

• LDBDIS: Counter Clock Disable with RB Loading

0 = Counter clock is not disabled when RB loading occurs.

1 = Counter clock is disabled when RB loading occurs.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – LDRB LDRA

15 14 13 12 11 10 9 8

WAVE = 0 CPCTRG – – – ABETRG ETRGEDG

7 6 5 4 3 2 1 0

LDBDIS LDBSTOP BURST CLKI TCCLKS

TCCLKS Clock Selected

0 0 0 TIMER_CLOCK1

0 0 1 TIMER_CLOCK2

0 1 0 TIMER_CLOCK3

0 1 1 TIMER_CLOCK4

1 0 0 TIMER_CLOCK5

1 0 1 XC0

1 1 0 XC1

1 1 1 XC2

BURST

0 0 The clock is not gated by an external signal.

0 1 XC0 is ANDed with the selected clock.

1 0 XC1 is ANDed with the selected clock.

1 1 XC2 is ANDed with the selected clock.

505
1768I–ATARM–09-Jul-09

AT91RM9200

• ETRGEDG: External Trigger Edge Selection

• ABETRG: TIOA or TIOB External Trigger Selection

0 = TIOB is used as an external trigger.

1 = TIOA is used as an external trigger.

• CPCTRG: RC Compare Trigger Enable

0 = RC Compare has no effect on the counter and its clock.

1 = RC Compare resets the counter and starts the counter clock.

• WAVE

0 = Capture Mode is enabled.

1 = Capture Mode is disabled (Waveform Mode is enabled).

• LDRA: RA Loading Selection

• LDRB: RB Loading Selection

ETRGEDG Edge

0 0 none

0 1 rising edge

1 0 falling edge

1 1 each edge

LDRA Edge

0 0 none

0 1 rising edge of TIOA

1 0 falling edge of TIOA

1 1 each edge of TIOA

LDRB Edge

0 0 none

0 1 rising edge of TIOA

1 0 falling edge of TIOA

1 1 each edge of TIOA

506
1768I–ATARM–09-Jul-09

AT91RM9200

32.7.5 TC Channel Mode Register: Waveform Mode
Register Name: TC_CMR

Access Type: Read/Write

• TCCLKS: Clock Selection

• CLKI: Clock Invert

0 = Counter is incremented on rising edge of the clock.

1 = Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

• CPCSTOP: Counter Clock Stopped with RC Compare

0 = Counter clock is not stopped when counter reaches RC.

1 = Counter clock is stopped when counter reaches RC.

• CPCDIS: Counter Clock Disable with RC Compare

0 = Counter clock is not disabled when counter reaches RC.

1 = Counter clock is disabled when counter reaches RC.

31 30 29 28 27 26 25 24

BSWTRG BEEVT BCPC BCPB

23 22 21 20 19 18 17 16

ASWTRG AEEVT ACPC ACPA

15 14 13 12 11 10 9 8

WAVE = 1 WAVSEL ENETRG EEVT EEVTEDG

7 6 5 4 3 2 1 0

CPCDIS CPCSTOP BURST CLKI TCCLKS

TCCLKS Clock Selected

0 0 0 TIMER_CLOCK1

0 0 1 TIMER_CLOCK2

0 1 0 TIMER_CLOCK3

0 1 1 TIMER_CLOCK4

1 0 0 TIMER_CLOCK5

1 0 1 XC0

1 1 0 XC1

1 1 1 XC2

BURST

0 0 The clock is not gated by an external signal.

0 1 XC0 is ANDed with the selected clock.

1 0 XC1 is ANDed with the selected clock.

1 1 XC2 is ANDed with the selected clock.

507
1768I–ATARM–09-Jul-09

AT91RM9200

• EEVTEDG: External Event Edge Selection

• EEVT: External Event Selection

Note: 1. If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms.

• ENETRG: External Event Trigger Enable

0 = The external event has no effect on the counter and its clock. In this case, the selected external event only controls the
TIOA output.

1 = The external event resets the counter and starts the counter clock.

• WAVSEL: Waveform Selection

• WAVE = 1

0 = Waveform Mode is disabled (Capture Mode is enabled).

1 = Waveform Mode is enabled.

• ACPA: RA Compare Effect on TIOA

EEVTEDG Edge

0 0 none

0 1 rising edge

1 0 falling edge

1 1 each edge

EEVT Signal selected as external event TIOB Direction

0 0 TIOB input(1)

0 1 XC0 output

1 0 XC1 output

1 1 XC2 output

WAVSEL Effect

0 0 UP mode without automatic trigger on RC Compare

1 0 UP mode with automatic trigger on RC Compare

0 1 UPDOWN mode without automatic trigger on RC Compare

1 1 UPDOWN mode with automatic trigger on RC Compare

ACPA Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

508
1768I–ATARM–09-Jul-09

AT91RM9200

• ACPC: RC Compare Effect on TIOA

• AEEVT: External Event Effect on TIOA

• ASWTRG: Software Trigger Effect on TIOA

• BCPB: RB Compare Effect on TIOB

• BCPC: RC Compare Effect on TIOB

ACPC Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

AEEVT Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

ASWTRG Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BCPB Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BCPC Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

509
1768I–ATARM–09-Jul-09

AT91RM9200

• BEEVT: External Event Effect on TIOB

• BSWTRG: Software Trigger Effect on TIOB

BEEVT Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BSWTRG Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

510
1768I–ATARM–09-Jul-09

AT91RM9200

32.7.6 TC Counter Value Register
Register Name: TC_CV

Access Type: Read-only

• CV: Counter Value

CV contains the counter value in real time.

32.7.7 TC Register A
Register Name: TC_RA

Access Type: Read-only if WAVE = 0, Read/Write if WAVE = 1

• RA: Register A

RA contains the Register A value in real time.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CV

7 6 5 4 3 2 1 0

CV

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RA

7 6 5 4 3 2 1 0

RA

511
1768I–ATARM–09-Jul-09

AT91RM9200

32.7.8 TC Register B
Register Name: TC_RB

Access Type: Read-only if WAVE = 0, Read/Write if WAVE = 1

• RB: Register B

RB contains the Register B value in real time.

32.7.9 TC Register C
Register Name: TC_RC

Access Type: Read/Write

• RC: Register C

RC contains the Register C value in real time.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RB

7 6 5 4 3 2 1 0

RB

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RC

7 6 5 4 3 2 1 0

RC

512
1768I–ATARM–09-Jul-09

AT91RM9200

32.7.10 TC Status Register
Register Name: TC_SR

Access Type: Read-only

• COVFS: Counter Overflow Status

0 = No counter overflow has occurred since the last read of the Status Register.

1 = A counter overflow has occurred since the last read of the Status Register.

• LOVRS: Load Overrun Status

0 = Load overrun has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA or RB have been loaded at least twice without any read of the corresponding register since the last read of the Sta-
tus Register, if WAVE = 0.

• CPAS: RA Compare Status

0 = RA Compare has not occurred since the last read of the Status Register or WAVE = 0.

1 = RA Compare has occurred since the last read of the Status Register, if WAVE = 1.

• CPBS: RB Compare Status

0 = RB Compare has not occurred since the last read of the Status Register or WAVE = 0.

1 = RB Compare has occurred since the last read of the Status Register, if WAVE = 1.

• CPCS: RC Compare Status

0 = RC Compare has not occurred since the last read of the Status Register.

1 = RC Compare has occurred since the last read of the Status Register.

• LDRAS: RA Loading Status

0 = RA Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA Load has occurred since the last read of the Status Register, if WAVE = 0.

• LDRBS: RB Loading Status

0 = RB Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RB Load has occurred since the last read of the Status Register, if WAVE = 0.

• ETRGS: External Trigger Status

0 = External trigger has not occurred since the last read of the Status Register.

1 = External trigger has occurred since the last read of the Status Register.

• CLKSTA: Clock Enabling Status

0 = Clock is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – MTIOB MTIOA CLKSTA

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

513
1768I–ATARM–09-Jul-09

AT91RM9200

1 = Clock is enabled.

• MTIOA: TIOA Mirror

0 = TIOA is low. If WAVE = 0, this means that TIOA pin is low. If WAVE = 1, this means that TIOA is driven low.

1 = TIOA is high. If WAVE = 0, this means that TIOA pin is high. If WAVE = 1, this means that TIOA is driven high.

• MTIOB: TIOB Mirror

0 = TIOB is low. If WAVE = 0, this means that TIOB pin is low. If WAVE = 1, this means that TIOB is driven low.

1 = TIOB is high. If WAVE = 0, this means that TIOB pin is high. If WAVE = 1, this means that TIOB is driven high.

514
1768I–ATARM–09-Jul-09

AT91RM9200

32.7.11 TC Interrupt Enable Register
Register Name: TC_IER

Access Type: Write-only

• COVFS: Counter Overflow

0 = No effect.

1 = Enables the Counter Overflow Interrupt.

• LOVRS: Load Overrun

0 = No effect.

1 = Enables the Load Overrun Interrupt.

• CPAS: RA Compare

0 = No effect.

1 = Enables the RA Compare Interrupt.

• CPBS: RB Compare

0 = No effect.

1 = Enables the RB Compare Interrupt.

• CPCS: RC Compare

0 = No effect.

1 = Enables the RC Compare Interrupt.

• LDRAS: RA Loading

0 = No effect.

1 = Enables the RA Load Interrupt.

• LDRBS: RB Loading

0 = No effect.

1 = Enables the RB Load Interrupt.

• ETRGS: External Trigger

0 = No effect.

1 = Enables the External Trigger Interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

515
1768I–ATARM–09-Jul-09

AT91RM9200

32.7.12 TC Interrupt Disable Register
Register Name: TC_IDR

Access Type: Write-only

• COVFS: Counter Overflow

0 = No effect.

1 = Disables the Counter Overflow Interrupt.

• LOVRS: Load Overrun

0 = No effect.

1 = Disables the Load Overrun Interrupt (if WAVE = 0).

• CPAS: RA Compare

0 = No effect.

1 = Disables the RA Compare Interrupt (if WAVE = 1).

• CPBS: RB Compare

0 = No effect.

1 = Disables the RB Compare Interrupt (if WAVE = 1).

• CPCS: RC Compare

0 = No effect.

1 = Disables the RC Compare Interrupt.

• LDRAS: RA Loading

0 = No effect.

1 = Disables the RA Load Interrupt (if WAVE = 0).

• LDRBS: RB Loading

0 = No effect.

1 = Disables the RB Load Interrupt (if WAVE = 0).

• ETRGS: External Trigger

0 = No effect.

1 = Disables the External Trigger Interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

516
1768I–ATARM–09-Jul-09

AT91RM9200

32.7.13 TC Interrupt Mask Register
Register Name: TC_IMR

Access Type: Read-only

• COVFS: Counter Overflow

0 = The Counter Overflow Interrupt is disabled.

1 = The Counter Overflow Interrupt is enabled.

• LOVRS: Load Overrun

0 = The Load Overrun Interrupt is disabled.

1 = The Load Overrun Interrupt is enabled.

• CPAS: RA Compare

0 = The RA Compare Interrupt is disabled.

1 = The RA Compare Interrupt is enabled.

• CPBS: RB Compare

0 = The RB Compare Interrupt is disabled.

1 = The RB Compare Interrupt is enabled.

• CPCS: RC Compare

0 = The RC Compare Interrupt is disabled.

1 = The RC Compare Interrupt is enabled.

• LDRAS: RA Loading

0 = The Load RA Interrupt is disabled.

1 = The Load RA Interrupt is enabled.

• LDRBS: RB Loading

0 = The Load RB Interrupt is disabled.

1 = The Load RB Interrupt is enabled.

• ETRGS: External Trigger

0 = The External Trigger Interrupt is disabled.

1 = The External Trigger Interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

517
1768I–ATARM–09-Jul-09

AT91RM9200

518
1768I–ATARM–09-Jul-09

AT91RM9200

519
1768I–ATARM–09-Jul-09

AT91RM9200

33. MultiMedia Card Interface (MCI)

33.1 Description
The MultiMedia Card Interface (MCI) supports the MultiMedia Card (MMC) Specification V2.2
and the SD Memory Card Specification V1.0.

The MCI includes a command register, response registers, data registers, timeout counters and
error detection logic that automatically handle the transmission of commands and, when
required, the reception of the associated responses and data with a limited processor overhead.

The MCI supports stream, block and multi-block data read and write, and is compatible with the
Peripheral DMA Controller (PDC) channels, minimizing processor intervention for large buffer
transfers.

The MCI operates at a rate of up to Master Clock divided by 2 and supports the interfacing of 1
slot(s). Each slot may be used to interface with a MultiMediaCard bus (up to 30 Cards) or with a
SD Memory Card. Only one slot can be selected at a time (slots are multiplexed). A bit field in
the SD Card Register performs this selection.

The SD Memory Card communication is based on a 9-pin interface (clock, command, four data
and three power lines) and the MultiMedia Card on a 7-pin interface (clock, command, one data,
three power lines and one reserved for future use).

The SD Memory Card interface also supports MultiMedia Card operations. The main differences
between SD and MultiMedia Cards are the initialization process and the bus topology.

520
1768I–ATARM–09-Jul-09

AT91RM9200

33.2 Block Diagram

Figure 33-1. Block Diagram

Note: 1. When several MCIs (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA, MCCDB to
MCIx_CDB,MCDAy to MCIx_DAy, MCDBy to MCIx_DBy.

MCI Interface

Interrupt Control

PIO

PDC

APB Bridge

PMC
MCK

MCI Interrupt

MCCK(1)

MCCDA(1)

MCDA0(1)

MCDA1(1)

MCDA2(1)

MCDA3(1)

MCCDB(1)

MCDB0(1)

MCDB1(1)

MCDB2(1)

MCDB3(1)

APB

521
1768I–ATARM–09-Jul-09

AT91RM9200

33.3 Application Block Diagram

Figure 33-2. Application Block Diagram

33.4 Pin Name List

Notes: 1. I: Input, O: Output, PP: Push/Pull, OD: Open Drain.

2. When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA, MCCDB to
MCIx_CDB, MCDAy to MCIx_DAy, MCDBy to MCIx_DBy.

2 3 4 5 61 7

MMC

2 3 4 5 61 78

SDCard
9

Physical Layer
MCI Interface

Application Layer
ex: File System, Audio, Security, etc.

Table 33-1. I/O Lines Description

Pin Name(2) Pin Description Type(1) Comments

MCCDA/MCCDB Command/response I/O/PP/OD CMD of an MMC or SDCard

MCCK Clock I/O CLK of an MMC or SD Card

MCDA0 - MCDA3 Data 0..3 of Slot A I/O/PP
DAT0 of an MMC

DAT[0..3] of an SD Card

MCDB0 - MCDB3 Data 0..3 of Slot B I/O/PP
DAT0 of an MMC

DAT[0..3] of an SD Card

522
1768I–ATARM–09-Jul-09

AT91RM9200

33.5 Product Dependencies

33.5.1 I/O Lines
The pins used for interfacing the MultiMedia Cards or SD Cards may be multiplexed with PIO
lines. The programmer must first program the PIO controllers to assign the peripheral functions
to MCI pins.

33.5.2 Power Management
The MCI may be clocked through the Power Management Controller (PMC), so the programmer
must first configure the PMC to enable the MCI clock.

33.5.3 Interrupt
The MCI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).

Handling the MCI interrupt requires programming the AIC before configuring the MCI.

33.6 Bus Topology

Figure 33-3. Multimedia Memory Card Bus Topology

The MultiMedia Card communication is based on a 7-pin serial bus interface. It has three com-
munication lines and four supply lines.

Notes: 1. I: Input, O: Output, PP: Push/Pull, OD: Open Drain.

2. When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to
MCIx_CDA, MCCDB to MCIx_CDB, MCDAy to MCIx_DAy, MCDBy to MCIx_DBy.

2 3 4 5 61 7

MMC

Table 33-2. Bus Topology

Pin
Number Name Type(1) Description

MCI Pin Name(2)

(Slot z)

1 RSV NC Not connected -

2 CMD I/O/PP/OD Command/response MCCDz

3 VSS1 S Supply voltage ground VSS

4 VDD S Supply voltage VDD

5 CLK I/O Clock MCCK

6 VSS2 S Supply voltage ground VSS

7 DAT[0] I/O/PP Data 0 MCDz0

523
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 33-4. MMC Bus Connections (One Slot)

Note: When several MCIs (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA MCDAy to
MCIx_DAy.

Figure 33-5. SD Memory Card Bus Topology

The SD Memory Card bus includes the signals listed in Table 33-3.

Notes: 1. I: input, O: output, PP: Push Pull, OD: Open Drain.

2. When several MCIs (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to
MCIx_CDA, MCCDB to MCIx_CDB, MCDAy to MCIx_DAy, MCDBy to MCIx_DBy.

2 3 4 5 61 7 2 3 4 5 61 7 2 3 4 5 61 7

MCCDA

MCDA0

MCCK

MMC1 MMC2 MMC3

MCI

2 3 4 5 61 78

SD CARD
9

Table 33-3. SD Memory Card Bus Signals

Pin
Number Name Type(1) Description

MCI Pin Name(2)

(Slot z)

1 CD/DAT[3] I/O/PP Card detect/ Data line Bit 3 MCDz3

2 CMD PP Command/response MCCDz

3 VSS1 S Supply voltage ground VSS

4 VDD S Supply voltage VDD

5 CLK I/O Clock MCCK

6 VSS2 S Supply voltage ground VSS

7 DAT[0] I/O/PP Data line Bit 0 MCDz0

8 DAT[1] I/O/PP Data line Bit 1 MCDz1

9 DAT[2] I/O/PP Data line Bit 2 MCDz2

524
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 33-6. SD Card Bus Connections with One Slot

Note: When several MCIs (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA MCDAy to
MCIx_DAy.

Figure 33-7. SD Card Bus Connections with Two Slots

Note: When several MCIs (x MCI) are embedded in a product, MCCK refers to MCIx_CK,MCCDA to MCIx_CDA, MCDAy to
MCIx_DAy, MCCDB to MCIx_CDB, MCDBy to MCIx_DBy.

Figure 33-8. Mixing MultiMedia and SD Memory Cards with Two Slots

Note: When several MCIs (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA, MCDAy to
MCIx_DAy, MCCDB to MCIx_CDB, MCDBy to MCIx_DBy.

When the MCI is configured to operate with SD memory cards, the width of the data bus can be
selected in the MCI_SDCR register. Clearing the SDCBUS bit in this register means that the

2
3

4
5

6
1

7MCDA0 - MCDA3

MCCDA

MCCK

8

SD CARD

9
2

3
4

5
6

1
7MCDA0 - MCDA3

MCCDA

MCCK

8

SD CARD 1

9
2

3
4

5
6

1
7

8

SD CARD 2

9

MCDB0 - MCDB3

MCCDB

2 3 4 5 61 7 2 3 4 5 61 7 2 3 4 5 61 7

MMC1 MMC2 MMC3

MCDA0

MCCK

MCCDA

2
3

4
5

6
1

7
8

SD CARD

9

MCDB0 - MCDB3

MCCDB

525
1768I–ATARM–09-Jul-09

AT91RM9200

width is one bit; setting it means that the width is four bits. In the case of multimedia cards, only
the data line 0 is used. The other data lines can be used as independent PIOs.

33.7 MultiMedia Card Operations
After a power-on reset, the cards are initialized by a special message-based MultiMedia Card
bus protocol. Each message is represented by one of the following tokens:

• Command: A command is a token that starts an operation. A command is sent from the host
either to a single card (addressed command) or to all connected cards (broadcast
command). A command is transferred serially on the CMD line.

• Response: A response is a token which is sent from an addressed card or (synchronously)
from all connected cards to the host as an answer to a previously received command. A
response is transferred serially on the CMD line.

• Data: Data can be transferred from the card to the host or vice versa. Data is transferred via
the data line.

Card addressing is implemented using a session address assigned during the initialization
phase by the bus controller to all currently connected cards. Their unique CID number identifies
individual cards.

The structure of commands, responses and data blocks is described in the MultiMedia-Card
System Specification. See also Table 33-4 on page 526.

MultiMediaCard bus data transfers are composed of these tokens.

There are different types of operations. Addressed operations always contain a command and a
response token. In addition, some operations have a data token; the others transfer their infor-
mation directly within the command or response structure. In this case, no data token is present
in an operation. The bits on the DAT and the CMD lines are transferred synchronous to the clock
MCI Clock.

Two types of data transfer commands are defined:

• Sequential commands: These commands initiate a continuous data stream. They are
terminated only when a stop command follows on the CMD line. This mode reduces the
command overhead to an absolute minimum.

• Block-oriented commands: These commands send a data block succeeded by CRC bits.

Both read and write operations allow either single or multiple block transmission. A multiple
block transmission is terminated when a stop command follows on the CMD line similarly to the
sequential read.

The MCI provides a set of registers to perform the entire range of MultiMedia Card operations.

33.7.1 Command - Response Operation
After reset, the MCI is disabled and becomes valid after setting the MCIEN bit in the MCI_CR
Control Register.

The PWSEN bit saves power by dividing the MCI clock by 2PWSDIV + 1 when the bus is inactive.

The command and the response of the card are clocked out with the rising edge of the MCI
Clock.

All the timings for MultiMedia Card are defined in the MultiMediaCard System Specification.

526
1768I–ATARM–09-Jul-09

AT91RM9200

The two bus modes (open drain and push/pull) needed to process all the operations are defined
in the MCI command register. The MCI_CMDR allows a command to be carried out.

For example, to perform an ALL_SEND_CID command:

The command ALL_SEND_CID and the fields and values for the MCI_CMDR Control Register
are described in Table 33-4 and Table 33-5.

Note: bcr means broadcast command with response.

The MCI_ARGR contains the argument field of the command.

To send a command, the user must perform the following steps:

• Fill the argument register (MCI_ARGR) with the command argument.

• Set the command register (MCI_CMDR) (see Table 33-5).

The command is sent immediately after writing the command register. The status bit CMDRDY
in the status register (MCI_SR) is asserted when the command is completed. If the command
requires a response, it can be read in the MCI response register (MCI_RSPR). The response
size can be from 48 bits up to 136 bits depending on the command. The MCI embeds an error
detection to prevent any corrupted data during the transfer.

The following flowchart shows how to send a command to the card and read the response if
needed. In this example, the status register bits are polled but setting the appropriate bits in the
interrupt enable register (MCI_IER) allows using an interrupt method.

Host Command NID Cycles CID

CMD S T Content CRC E Z ****** Z S T Content Z Z Z

Table 33-4. ALL_SEND_CID Command Description

CMD Index Type Argument Resp Abbreviation
Command
Description

CMD2 bcr [31:0] stuff bits R2 ALL_SEND_CID

Asks all cards to
send their CID
numbers on the
CMD line

Table 33-5. Fields and Values for MCI_CMDR Command Register

Field Value

CMDNB (command number) 2 (CMD2)

RSPTYP (response type) 2 (R2: 136 bits response)

SPCMD (special command) 0 (not a special command)

OPCMD (open drain command) 1

MAXLAT (max latency for command to
response)

0 (NID cycles ==> 5 cycles)

TRCMD (transfer command) 0 (No transfer)

TRDIR (transfer direction) X (available only in transfer command)

TRTYP (transfer type) X (available only in transfer command)

527
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 33-9. Command/Response Functional Flow Diagram

Note: 1. If the command is SEND_OP_COND, the CRC error flag is always present (refer to R3 response in the MultiMedia Card
specification).

33.7.2 Data Transfer Operation
The MultiMedia Card allows several read/write operations (single block, multiple blocks, stream,
etc.). These kind of transfers can be selected setting the Transfer Type (TRTYP) field in the MCI
Command Register (MCI_CMDR).

These operations can be done using the features of the Peripheral DMA Controller (PDC). If the
PDCMODE bit is set in MCI_MR, then all reads and writes use the PDC facilities.

In all cases, the block length (BLKLEN field) must be defined in the mode register MCI_MR. This
field determines the size of the data block.

33.7.3 Read Operation
The following flowchart shows how to read a single block with or without use of PDC facilities. In
this example (see Figure 33-10), a polling method is used to wait for the end of read. Similarly,

RETURN OK

RETURN ERROR(1)

Set the command argument
MCI_ARGR = Argument(1)

Set the command
MCI_CMDR = Command

Read MCI_SR

CMDRDY

Status error flags?

Read response if required

Yes

Wait for command
ready status flag

Check error bits in the
status register (1)

0

1

528
1768I–ATARM–09-Jul-09

AT91RM9200

the user can configure the interrupt enable register (MCI_IER) to trigger an interrupt at the end
of read.

Figure 33-10. Read Functional Flow Diagram

Note: 1. It is assumed that this command has been correctly sent (see Figure 33-9).

Read status register MCI_SR

Send SELECT/DESELECT_CARD
command(1) to select the card

Send SET_BLOCKLEN command(1)

Read with PDC

Reset the PDCMODE bit
MCI_MR &= ~PDCMODE
Set the block length (in bytes)
MCI_MR |= (BlockLenght <<16)

Number of words to read = 0 ?

Poll the bit
RXRDY = 0?

Read data = MCI_RDR

Number of words to read =
Number of words to read -1

Send READ_SINGLE_BLOCK
command(1)

Yes

Set the PDCMODE bit
MCI_MR |= PDCMODE
Set the block length (in bytes)
MCI_MR |= (BlockLength << 16)

Configure the PDC channel
MCI_RPR = Data Buffer Address
MCI_RCR = BlockLength/4
MCI_PTCR = RXTEN

Send READ_SINGLE_BLOCK
command(1)

Read status register MCI_SR

Poll the bit
ENDRX = 0?

Yes

RETURN

RETURN

YesNo

No

No

Yes

No

Number of words to read = BlockLength/4

529
1768I–ATARM–09-Jul-09

AT91RM9200

33.7.4 Write Operation
In write operation, the MCI Mode Register (MCI_MR) is used to define the padding value when
writing non-multiple block size. If the bit PDCPADV is 0, then 0x00 value is used when padding
data, otherwise 0xFF is used.

If set, the bit PDCMODE enables PDC transfer.

The following flowchart shows how to write a single block with or without use of PDC facilities
(see Figure 33-11). Polling or interrupt method can be used to wait for the end of write according
to the contents of the Interrupt Mask Register (MCI_IMR).

530
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 33-11. Write Functional Flow Diagram

Note: 1. It is assumed that this command has been correctly sent (see Figure 33-9).

Send SELECT/DESELECT_CARD
command(1) to select the card

Send SET_BLOCKLEN command(1)

Write using PDC

Reset the PDCMODE bit
MCI_MR &= ~PDCMODE
Set the block length
MCI_MR |= (BlockLenght <<16)

Send WRITE_SINGLE_BLOCK
command(1)

Set the PDCMODE bit
MCI_MR |= PDCMODE
Set the block length
MCI_MR |= (BlockLength << 16)

Configure the PDC channel
MCI_TPR = Data Buffer Address to write
MCI_TCR = BlockLength/4

Send WRITE_SINGLE_BLOCK
command(1)

Read status register MCI_SR

Poll the bit
NOTBUSY= 0?

Yes

RETURN

No Yes

No

Read status register MCI_SR

Number of words to write = 0 ?

Poll the bit
TXRDY = 0?

MCI_TDR = Data to write

Number of words to write =
Number of words to write -1

Yes

RETURN

No

Yes

No

Number of words to write = BlockLength/4

MCI_PTCR = TXTEN

531
1768I–ATARM–09-Jul-09

AT91RM9200

The following flowchart shows how to manage a multiple write block transfer with the PDC (see
Figure 33-12). Polling or interrupt method can be used to wait for the end of write according to
the contents of the Interrupt Mask Register (MCI_IMR).

Figure 33-12. Multiple Write Functional Flow Diagram

Note: 1. It is assumed that this command has been correctly sent (see Figure 33-9).

Send SELECT/DESELECT_CARD
command(1) to select the card

Send SET_BLOCKLEN command(1)

Set the PDCMODE bit
MCI_MR |= PDCMODE
Set the block length
MCI_MR |= (BlockLength << 16)

Configure the PDC channel
MCI_TPR = Data Buffer Address to write
MCI_TCR = BlockLength/4

Send WRITE_MULTIPLE_BLOCK
command(1)

Read status register MCI_SR

Poll the bit
BLKE = 0?

Yes

No

MCI_PTCR = TXTEN

Poll the bit
NOTBUSY = 0?

Yes

RETURN

No

Send STOP_TRANSMISSION
command(1)

532
1768I–ATARM–09-Jul-09

AT91RM9200

33.8 SD Card Operations
The MultiMedia Card Interface allows processing of SD Memory (Secure Digital Memory Card)
Card commands.

SD cards are based on the Multi Media Card (MMC) format, but are physically slightly thicker
and feature higher data transfer rates, a lock switch on the side to prevent accidental overwriting
and security features. The physical form factor, pin assignment and data transfer protocol are
forward-compatible with the MultiMedia Card with some additions.SD is covered by numerous
patents and trademarks, and licensing is only available through the Secure Digital Card
Association.

The SD Card communication is based on a 9-pin interface (Clock, Command, 4 x Data and 3 x
Power lines). The communication protocol is defined as a part of this specification. The main dif-
ference between the SD Card and the MultiMedia Card is the initialization process.

The SD Card Register (MCI_SDCR) allows selection of the Card Slot and the data bus width.

The SD Card bus allows dynamic configuration of the number of data lines. After power up, by
default, the SD Card uses only DAT0 for data transfer. After initialization, the host can change
the bus width (number of active data lines).

533
1768I–ATARM–09-Jul-09

AT91RM9200

33.9 MultiMedia Card Interface (MCI) User Interface

Note: 1. The response register can be read by N accesses at the same MCI_RSPR or at consecutive addresses (0x20 to 0x2C).
N depends on the size of the response.

Table 33-6. Register Mapping

Offset Register Register Name Read/Write Reset

0x00 Control Register MCI_CR Write –

0x04 Mode Register MCI_MR Read/write 0x0

0x08 Data Timeout Register MCI_DTOR Read/write 0x0

0x0C SD Card Register MCI_SDCR Read/write 0x0

0x10 Argument Register MCI_ARGR Read/write 0x0

0x14 Command Register MCI_CMDR Write –

0x18 - 0x1C Reserved – – –

0x20 Response Register(1) MCI_RSPR Read 0x0

0x24 Response Register(1) MCI_RSPR Read 0x0

0x28 Response Register(1) MCI_RSPR Read 0x0

0x2C Response Register(1) MCI_RSPR Read 0x0

0x30 Receive Data Register MCI_RDR Read 0x0

0x34 Transmit Data Register MCI_TDR Write –

0x38 - 0x3C Reserved – – –

0x40 Status Register MCI_SR Read 0xC0E5

0x44 Interrupt Enable Register MCI_IER Write –

0x48 Interrupt Disable Register MCI_IDR Write –

0x4C Interrupt Mask Register MCI_IMR Read 0x0

0x50-0xFC Reserved – – –

0x100-0x124 Reserved for the PDC – – –

534
1768I–ATARM–09-Jul-09

AT91RM9200

33.9.1 MCI Control Register
Name: MCI_CR

Access Type: Write-only

• MCIEN: Multi-Media Interface Enable
0 = No effect.

1 = Enables the Multi-Media Interface if MCDIS is 0.

• MCIDIS: Multi-Media Interface Disable
0 = No effect.

1 = Disables the Multi-Media Interface.

• PWSEN: Power Save Mode Enable
0 = No effect.

1 = Enables the Power Saving Mode if PWSDIS is 0.

Warning: Before enabling this mode, the user must set a value different from 0 in the PWSDIV field (Mode Register
MCI_MR).

• PWSDIS: Power Save Mode Disable
0 = No effect.

1 = Disables the Power Saving Mode.

• SWRST: Software Reset
0 = No effect.

1 = Resets the MCI. A software triggered hardware reset of the MCI interface is performed.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SWRST – – – PWSDIS PWSEN MCIDIS MCIEN

535
1768I–ATARM–09-Jul-09

AT91RM9200

33.9.2 MCI Mode Register
Name: MCI_MR

Access Type: Read/write

• CLKDIV: Clock Divider
Multimedia Card Interface clock (MCCK or MCI_CK) is Master Clock (MCK) divided by (2*(CLKDIV+1)).

• PWSDIV: Power Saving Divider
Multimedia Card Interface clock is divided by 2(PWSDIV) + 1 when entering Power Saving Mode.

Warning: This value must be different from 0 before enabling the Power Save Mode in the MCI_CR (MCI_PWSEN bit).

• PDCPADV: PDC Padding Value
0 = 0x00 value is used when padding data in write transfer (not only PDC transfer).

1 = 0xFF value is used when padding data in write transfer (not only PDC transfer).

• PDCMODE: PDC-oriented Mode
0 = Disables PDC transfer

1 = Enables PDC transfer. In this case, UNRE and OVRE flags in the MCI Mode Register (MCI_SR) are deactivated after
the PDC transfer has been completed.

• BLKLEN: Data Block Length
This field determines the size of the data block.

Bits 16 and 17 must be set to 0.

31 30 29 28 27 26 25 24

– – BLKLEN

23 22 21 20 19 18 17 16

BLKLEN 0 0

15 14 13 12 11 10 9 8

PDCMODE PDCPADV – – – PWSDIV

7 6 5 4 3 2 1 0

CLKDIV

536
1768I–ATARM–09-Jul-09

AT91RM9200

33.9.3 MCI Data Timeout Register
Name: MCI_DTOR

Access Type: Read/write

• DTOCYC: Data Timeout Cycle Number

• DTOMUL: Data Timeout Multiplier
These fields determine the maximum number of Master Clock cycles that the MCI waits between two data block transfers.
It equals (DTOCYC x Multiplier).

Multiplier is defined by DTOMUL as shown in the following table:

If the data time-out set by DTOCYC and DTOMUL has been exceeded, the Data Time-out Error flag (DTOE) in the MCI
Status Register (MCI_SR) raises.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– DTOMUL DTOCYC

DTOMUL Multiplier

0 0 0 1

0 0 1 16

0 1 0 128

0 1 1 256

1 0 0 1024

1 0 1 4096

1 1 0 65536

1 1 1 1048576

537
1768I–ATARM–09-Jul-09

AT91RM9200

33.9.4 MCI SDCard Register
Name: MCI_SDCR

Access Type: Read/write

• SDCSEL: SDCard Slot

• SDCBUS: SDCard Bus Width
0 = 1-bit data bus

1 = 4-bit data bus

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SDCBUS – – – – – SDCSEL

SDCSEL SDCard Slot

0 0 Slot A is selected.

0 1 Slot B is selected

1 0 Reserved

1 1 Reserved

538
1768I–ATARM–09-Jul-09

AT91RM9200

33.9.5 MCI Argument Register
Name: MCI_ARGR

Access Type: Read/write

• ARG: Command Argument

31 30 29 28 27 26 25 24

ARG

23 22 21 20 19 18 17 16

ARG

15 14 13 12 11 10 9 8

ARG

7 6 5 4 3 2 1 0

ARG

539
1768I–ATARM–09-Jul-09

AT91RM9200

33.9.6 MCI Command Register
Name: MCI_CMDR

Access Type: Write-only

This register is write-protected while CMDRDY is 0 in MCI_SR. If an Interrupt command is sent, this register is only write-
able by an interrupt response (field SPCMD). This means that the current command execution cannot be interrupted or
modified.

• CMDNB: Command Number

• RSPTYP: Response Type

• SPCMD: Special Command

• OPDCMD: Open Drain Command
0 = Push pull command

1 = Open drain command

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – TRTYP TRDIR TRCMD

15 14 13 12 11 10 9 8

– – – MAXLAT OPDCMD SPCMD

7 6 5 4 3 2 1 0

RSPTYP CMDNB

RSP Response Type

0 0 No response.

0 1 48-bit response.

1 0 136-bit response.

1 1 Reserved.

SPCMD Command

0 0 0 Not a special CMD.

0 0 1
Initialization CMD:

74 clock cycles for initialization sequence.

0 1 0
Synchronized CMD:

Wait for the end of the current data block transfer before sending the
pending command.

0 1 1 Reserved.

1 0 0
Interrupt command:

Corresponds to the Interrupt Mode (CMD40).

1 0 1
Interrupt response:

Corresponds to the Interrupt Mode (CMD40).

540
1768I–ATARM–09-Jul-09

AT91RM9200

• MAXLAT: Max Latency for Command to Response
0 = 5-cycle max latency

1 = 64-cycle max latency

• TRCMD: Transfer Command

• TRDIR: Transfer Direction
0 = Write

1 = Read

• TRTYP: Transfer Type

TRCMD Transfer Type

0 0 No data transfer

0 1 Start data transfer

1 0 Stop data transfer

1 1 Reserved

TRTYP Transfer Type

0 0 0 MMC/SDCard Single Block

0 0 1 MMC/SDCard Multiple Block

0 1 0 MMC Stream

0 1 1 Reserved

541
1768I–ATARM–09-Jul-09

AT91RM9200

33.9.7 MCI Response Register
Name: MCI_RSPR

Access Type: Read-only

• RSP: Response
Note: 1. The response register can be read by N accesses at the same MCI_RSPR or at consecutive addresses (0x20 to 0x2C).

N depends on the size of the response.

31 30 29 28 27 26 25 24

RSP

23 22 21 20 19 18 17 16

RSP

15 14 13 12 11 10 9 8

RSP

7 6 5 4 3 2 1 0

RSP

542
1768I–ATARM–09-Jul-09

AT91RM9200

33.9.8 MCI Receive Data Register
Name: MCI_RDR

Access Type: Read-only

• DATA: Data to Read

33.9.9 MCI Transmit Data Register
Name: MCI_TDR

Access Type: Write-only

• DATA: Data to Write

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

543
1768I–ATARM–09-Jul-09

AT91RM9200

33.9.10 MCI Status Register
Name: MCI_SR

Access Type: Read-only

• CMDRDY: Command Ready
0 = A command is in progress.

1 = The last command has been sent. Cleared when writing in the MCI_CMDR.

• RXRDY: Receiver Ready
0 = Data has not yet been received since the last read of MCI_RDR.

1 = Data has been received since the last read of MCI_RDR.

• TXRDY: Transmit Ready
0= The last data written in MCI_TDR has not yet been transferred in the Shift Register.

1= The last data written in MCI_TDR has been transferred in the Shift Register.

• BLKE: Data Block Ended
This flag must be used only for Write Operations.

0 = A data block transfer is not yet finished. Cleared when reading the MCI_SR.

1 = A data block transfer has ended, including the CRC16 Status transmission.
In PDC mode (PDCMODE=1), the flag is set when the CRC Status of the last block has been transmitted (TXBUFE already
set).
Otherwise (PDCMODE=0), the flag is set for each transmitted CRC Status.

Refer to the MMC or SD Specification for more details concerning the CRC Status.

• DTIP: Data Transfer in Progress
0 = No data transfer in progress.

1 = The current data transfer is still in progress, including CRC16 calculation. Cleared at the end of the CRC16 calculation.

• NOTBUSY: MCI Not Busy
This flag must be used only for Write Operations.

A block write operation uses a simple busy signalling of the write operation duration on the data (DAT0) line: during a data
transfer block, if the card does not have a free data receive buffer, the card indicates this condition by pulling down the data
line (DAT0) to LOW. The card stops pulling down the data line as soon as at least one receive buffer for the defined data
transfer block length becomes free.

31 30 29 28 27 26 25 24

UNRE OVRE – – – – – –

23 22 21 20 19 18 17 16

– DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

TXBUFE RXBUFF – – – – SDIOIRQB SDIOIRQA

7 6 5 4 3 2 1 0

ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

544
1768I–ATARM–09-Jul-09

AT91RM9200

The NOTBUSY flag allows to deal with these different states.

0 = The MCI is not ready for new data transfer. Cleared at the end of the card response.

1 = The MCI is ready for new data transfer. Set when the busy state on the data line has ended. This corresponds to a free
internal data receive buffer of the card.

Refer to the MMC or SD Specification for more details concerning the busy behavior.

• ENDRX: End of RX Buffer
0 = The Receive Counter Register has not reached 0 since the last write in MCI_RCR or MCI_RNCR.

1 = The Receive Counter Register has reached 0 since the last write in MCI_RCR or MCI_RNCR.

• ENDTX: End of TX Buffer
0 = The Transmit Counter Register has not reached 0 since the last write in MCI_TCR or MCI_TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in MCI_TCR or MCI_TNCR.

Note: BLKE and NOTBUSY flags can be used to check that the data has been successfully transmitted on the data lines and not only
transferred from the PDC to the MCI Controller.

• RXBUFF: RX Buffer Full
0 = MCI_RCR or MCI_RNCR has a value other than 0.

1 = Both MCI_RCR and MCI_RNCR have a value of 0.

• TXBUFE: TX Buffer Empty
0 = MCI_TCR or MCI_TNCR has a value other than 0.

1 = Both MCI_TCR and MCI_TNCR have a value of 0.

Note: BLKE and NOTBUSY flags can be used to check that the data has been successfully transmitted on the data lines and not only
transferred from the PDC to the MCI Controller.

• RINDE: Response Index Error
0 = No error.

1 = A mismatch is detected between the command index sent and the response index received. Cleared when writing in
the MCI_CMDR.

• RDIRE: Response Direction Error
0 = No error.

1 = The direction bit from card to host in the response has not been detected.

• RCRCE: Response CRC Error
0 = No error.

1 = A CRC7 error has been detected in the response. Cleared when writing in the MCI_CMDR.

• RENDE: Response End Bit Error
0 = No error.

1 = The end bit of the response has not been detected. Cleared when writing in the MCI_CMDR.

• RTOE: Response Time-out Error

545
1768I–ATARM–09-Jul-09

AT91RM9200

0 = No error.

1 = The response time-out set by MAXLAT in the MCI_CMDR has been exceeded. Cleared when writing in the
MCI_CMDR.

• DCRCE: Data CRC Error
0 = No error.

1 = A CRC16 error has been detected in the last data block. Reset by reading in the MCI_SR register.

• DTOE: Data Time-out Error
0 = No error.

1 = The data time-out set by DTOCYC and DTOMUL in MCI_DTOR has been exceeded. Reset by reading in the MCI_SR
register.

• OVRE: Overrun
0 = No error.

1 = At least one 8-bit received data has been lost (not read). Cleared when sending a new data transfer command.

• UNRE: Underrun
0 = No error.

1 = At least one 8-bit data has been sent without valid information (not written). Cleared when sending a new data transfer
command.

• RXBUFF: RX Buffer Full
0 = MCI_RCR or MCI_RNCR has a value other than 0.

1 = Both MCI_RCR and MCI_RNCR have a value of 0.

• TXBUFE: TX Buffer Empty
0 = MCI_TCR or MCI_TNCR has a value other than 0.

1 = Both MCI_TCR and MCI_TNCR have a value of 0.

546
1768I–ATARM–09-Jul-09

AT91RM9200

33.9.11 MCI Interrupt Enable Register
Name: MCI_IER

Access Type: Write-only

• CMDRDY: Command Ready Interrupt Enable

• RXRDY: Receiver Ready Interrupt Enable

• TXRDY: Transmit Ready Interrupt Enable

• BLKE: Data Block Ended Interrupt Enable

• DTIP: Data Transfer in Progress Interrupt Enable

• NOTBUSY: Data Not Busy Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

• RINDE: Response Index Error Interrupt Enable

• RDIRE: Response Direction Error Interrupt Enable

• RCRCE: Response CRC Error Interrupt Enable

• RENDE: Response End Bit Error Interrupt Enable

• RTOE: Response Time-out Error Interrupt Enable

• DCRCE: Data CRC Error Interrupt Enable

• DTOE: Data Time-out Error Interrupt Enable

• OVRE: Overrun Interrupt Enable

• UNRE: UnderRun Interrupt Enable
0 = No effect.

31 30 29 28 27 26 25 24

UNRE OVRE – – – – – –

23 22 21 20 19 18 17 16

– DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

TXBUFE RXBUFF – – – – SDIOIRQB SDIOIRQA

7 6 5 4 3 2 1 0

ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

547
1768I–ATARM–09-Jul-09

AT91RM9200

1 = Enables the corresponding interrupt.

548
1768I–ATARM–09-Jul-09

AT91RM9200

33.9.12 MCI Interrupt Disable Register
Name: MCI_IDR

Access Type: Write-only

• CMDRDY: Command Ready Interrupt Disable

• RXRDY: Receiver Ready Interrupt Disable

• TXRDY: Transmit Ready Interrupt Disable

• BLKE: Data Block Ended Interrupt Disable

• DTIP: Data Transfer in Progress Interrupt Disable

• NOTBUSY: Data Not Busy Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

• RINDE: Response Index Error Interrupt Disable

• RDIRE: Response Direction Error Interrupt Disable

• RCRCE: Response CRC Error Interrupt Disable

• RENDE: Response End Bit Error Interrupt Disable

• RTOE: Response Time-out Error Interrupt Disable

• DCRCE: Data CRC Error Interrupt Disable

• DTOE: Data Time-out Error Interrupt Disable

• OVRE: Overrun Interrupt Disable

• UNRE: UnderRun Interrupt Disable
0 = No effect.

31 30 29 28 27 26 25 24

UNRE OVRE – – – – – –

23 22 21 20 19 18 17 16

– DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

TXBUFE RXBUFF – – – – SDIOIRQB SDIOIRQA

7 6 5 4 3 2 1 0

ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

549
1768I–ATARM–09-Jul-09

AT91RM9200

1 = Disables the corresponding interrupt.

550
1768I–ATARM–09-Jul-09

AT91RM9200

33.9.13 MCI Interrupt Mask Register
Name: MCI_IMR

Access Type: Read-only

• CMDRDY: Command Ready Interrupt Mask

• RXRDY: Receiver Ready Interrupt Mask

• TXRDY: Transmit Ready Interrupt Mask

• BLKE: Data Block Ended Interrupt Mask

• DTIP: Data Transfer in Progress Interrupt Mask

• NOTBUSY: Data Not Busy Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

• RINDE: Response Index Error Interrupt Mask

• RDIRE: Response Direction Error Interrupt Mask

• RCRCE: Response CRC Error Interrupt Mask

• RENDE: Response End Bit Error Interrupt Mask

• RTOE: Response Time-out Error Interrupt Mask

• DCRCE: Data CRC Error Interrupt Mask

• DTOE: Data Time-out Error Interrupt Mask

• OVRE: Overrun Interrupt Mask

• UNRE: UnderRun Interrupt Mask
0 = The corresponding interrupt is not enabled.

31 30 29 28 27 26 25 24

UNRE OVRE – – – – – –

23 22 21 20 19 18 17 16

– DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

TXBUFE RXBUFF – – – – SDIOIRQB SDIOIRQA

7 6 5 4 3 2 1 0

ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

551
1768I–ATARM–09-Jul-09

AT91RM9200

1 = The corresponding interrupt is enabled.

552
1768I–ATARM–09-Jul-09

AT91RM9200

553
1768I–ATARM–09-Jul-09

AT91RM9200

34. USB Device Port (UDP)

34.1 Overview
The USB Device Port (UDP) is compliant with the Universal Serial Bus (USB) V2.0 full-speed
device specification.

Each endpoint is associated with one or two banks of a dual-port RAM used to store the current
data payload. If two banks are used, one DPR bank is read or written by the processor, while the
other is read or written by the USB device peripheral. This feature is mandatory for isochronous
endpoints. Thus the device maintains the maximum bandwidth (1M bytes/s) by working with
endpoints with two banks of DPR.

Suspend and resume are automatically detected by the USB device, which notifies the proces-
sor by raising an interrupt. Depending on the product, an external signal can be used to send a
wake-up to the USB host controller.

The main features of the UDP are:

• USB V2.0 Full-speed Compliant, 12 Mbits per second

• Embedded USB V2.0 Full-speed Transceiver

• Embedded Dual-port RAM for Endpoints

• Suspend/Resume Logic

• Ping-pong Mode (2 Memory Banks) for Isochronous and Bulk Endpoints

554
1768I–ATARM–09-Jul-09

AT91RM9200

34.2 Block Diagram

Figure 34-1. USB Device Port Block Diagram

Access to the UDP is via the APB bus interface. Read and write to the data FIFO are done by
reading and writing 8-bit values to APB registers.

The UDP peripheral requires two clocks: one peripheral clock used by the MCK domain and a
48 MHz clock used by the 12 MHz domain.

A USB 2.0 full-speed pad is embedded and controlled by the SIE.

The signal external_resume is optional. It allows the UDP peripheral to wake-up once in system
mode. The host will then be notified that the device asks for a resume. This optional feature
must be also negotiated with the host during the enumeration.

Atmel Bridge

12 MHz

Suspend/Resume Logic

W
r
a
p
p
e
r

W
r
a
p
p
e
r

U
s
e
r

I
n
t
e
r
f
a
c
e

Serial
Interface
Engine

SIE

MCK

Master Clock
Domain

Dual
Port
RAM

FIFO

UDPCK

Recovered 12 MHz
Domain

udp_int

USB Device

Embedded
USB

Transceiver

DP

DM

External Resume

APB
to

MCU
Bus

txoen

eopn

txd

rxdm

rxd

rxdp

555
1768I–ATARM–09-Jul-09

AT91RM9200

34.3 Product Dependencies
The USB physical transceiver is integrated into the product. The bi-directional differential signals
DP and DM are available from the product boundary.

Two I/O lines may be used by the application:

• One to check that VBUS is still available from the host. Self-powered devices may use this
entry to be notified that the host has been powered off. In this case, the board pull-up on DP
must be disabled in order to prevent feeding current to the host.

• One to control the board pull-up on DP. Thus, when the device is ready to communicate with
the host, it activates its DP pull-up through this control line.

34.3.1 I/O Lines
DP and DM are not controlled by any PIO controllers. The embedded USB physical transceiver
is controlled by the USB device peripheral.

To reserve an I/O line to check VBUS, the programmer must first program the PIO controller to
assign this I/O in input PIO mode.

To reserve an I/O line to control the board pull-up, the programmer must first program the PIO
controller to assign this I/O in output PIO mode.

34.3.2 Power Management
The USB device peripheral requires a 48 MHz clock. This clock must be generated by a PLL
with an accuracy of ± 0.25%.

Thus, the USB device receives two clocks from the Power Management Controller (PMC): the
master clock, MCK, used to drive the peripheral user interface and the UDPCK used to interface
with the bus USB signals (recovered 12 MHz domain).

34.3.3 Interrupt
The USB device interface has an interrupt line connected to the Advanced Interrupt Controller
(AIC).

Handling the USB device interrupt requires programming the AIC before configuring the UDP.

556
1768I–ATARM–09-Jul-09

AT91RM9200

34.4 Typical Connection

Figure 34-2. Board Schematic to Interface USB Device Peripheral

UDP_CNX is an input signal used to check if the host is connected

UDP_PUP is an output signal used to enable pull-up on DP.

Figure 34-2 shows automatic activation of pull-up after reset.

3V3

15 pF

15 pF

27Ω

33 pF

1.5 kΩ

47 kΩ

100 nF
DM

DP

PAn

PAm

System
Reset

15 kΩ

22 kΩ

27Ω Type B
Connector

12

3 4

UDP_CNX

UDP_PUP

557
1768I–ATARM–09-Jul-09

AT91RM9200

34.5 Functional Description

34.5.1 USB V2.0 Full-speed Introduction
The USB V2.0 full-speed provides communication services between host and attached USB
devices. Each device is offered with a collection of communication flows (pipes) associated with
each endpoint. Software on the host communicates with an USB device through a set of com-
munication flows.

Figure 34-3. Example of USB V2.0 Full-speed Communication Control

34.5.1.1 USB V2.0 Full-speed Transfer Types
A communication flow is carried over one of four transfer types defined by the USB device.

Table 34-1. USB Communication Flow

Transfer Direction Bandwidth Supported Endpoint Size Error Detection Retrying

Control Bi-directional Not guaranteed 8 Yes Automatic

Isochronous Uni-directional Guaranteed 1 - 1023 Yes No

Interrupt Uni-directional Not guaranteed ≤ 256 Yes Yes

Bulk Uni-directional Not guaranteed 8, 16, 32, 64 Yes Yes

EP0

USB Host V1.1

Software Client 1 Software Client 2

Data Flow: Bulk Out Transfer

Data Flow: Bulk In Transfer

Data Flow: Control Transfer

Data Flow: Control Transfer

EP1

EP2

USB Device 1.1
Block 1

USB Device 1.1
Block 2

EP5

EP4

EP0

Data Flow: Isochronous In Transfer

Data Flow: Isochronous Out Transfer

558
1768I–ATARM–09-Jul-09

AT91RM9200

34.5.1.2 USB Bus Transactions
Each transfer results in one or more transactions over the USB bus. There are five kinds of
transactions flowing across the bus in packets:

1. Setup Transaction

2. Data IN Transaction

3. Data OUT Transaction

4. Status IN Transaction

5. Status OUT Transaction

34.5.1.3 USB Transfer Event Definitions
As shown in Table 34-2, transfers are sequential events carried out on the USB bus.

Notes: 1. Control transfer must use endpoints with no ping-pong attributes.

2. Isochronous transfers must use endpoints with ping-pong attributes.

3. Control transfers can be aborted using a stall handshake.

Table 34-2. USB Transfer Events

Control Transfers(1) (3)

• Setup transaction > Data IN transactions >
Status OUT transaction

• Setup transaction > Data OUT transactions >
Status IN transaction

• Setup transaction > Status IN transaction

Interrupt IN Transfer
(device toward host)

• Data IN transaction > Data IN transaction

Interrupt OUT Transfer
(host toward device)

• Data OUT transaction > Data OUT transaction

Isochronous IN Transfer(2)

(device toward host)

• Data IN transaction > Data IN transaction

Isochronous OUT Transfer(2)
(host toward device)

• Data OUT transaction > Data OUT transaction

Bulk IN Transfer
(device toward host)

• Data IN transaction > Data IN transaction

Bulk OUT Transfer
(host toward device)

• Data OUT transaction > Data OUT transaction

559
1768I–ATARM–09-Jul-09

AT91RM9200

34.5.2 Handling Transactions with USB V2.0 Device Peripheral

34.5.2.1 Setup Transaction
Setup is a special type of host-to-device transaction used during control transfers. Control trans-
fers must be performed using endpoints with no ping-pong attributes. A setup transaction needs
to be handled as soon as possible by the firmware. It is used to transmit requests from the host
to the device. These requests are then handled by the USB device and may require more argu-
ments. The arguments are sent to the device by a Data OUT transaction which follows the setup
transaction. These requests may also return data. The data is carried out to the host by the next
Data IN transaction which follows the setup transaction. A status transaction ends the control
transfer.

When a setup transfer is received by the USB endpoint:

• The USB device automatically acknowledges the setup packet
• RXSETUP is set in the UDP_CSRx register
• An endpoint interrupt is generated while the RXSETUP is not cleared. This interrupt is

carried out to the microcontroller if interrupts are enabled for this endpoint.

Thus, firmware must detect the RXSETUP polling the UDP_CSRx or catching an interrupt, read
the setup packet in the FIFO, then clear the RXSETUP. RXSETUP cannot be cleared before the
setup packet has been read in the FIFO. Otherwise, the USB device would accept the next Data
OUT transfer and overwrite the setup packet in the FIFO.

Figure 34-4. Setup Transaction Followed by a Data OUT Transaction

34.5.2.2 Data IN Transaction
Data IN transactions are used in control, isochronous, bulk and interrupt transfers and conduct
the transfer of data from the device to the host. Data IN transactions in isochronous transfer
must be done using endpoints with ping-pong attributes.

Using Endpoints Without Ping-pong Attributes

To perform a Data IN transaction, using a non ping-pong endpoint:

RX_Data_BKO
(USB_CSRx)

ACK
PIDData OUTData OUT

PID
NAK
PID

ACK
PIDData SetupSetup

PID
USB
Bus Packets

RXSETUP Flag

Set by USB Device Cleared by Firmware
Set by USB
Device Peripheral

FIFO (DPR)
Content

Data Setup DataXX XX OUT

Interrupt Pending

Setup Received Setup Handled by Firmware Data Out Received

Data OUTData OUT
PID

560
1768I–ATARM–09-Jul-09

AT91RM9200

1. The microcontroller checks if it is possible to write in the FIFO by polling TXPKTRDY in
the endpoint’s UDP_CSRx register (TXPKTRDY must be cleared).

2. The microcontroller writes data to be sent in the endpoint’s FIFO, writing zero or more
byte values in the endpoint’s UDP_FDRx register,

3. The microcontroller notifies the USB peripheral it has finished by setting the TXPK-
TRDY in the endpoint’s UDP_CSRx register,

4. The microcontroller is notified that the endpoint’s FIFO has been released by the USB
device when TXCOMP in the endpoint’s UDP_CSRx register has been set. Then an
interrupt for the corresponding endpoint is pending while TXCOMP is set.

TXCOMP is set by the USB device when it has received an ACK PID signal for the Data IN
packet. An interrupt is pending while TXCOMP is set.

Note: Please refer to Chapter 8 of the Universal Serial Bus Specification, Rev 1.1, for more information
on the Data IN protocol layer.

Figure 34-5. Data IN Transfer for Non Ping-pong Endpoint

USB Bus Packets Data IN 2Data IN NAKACKData IN 1

FIFO (DPR)
Content

Load In Data IN 2Load In ProgressData IN 1

Cleared by Firmware Start to Write Data
Payload in FIFO

Set by the Firmware
Data Payload Written in FIFO

TXCOMP Flag
(USB_CSRx)

TXPKTRDY Flag
(USB_CSRx)

Cleared by USB Device

PID
Data IN Data IN

PIDPID PIDPID
ACK
PID

Progress

Prevous Data IN TX Microcontroller Load Data in FIFO Data is Sent on USB Bus

Interrupt PendingInterrupt Pending

561
1768I–ATARM–09-Jul-09

AT91RM9200

Using Endpoints With Ping-pong Attribute

The use of an endpoint with ping-pong attributes is necessary during isochronous transfer. To
be able to guarantee a constant bandwidth, the microcontroller must prepare the next data pay-
load to be sent while the current one is being sent by the USB device. Thus two banks of
memory are used. While one is available for the microcontroller, the other one is locked by the
USB device.

Figure 34-6. Bank Swapping Data IN Transfer for Ping-pong Endpoints

When using a ping-pong endpoint, the following procedures are required to perform Data IN
transactions:

1. The microcontroller checks if it is possible to write in the FIFO by polling TXPKTRDY to
be cleared in the endpoint’s UDP_CSRx register.

2. The microcontroller writes the first data payload to be sent in the FIFO (Bank 0), writing
zero or more byte values in the endpoint’s UDP_FDRx register.

3. The microcontroller notifies the USB peripheral it has finished writing in Bank 0 of the
FIFO by setting the TXPKTRDY in the endpoint’s UDP_CSRx register.

4. Without waiting for TXPKTRDY to be cleared, the microcontroller writes the second
data payload to be sent in the FIFO (Bank 1), writing zero or more byte values in the
endpoint’s UDP_FDRx register.

5. The microcontroller is notified that the first Bank has been released by the USB device
when TXCOMP in the endpoint’s UDP_CSRx register is set. An interrupt is pending
while TXCOMP is being set.

6. Once the microcontroller has received TXCOMP for the first Bank, it notifies the USB
device that it has prepared the second Bank to be sent rising TXPKTRDY in the end-
point’s UDP_CSRx register.

7. At this step, Bank 0 is available and the microcontroller can prepare a third data pay-
load to be sent.

USB Device USB Bus

ReadWrite

Read and Write at the Same Time

1st Data Payload

2nd Data Payload

3rd Data Payload

3rd Data Payload

2nd Data Payload

1st Data Payload

Data IN Packet

Data IN Packet

Data IN Packet

Microcontroller

Endpoint 1
Bank 0

Endpoint 1
Bank 1

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 1

562
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 34-7. Data IN Transfer for Ping-pong Endpoint

Warning: There is software critical path due to the fact that once the second bank is filled, the
driver has to wait for TX_COMP to set TX_PKTRDY. If the delay between receiving TX_COMP
is set and TX_PKTRDY is set is too long, some Data IN packets may be NACKed, reducing the
bandwidth.

34.5.2.3 Data OUT Transaction
Data OUT transactions are used in control, isochronous, bulk and interrupt transfers and con-
duct the transfer of data from the host to the device. Data OUT transactions in isochronous
transfers must be done using endpoints with ping-pong attributes.

Data OUT Transaction Without Ping-pong Attributes

To perform a Data OUT transaction, using a non ping-pong endpoint:

1. The host generates a Data OUT packet.

2. This packet is received by the USB device endpoint. While the FIFO associated to this
endpoint is being used by the microcontroller, a NAK PID is returned to the host. Once
the FIFO is available, data are written to the FIFO by the USB device and an ACK is
automatically carried out to the host.

3. The microcontroller is notified that the USB device has received a data payload polling
RX_DATA_BK0 in the endpoint’s UDP_CSRx register. An interrupt is pending for this
endpoint while RX_DATA_BK0 is set.

4. The number of bytes available in the FIFO is made available by reading RXBYTECNT
in the endpoint’s UDP_CSRx register.

Data INData IN

 Read by USB Device

 Read by USB DeviceBank 1

Bank 0
FIFO (DPR)

TXCOMP Flag
(USB_CSRx)

Interrupt Cleared by Firmware

Set by USB
Device

TXPKTRDY Flag
(USB_MCSRx)

ACK
PID

Data IN
PID

ACK
PID

Set by Firmware,
Data Payload Written in FIFO Bank 1

Cleared by USB Device,
Data Payload Fully Transmitted

Data IN
PID

USB Bus
Packets

Set by USB Device

Set by Firmware,
Data Payload Written in FIFO Bank 0

Written by FIFO (DPR)
Microcontroller

Written by
Microcontroller

Written by
Microcontroller

Microcontroller
Load Data IN Bank 0

Microcontroller Load Data IN Bank 1
USB Device Send Bank 0

Microcontroller Load Data IN Bank 0
USB Device Send Bank 1

Interrupt Pending

563
1768I–ATARM–09-Jul-09

AT91RM9200

5. The microcontroller carries out data received from the endpoint’s memory to its mem-
ory. Data received is available by reading the endpoint’s UDP_FDRx register.

6. The microcontroller notifies the USB device that it has finished the transfer by clearing
RX_DATA_BK0 in the endpoint’s UDP_CSRx register.

7. A new Data OUT packet can be accepted by the USB device.

Figure 34-8. Data OUT Transfer for Non Ping-pong Endpoints

An interrupt is pending while the flag RX_DATA_BK0 is set. Memory transfer between the USB
device, the FIFO and microcontroller memory can not be done after RX_DATA_BK0 has been
cleared. Otherwise, the USB device would accept the next Data OUT transfer and overwrite the
current Data OUT packet in the FIFO.

Using Endpoints With
Ping-pong Attributes

During isochronous transfer, using an endpoint with ping-pong attributes is necessary. To be
able to guarantee a constant bandwidth, the microcontroller must read the previous data pay-
load sent by the host, while the current data payload is received by the USB device. Thus two
banks of memory are used. While one is available for the microcontroller, the other one is locked
by the USB device.

ACK
PID

Data OUTNAK
PIDPIDPIDPIDPID

Data OUT2ACKData OUT Data OUT 1USB Bus
Packets

RX_DATA_BK0

Set by USB Device Cleared by Firmware,
Data Payload Written in FIFO

FIFO (DPR)
Content

Written by USB Device Microcontroller Read

Data OUT 1 Data OUT 1 Data OUT 2

Host Resends the Next Data Payload
Microcontroller Transfers Data

Host Sends Data Payload

Data OUT2 Data OUT2

Host Sends the Next Data Payload

Written by USB Device

(USB_CSRx)
Interrupt Pending

564
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 34-9. Bank Swapping in Data OUT Transfers for Ping-pong Endpoints

When using a ping-pong endpoint, the following procedures are required to perform Data OUT
transactions:

1. The host generates a Data OUT packet.

2. This packet is received by the USB device endpoint. It is written in the endpoint’s FIFO
Bank 0.

3. The USB device sends an ACK PID packet to the host. The host can immediately send
a second Data OUT packet. It is accepted by the device and copied to FIFO Bank 1.

4. The microcontroller is notified that the USB device has received a data payload, polling
RX_DATA_BK0 in the endpoint’s UDP_CSRx register. An interrupt is pending for this
endpoint while RX_DATA_BK0 is set.

5. The number of bytes available in the FIFO is made available by reading RXBYTECNT
in the endpoint’s UDP_CSRx register.

6. The microcontroller transfers out data received from the endpoint’s memory to the
microcontroller’s memory. Data received is made available by reading the endpoint’s
UDP_FDRx register.

7. The microcontroller notifies the USB peripheral device that it has finished the transfer
by clearing RX_DATA_BK0 in the endpoint’s UDP_CSRx register.

8. A third Data OUT packet can be accepted by the USB peripheral device and copied in
the FIFO Bank 0.

9. If a second Data OUT packet has been received, the microcontroller is notified by the
flag RX_DATA_BK1 set in the endpoint’s UDP_CSRx register. An interrupt is pending
for this endpoint while RX_DATA_BK1 is set.

10. The microcontroller transfers out data received from the endpoint’s memory to the
microcontroller’s memory. Data received is available by reading the endpoint’s
UDP_FDRx register.

11. The microcontroller notifies the USB device it has finished the transfer by clearing
RX_DATA_BK1 in the endpoint’s UDP_CSRx register.

12. A fourth Data OUT packet can be accepted by the USB device and copied in the FIFO
Bank 0.

USB Device USB Bus

ReadWrite

Write and Read at the Same Time

1st Data Payload

2nd Data Payload

3rd Data Payload

3rd Data Payload

2nd Data Payload

1st Data Payload

Data IN Packet

Data IN Packet

Data IN Packet

Microcontroller

Endpoint 1
Bank 0

Endpoint 1
Bank 1

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 1

565
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 34-10. Data OUT Transfer for Ping-pong Endpoint

Note: An interrupt is pending while the RX_DATA_BK0 or RX_DATA_BK1 flag is set.

Warning: When RX_DATA_BK0 and RX_DATA_BK1 are both set, there is no way to determine
which one to clear first. Thus the software must keep an internal counter to be sure to clear alter-
natively RX_DATA_BK0 then RX_DATA_BK1. This situation may occur when the software
application is busy elsewhere and the two banks are filled by the USB host. Once the application
comes back to the USB driver, the two flags are set.

34.5.2.4 Status Transaction
A status transaction is a special type of host to device transaction used only in a control transfer.
The control transfer must be performed using endpoints with no ping-pong attributes. According
to the control sequence (read or write), the USB device sends or receives a status transaction.

A
P

Data OUT
PID

ACK Data OUT 3Data OUTData OUT 2Data OUTData OUT 1PID

Data OUT 3Data OUT 1Data OUT1

Data OUT 2 Data OUT 2

PID PID PID
ACK

 Cleared by Firmware

USB Bus
Packets

RX_DATA_BK0 Flag

RX_DATA_BK1 Flag

Set by USB Device,
Data Payload Written
in FIFO Endpoint Bank 1

FIFO (DPR)
Bank 0

Bank 1

Write by USB Device Write In Progress

Read By Microcontroller

Read By Microcontroller

Set by USB Device,
Data Payload Written
in FIFO Endpoint Bank 0

Host Sends First Data Payload
 Microcontroller Reads Data 1 in Bank 0,
 Host Sends Second Data Payload

 Microcontroller Reads Data2 in Bank 1,
 Host Sends Third Data Payload

Cleared by Firmware

Write by USB Device

FIFO (DPR)

(USB_CSRx)

(USB_CSRx)

Interrupt Pending

Interrupt Pending

566
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 34-11. Control Read and Write Sequences

Notes: 1. During the Status IN stage, the host waits for a zero length packet (Data IN transaction with no
data) from the device using DATA1 PID. Please refer to Chapter 8 of the Universal Serial Bus
Specification, Rev. 1.1, to get more information on the protocol layer.

2. During the Status OUT stage, the host emits a zero length packet to the device (Data OUT
transaction with no data).

34.5.2.5 Status IN Transfer
Once a control request has been processed, the device returns a status to the host. This is a
zero length Data IN transaction.

1. The microcontroller waits for TXPKTRDY in the UDP_CSRx endpoint’s register to be
cleared. (At this step, TXPKTRDY must be cleared because the previous transaction
was a setup transaction or a Data OUT transaction.)

2. Without writing anything to the UDP_FDRx endpoint’s register, the microcontroller sets
TXPKTRDY. The USB device generates a Data IN packet using DATA1 PID.

3. This packet is acknowledged by the host and TXPKTRDY is set in the UDP_CSRx end-
point’s register.

Control Read Setup TX Data OUT TX Data OUT TX

Data Stage

Control Write

Setup Stage

Setup Stage

Setup TX

Setup TX
No Data
Control

Data IN TX Data IN TX

Status Stage

Status Stage

Status IN TX

Status OUT TX

Status IN TX

Data Stage

Setup Stage Status Stage

567
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 34-12. Data Out Followed by Status IN Transfer.

34.5.2.6 Status OUT Transfer
Once a control request has been processed and the requested data returned, the host acknowl-
edges by sending a zero length packet. This is a zero length Data OUT transaction.

1. The USB device receives a zero length packet. It sets RX_DATA_BK0 flag in the
UDP_CSRx register and acknowledges the zero length packet.

2. The microcontroller is notified that the USB device has received a zero length packet
sent by the host polling RX_DATA_BK0 in the UDP_CSRx register. An interrupt is pend-
ing while RX_DATA_BK0 is set. The number of bytes received in the endpoint’s
UDP_BCR register is equal to zero.

3. The microcontroller must clear RX_DATA_BK0.

Figure 34-13. Data IN Followed by Status OUT Transfer

34.5.2.7 Stall Handshake
A stall handshake can be used in one of two distinct occasions. (For more information on the
stall handshake, refer to Chapter 8 of the Universal Serial Bus Specification, Rev 1.1.)

Data INNAKData OUTData OUT ACK
PIDPIDPID PID

USB Bus
Packets

RX_DATA_BKO
(USB_CSRx)

Cleared by Firmware

Set by USB Device

Cleared by USB Device
TXPKTRDY
(USB_CSRx)

Set by Firmware

Host Sends the Last
Data Payload to the Device

Device Sends a Status IN
to the Host

Interrupt Pending

Data OUTData INData IN ACK
PIDPID PID

ACK
PID

RX_DATA_BKO
(USB_CSRx)

TXCOMP
(USB_CSRx)

Set by USB Device

USB Bus
Packets

Cleared by Firmware

Cleared by FirmwareSet by USB Device

Device Sends a
Status OUT to Host

Device Sends the Last
Data Payload to Host

Interrupt Pending

568
1768I–ATARM–09-Jul-09

AT91RM9200

• A functional stall is used when the halt feature associated with the endpoint is set. (Refer to
Chapter 9 of the Universal Serial Bus Specification, Rev 1.1, for more information on the halt
feature.)

• To abort the current request, a protocol stall is used, but uniquely with control transfer.

The following procedure generates a stall packet:

1. The microcontroller sets the FORCESTALL flag in the UDP_CSRx endpoint’s register.

2. The host receives the stall packet.

3. The microcontroller is notified that the device has sent the stall by polling the
STALLSENT to be set. An endpoint interrupt is pending while STALLSENT is set. The
microcontroller must clear STALLSENT to clear the interrupt.

When a setup transaction is received after a stall handshake, STALLSENT must be cleared in
order to prevent interrupts due to STALLSENT being set.

Figure 34-14. Stall Handshake (Data IN Transfer)

Figure 34-15. Stall Handshake (Data OUT Transfer)

Data IN Stall PIDPIDUSB Bus
Packets

Cleared by Firmware

Set by FirmwareFORCESTALL

STALLSENT

Set by
USB Device

Cleared by Firmware

Interrupt Pending

Data OUT PID Stall PID Data OUTUSB Bus
Packets

Cleared by Firmware

Set by FirmwareFORCESTALL

STALLSENT

Set by USB Device

Interrupt Pending

569
1768I–ATARM–09-Jul-09

AT91RM9200

34.5.3 Controlling Device States
A USB device has several possible states. Please refer to Chapter 9 of the Universal Serial Bus
Specification, Rev 1.1.

Figure 34-16. USB Device State Diagram

Movement from one state to another depends on the USB bus state or on standard requests
sent through control transactions via the default endpoint (endpoint 0).

After a period of bus inactivity, the UDP device enters Suspend Mode. Accepting Sus-
pend/Resume requests from the USB host is mandatory. Constraints in Suspend Mode are very
strict for bus-powered applications; devices may not consume more than 500 uA on the USB
bus.

While in Suspend Mode, the host may wake up a device by sending a resume signal (bus activ-
ity) or a USB device may send a wake-up request to the host, e.g., waking up a PC by moving a
USB mouse.

The wake-up feature is not mandatory for all devices and must be negotiated with the host.

Attached

Suspended

Suspended

Suspended

Suspended

Hub Reset
or

Deconfigured

Hub
Configured

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Reset

Reset

Address
Assigned

Device
Deconfigured

Device
Configured

Powered

Default

Address

Configured

Power
Interruption

570
1768I–ATARM–09-Jul-09

AT91RM9200

34.5.3.1 From Powered State to Default State
After its connection to a USB host, the USB device waits for an end-of-bus reset. The USB host
stops driving a reset state once it has detected the device’s pull-up on DP. The unmasked flag
ENDBUSRES is set in the register UDP_ISR and an interrupt is triggered. The UDP software
enables the default endpoint, setting the EPEDS flag in the UDP_CSR[0] register and, option-
ally, enabling the interrupt for endpoint 0 by writing 1 to the UDP_IER register. The enumeration
then begins by a control transfer.

34.5.3.2 From Default State to Address State
After a set address standard device request, the USB host peripheral enters the address state.
Before this, it achieves the Status IN transaction of the control transfer, i.e., the UDP device sets
its new address once the TXCOMP flag in the UDP_CSR[0] register has been received and
cleared.

To move to address state, the driver software sets the FADDEN flag in the UDP_GLB_STATE,
sets its new address, and sets the FEN bit in the UDP_FADDR register.

34.5.3.3 From Address State to Configured State
Once a valid Set Configuration standard request has been received and acknowledged, the
device enables endpoints corresponding to the current configuration. This is done by setting the
EPEDS and EPTYPE fields in the UDP_CSRx registers and, optionally, enabling corresponding
interrupts in the UDP_IER register.

34.5.3.4 Enabling Suspend
When a Suspend (no bus activity on the USB bus) is detected, the RXSUSP signal in the
UDP_ISR register is set. This triggers an interrupt if the corresponding bit is set in the UDP_IMR
register.

This flag is cleared by writing to the UDP_ICR register. Then the device enters Suspend Mode.
As an example, the microcontroller switches to slow clock, disables the PLL and main oscillator,
and goes into Idle Mode. It may also switch off other devices on the board.

The USB device peripheral clocks may be switched off. However, the transceiver and the USB
peripheral must not be switched off, otherwise the resume is not detected.

34.5.3.5 Receiving a Host Resume
In suspend mode, the USB transceiver and the USB peripheral must be powered to detect the
RESUME. However, the USB device peripheral may not be clocked as the WAKEUP signal is
asynchronous.

Once the resume is detected on the bus, the signal WAKEUP in the UDP_ISR is set. It may gen-
erate an interrupt if the corresponding bit in the UDP_IMR register is set. This interrupt may be
used to wake-up the core, enable PLL and main oscillators and configure clocks. The WAKEUP
bit must be cleared as soon as possible by setting WAKEUP in the UDP_ICR register.

34.5.3.6 Sending an External Resume
The External Resume is negotiated with the host and enabled by setting the ESR bit in the
UDP_GLB_STATE. An asynchronous event on the ext_resume_pin of the peripheral generates
a WAKEUP interrupt. On early versions of the USP peripheral, the K-state on the USB line is
generated immediately. This means that the USB device must be able to answer to the host very
quickly. On recent versions, the software sets the RMWUPE bit in the UDP_GLB_STATE regis-
ter once it is ready to communicate with the host. The K-state on the bus is then generated.

571
1768I–ATARM–09-Jul-09

AT91RM9200

The WAKEUP bit must be cleared as soon as possible by setting WAKEUP in the UDP_ICR
register.

572
1768I–ATARM–09-Jul-09

AT91RM9200

34.6 USB Device Port (UDP) User Interface

Table 34-3. USB Device Port Memory Map

Offset Register Name Access Reset State

0x000 Frame Number Register UDP_FRM_NUM Read 0x0000_0000

0x004 Global State Register UDP_GLB_STAT Read/Write 0x0000_0010

0x008 Function Address Register UDP_FADDR Read/Write 0x0000_0100

0x00C Reserved – – –

0x010 Interrupt Enable Register UDP_IER Write

0x014 Interrupt Disable Register UDP_IDR Write

0x018 Interrupt Mask Register UDP_IMR Read 0x0000_1200

0x01C Interrupt Status Register UDP_ISR Read 0x0000_0000

0x020 Interrupt Clear Register UDP_ICR Write

0x024 Reserved – – –

0x028 Reset Endpoint Register UDP_RST_EP Read/Write

0x02C Reserved – – –

0x030 Endpoint 0 Control and Status Register UDP_CSR0 Read/Write 0x0000_0000

0x034 Endpoint 1 Control and Status Register UDP_CSR1 Read/Write 0x0000_0000

0x038 Endpoint 2 Control and Status Register UDP_CSR2 Read/Write 0x0000_0000

0x03C Endpoint 3 Control and Status Register UDP_CSR3 Read/Write 0x0000_0000

0x040 Endpoint 4 Control and Status Register UDP_CSR4 Read/Write 0x0000_0000

0x044 Endpoint 5 Control and Status Register UDP_CSR5 Read/Write 0x0000_0000

0x048 Reserved – – –

0x04C Reserved – – –

0x050 Endpoint 0 FIFO Data Register UDP_FDR0 Read/Write 0x0000_0000

0x054 Endpoint 1 FIFO Data Register UDP_FDR1 Read/Write 0x0000_0000

0x058 Endpoint 2 FIFO Data Register UDP_FDR2 Read/Write 0x0000_0000

0x05C Endpoint 3 FIFO Data Register UDP_FDR3 Read/Write 0x0000_0000

0x060 Endpoint 4 FIFO Data Register UDP_FDR4 Read/Write 0x0000_0000

0x064 Endpoint 5 FIFO Data Register UDP_FDR5 Read/Write 0x0000_0000

0x068 Reserved – – –

0x06C Reserved – – –

0x074 Transceiver Control Register UDP_TXVC Read/Write 0x0000_0100

0x070 Reserved – – –

573
1768I–ATARM–09-Jul-09

AT91RM9200

34.6.1 UDP Frame Number Register
Register Name: UDP_FRM_NUM

Access Type: Read-only

• FRM_NUM[10:0]: Frame Number as Defined in the Packet Field Formats
This 11-bit value is incremented by the host on a per frame basis. This value is updated at each start of frame.

Value Updated at the SOF_EOP (Start of Frame End of Packet).

• FRM_ERR: Frame Error
This bit is set at SOF_EOP when the SOF packet is received containing an error.

This bit is reset upon receipt of SOF_PID.

• FRM_OK: Frame OK
This bit is set at SOF_EOP when the SOF packet is received without any error.

This bit is reset upon receipt of SOF_PID (Packet Identification).

In the Interrupt Status Register, the SOF interrupt is updated upon receiving SOF_PID. This bit is set without waiting for
EOP.

Note: In the 8-bit Register Interface, FRM_OK is bit 4 of FRM_NUM_H and FRM_ERR is bit 3 of FRM_NUM_L.

31 30 29 28 27 26 25 24
--- --- --- --- --- --- --- ---

23 22 21 20 19 18 17 16

– – – – – – FRM_OK FRM_ERR

15 14 13 12 11 10 9 8

– – – – – FRM_NUM

7 6 5 4 3 2 1 0

FRM_NUM

574
1768I–ATARM–09-Jul-09

AT91RM9200

34.6.2 UDP Global State Register
Register Name: UDP_GLB_STAT

Access Type: Read/Write

This register is used to get and set the device state as specified in Chapter 9 of the USB Serial Bus Specification, Rev.1.1.

• FADDEN: Function Address Enable
Read:

0 = Device is not in address state.

1 = Device is in address state.

Write:

0 = No effect, only a reset can bring back a device to the default state.

1 = Set device in address state. This occurs after a successful Set Address request. Beforehand, the USB_FADDR register
must have been initialized with Set Address parameters. Set Address must complete the Status Stage before setting FAD-
DEN. Please refer to chapter 9 of the Universal Serial Bus Specification, Rev. 1.1 to get more details.

• CONFG: Configured
Read:

0 = Device is not in configured state.

1 = Device is in configured state.

Write:

0 = Set device in a nonconfigured state

1 = Set device in configured state.

The device is set in configured state when it is in address state and receives a successful Set Configuration request.
Please refer to Chapter 9 of the Universal Serial Bus Specification, Rev. 1.1 to get more details.

• ESR: Enable Send Resume
0 = Disable the Remote Wake Up sequence.

1 = Remote Wake Up can be processed and the pin send_resume is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – RMWUPE RSMINPR ESR CONFG FADDEN

575
1768I–ATARM–09-Jul-09

AT91RM9200

• RSMINPR: A Resume Has Been Sent to the Host
Read:

0 = No effect.

1 = A Resume has been received from the host during Remote Wake Up feature.

• RMWUPE: Remote Wake Up Enable
0 = Must be cleared after receiving any HOST packet or SOF interrupt.

1 = Enables the K-state on the USB cable if ESR is enabled.

34.6.3 UDP Function Address Register
Register Name: UDP_FADDR

Access Type: Read/Write

• FADD[6:0]: Function Address Value
The Function Address Value must be programmed by firmware once the device receives a set address request from the
host, and has achieved the status stage of the no-data control sequence. Please refer to the Universal Serial Bus Specifi-
cation, Rev. 1.1 to get more information. After power up, or reset, the function address value is set to 0.

• FEN: Function Enable
Read:

0 = Function endpoint disabled.

1 = Function endpoint enabled.

Write:

0 = Disable function endpoint.

1 = Default value.

The Function Enable bit (FEN) allows the microcontroller to enable or disable the function endpoints. The microcontroller
sets this bit after receipt of a reset from the host. Once this bit is set, the USB device is able to accept and transfer data
packets from and to the host.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – FEN

7 6 5 4 3 2 1 0

– FADD

576
1768I–ATARM–09-Jul-09

AT91RM9200

34.6.4 UDP Interrupt Enable Register
Register Name: UDP_IER

Access Type: Write-only

• EP0INT: Enable Endpoint 0 Interrupt

• EP1INT: Enable Endpoint 1 Interrupt

• EP2INT: Enable Endpoint 2Interrupt

• EP3INT: Enable Endpoint 3 Interrupt

• EP4INT: Enable Endpoint 4 Interrupt

• EP5INT: Enable Endpoint 5 Interrupt
0 = No effect.

1 = Enable corresponding Endpoint Interrupt.

• RXSUSP: Enable USB Suspend Interrupt
0 = No effect.

1 = Enable USB Suspend Interrupt.

• RXRSM: Enable USB Resume Interrupt
0 = No effect.

1 = Enable USB Resume Interrupt.

• EXTRSM: Enable External Resume Interrupt
0 = No effect.

1 = Enable External Resume Interrupt.

• SOFINT: Enable Start Of Frame Interrupt
0 = No effect.

1 = Enable Start Of Frame Interrupt.

• WAKEUP: Enable USB bus Wakeup Interrupt

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP – SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

– – EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT

577
1768I–ATARM–09-Jul-09

AT91RM9200

0 = No effect.

1 = Enable USB bus Interrupt.

578
1768I–ATARM–09-Jul-09

AT91RM9200

34.6.5 UDP Interrupt Disable Register
Register Name: UDP_IDR

Access Type: Write-only

• EP0INT: Disable Endpoint 0 Interrupt

• EP1INT: Disable Endpoint 1 Interrupt

• EP2INT: Disable Endpoint 2 Interrupt

• EP3INT: Disable Endpoint 3 Interrupt

• EP4INT: Disable Endpoint 4 Interrupt

• EP5INT: Disable Endpoint 5 Interrupt
0 = No effect.

1 = Disable corresponding Endpoint Interrupt.

• RXSUSP: Disable USB Suspend Interrupt
0 = No effect.

1 = Disable USB Suspend Interrupt.

• RXRSM: Disable USB Resume Interrupt
0 = No effect.

1 = Disable USB Resume Interrupt.

• EXTRSM: Disable External Resume Interrupt
0 = No effect.

1 = Disable External Resume Interrupt.

• SOFINT: Disable Start Of Frame Interrupt
0 = No effect.

1 = Disable Start Of Frame Interrupt

• WAKEUP: Disable USB Bus Interrupt

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP – SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

– – EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT

579
1768I–ATARM–09-Jul-09

AT91RM9200

0 = No effect.

1 = Disable USB Bus Wakeup Interrupt.

580
1768I–ATARM–09-Jul-09

AT91RM9200

34.6.6 UDP Interrupt Mask Register
Register Name: UDP_IMR

Access Type: Read-only

• EP0INT: Mask Endpoint 0 Interrupt

• EP1INT: Mask Endpoint 1 Interrupt

• EP2INT: Mask Endpoint 2 Interrupt

• EP3INT: Mask Endpoint 3 Interrupt

• EP4INT: Mask Endpoint 4 Interrupt

• EP5INT: Mask Endpoint 5 Interrupt
0 = Corresponding Endpoint Interrupt is disabled.

1 = Corresponding Endpoint Interrupt is enabled.

• RXSUSP: Mask USB Suspend Interrupt
0 = USB Suspend Interrupt is disabled.

1 = USB Suspend Interrupt is enabled.

• RXRSM: Mask USB Resume Interrupt.
0 = USB Resume Interrupt is disabled.

1 = USB Resume Interrupt is enabled.

• EXTRSM: Mask External Resume Interrupt
0 = External Resume Interrupt is disabled.

1 = External Resume Interrupt is enabled.

• SOFINT: Mask Start Of Frame Interrupt
0 = Start of Frame Interrupt is disabled.

1 = Start of Frame Interrupt is enabled.

• WAKEUP: USB Bus WAKEUP Interrupt

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP – SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

– – EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT

581
1768I–ATARM–09-Jul-09

AT91RM9200

0 = USB Bus Wakeup Interrupt is disabled.

1 = USB Bus Wakeup Interrupt is enabled.

Note: When the USB block is in suspend mode, the application may power down the USB logic. In this case, any USB HOST resume
request that is made must be taken into account and, thus, the reset value of the RXRSM bit of the register USB_IMR is
enabled.

582
1768I–ATARM–09-Jul-09

AT91RM9200

34.6.7 UDP Interrupt Status Register
Register Name: UDP_ISR

Access Type: Read -only

• EP0INT: Endpoint 0 Interrupt Status
0 = No Endpoint0 Interrupt pending.

1 = Endpoint0 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading UDP_CSR0:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP0INT is a sticky bit. Interrupt remains valid until EP0INT is cleared by writing in the corresponding UDP_CSR0 bit.

• EP1INT: Endpoint 1 Interrupt Status
0 = No Endpoint1 Interrupt pending.

1 = Endpoint1 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading UDP_CSR1:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP1INT is a sticky bit. Interrupt remains valid until EP1INT is cleared by writing in the corresponding UDP_CSR1 bit.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP
ENDBUSRE

S
SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

– – EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT

583
1768I–ATARM–09-Jul-09

AT91RM9200

• EP2INT: Endpoint 2 Interrupt Status
0 = No Endpoint2 Interrupt pending.

1 = Endpoint2 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading UDP_CSR2:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP2INT is a sticky bit. Interrupt remains valid until EP2INT is cleared by writing in the corresponding UDP_CSR2 bit.

• EP3INT: Endpoint 3 Interrupt Status
0 = No Endpoint3 Interrupt pending.

1 = Endpoint3 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading UDP_CSR3:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP3INT is a sticky bit. Interrupt remains valid until EP3INT is cleared by writing in the corresponding UDP_CSR3 bit.

• EP4INT: Endpoint 4 Interrupt Status
0 = No Endpoint4 Interrupt pending.

1 = Endpoint4 Interrupt has been raised.

Several signals can generate this interrupt. The reason can be found by reading UDP_CSR4:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP4INT is a sticky bit. Interrupt remains valid until EP4INT is cleared by writing in the corresponding UDP_CSR4 bit.

• EP5INT: Endpoint 5 Interrupt Status
0 = No Endpoint5 Interrupt pending.

1 = Endpoint5 Interrupt has been raised.

584
1768I–ATARM–09-Jul-09

AT91RM9200

Several signals can generate this interrupt. The reason can be found by reading UDP_CSR5:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP5INT is a sticky bit. Interrupt remains valid until EP5INT is cleared by writing in the corresponding UDP_CSR5 bit.

• RXSUSP: USB Suspend Interrupt Status
0 = No USB Suspend Interrupt pending.

1 = USB Suspend Interrupt has been raised.

The USB device sets this bit when it detects no activity for 3ms. The USB device enters Suspend mode.

• RXRSM: USB Resume Interrupt Status
0 = No USB Resume Interrupt pending.

1 = USB Resume Interrupt has been raised.

The USB device sets this bit when a USB resume signal is detected at its port.

• EXTRSM: External Resume Interrupt Status
0 = No External Resume Interrupt pending.

1 = External Resume Interrupt has been raised.

This interrupt is raised when, in suspend mode, an asynchronous rising edge on the send_resume is detected.

If RMWUPE = 1, a resume state is sent in the USB bus.

• SOFINT: Start of Frame Interrupt Status
0 = No Start of Frame Interrupt pending.

1 = Start of Frame Interrupt has been raised.

This interrupt is raised each time a SOF token has been detected. It can be used as a synchronization signal by using

isochronous endpoints.

• ENDBUSRES: End of BUS Reset Interrupt Status
0 = No End of Bus Reset Interrupt pending.

1 = End of Bus Reset Interrupt has been raised.

This interrupt is raised at the end of a USB reset sequence. The USB device must prepare to receive requests on the end-
point 0. The host starts the enumeration, then performs the configuration.

• WAKEUP: USB Resume Interrupt Status
0 = No Wakeup Interrupt pending.

1 = A Wakeup Interrupt (USB Host Sent a RESUME or RESET) occurred since the last clear.

585
1768I–ATARM–09-Jul-09

AT91RM9200

34.6.8 UDP Interrupt Clear Register
Register Name: UDP_ICR

586
1768I–ATARM–09-Jul-09

AT91RM9200

Access Type: Write-only

• RXSUSP: Clear USB Suspend Interrupt
0 = No effect.

1 = Clear USB Suspend Interrupt.

• RXRSM: Clear USB Resume Interrupt
0 = No effect.

1 = Clear USB Resume Interrupt.

• EXTRSM: Clear External Resume Interrupt
0 = No effect.

1 = Clear External Resume Interrupt.

• SOFINT: Clear Start Of Frame Interrupt
0 = No effect.

1 = Clear Start Of Frame Interrupt.

• ENDBUSRES: Clear End of Bus Reset Interrupt
0 = No effect.

1 = Clear End of Bus Reset Interrupt.

• WAKEUP: Clear Wakeup Interrupt
0 = No effect.

1 = Clear Wakeup Interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP
ENDBUSRE

S
SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

– – – – – – – –

587
1768I–ATARM–09-Jul-09

AT91RM9200

34.6.9 UDP Reset Endpoint Register
Register Name: UDP_RST_EP

Access Type: Read/Write

• EP0: Reset Endpoint 0

• EP1: Reset Endpoint 1

• EP2: Reset Endpoint 2

• EP3: Reset Endpoint 3

• EP4: Reset Endpoint 4

• EP5: Reset Endpoint 5
This flag is used to reset the FIFO associated with the endpoint and the bit RXBYTECOUNT in the register UDP_CSRx.It
also resets the data toggle to DATA0. It is useful after removing a HALT condition on a BULK endpoint. Refer to Chapter
5.8.5 in the USB Serial Bus Specification, Rev.1.1.

Warning: This flag must be cleared at the end of the reset. It does not clear UDP_CSRx flags.

0 = No reset.

1 = Forces the corresponding endpoint FIF0 pointers to 0, therefore RXBYTECNT field is read at 0 in UDP_CSRx register.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – EP5 EP4 EP3 EP2 EP1 EP0

588
1768I–ATARM–09-Jul-09

AT91RM9200

34.6.10 UDP Endpoint Control and Status Register
Register Name: UDP_CSRx [x = 0. 7]

Access Type: Read/Write

WARNING: Due to a synchronization between MCK and UDPCK, the software application must wait for the end of the write

operation before executing another write by polling the bits which must be set/cleared.

//! Clear flags of UDP UDP_CSR register and waits for synchronization

#define Udp_ep_clr_flag(pInterface, endpoint, flags) { \

pInterface->UDP_CSR[endpoint] &= ~(flags); \

while ((pInterface->UDP_CSR[endpoint] & (flags)) == (flags)); \

}

//! Set flags of UDP UDP_CSR register and waits for synchronization

#define Udp_ep_set_flag(pInterface, endpoint, flags) { \

pInterface->UDP_CSR[endpoint] |= (flags); \

while ((pInterface->UDP_CSR[endpoint] & (flags)) != (flags)); \

}

• TXCOMP: Generates an IN packet with data previously written in the DPR
This flag generates an interrupt while it is set to one.

Write (Cleared by the firmware)

0 = Clear the flag, clear the interrupt.

1 = No effect.

Read (Set by the USB peripheral)

0 = Data IN transaction has not been acknowledged by the Host.

1 = Data IN transaction is achieved, acknowledged by the Host.

After having issued a Data IN transaction setting TXPKTRDY, the device firmware waits for TXCOMP to be sure that the
host has acknowledged the transaction.

31 30 29 28 27 26 25 24
– – – – – RXBYTECNT

23 22 21 20 19 18 17 16

RXBYTECNT

15 14 13 12 11 10 9 8

EPEDS – – – DTGLE EPTYPE

7 6 5 4 3 2 1 0

DIR
RX_DATA_

BK1
FORCE
STALL

TXPKTRDY
STALLSENT
ISOERROR

RXSETUP
RX_DATA_

BK0
TXCOMP

589
1768I–ATARM–09-Jul-09

AT91RM9200

• RX_DATA_BK0: Receive Data Bank 0
This flag generates an interrupt while it is set to one.

Write (Cleared by the firmware)

0 = Notify USB peripheral device that data have been read in the FIFO's Bank 0.

1 = No effect.

Read (Set by the USB peripheral)

0 = No data packet has been received in the FIFO's Bank 0

1 = A data packet has been received, it has been stored in the FIFO's Bank 0.

When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to
the microcontroller memory. The number of bytes received is available in RXBYTCENT field. Bank 0 FIFO values are read
through the UDP_FDRx register. Once a transfer is done, the device firmware must release Bank 0 to the USB peripheral
device by clearing RX_DATA_BK0.

• RXSETUP: Sends STALL to the Host (Control endpoints)
This flag generates an interrupt while it is set to one.

Read

0 = No setup packet available.

1 = A setup data packet has been sent by the host and is available in the FIFO.

Write

0 = Device firmware notifies the USB peripheral device that it has read the setup data in the FIFO.

1 = No effect.

This flag is used to notify the USB device firmware that a valid Setup data packet has been sent by the host and success-
fully received by the USB device. The USB device firmware may transfer Setup data from the FIFO by reading the
UDP_FDRx register to the microcontroller memory. Once a transfer has been done, RXSETUP must be cleared by the
device firmware.

Ensuing Data OUT transactions is not accepted while RXSETUP is set.

• STALLSENT: Stall sent (Control, Bulk Interrupt endpoints)/ ISOERROR (Isochronous endpoints)
This flag generates an interrupt while it is set to one.

STALLSENT: this ends a STALL handshake

Read

0 = the host has not acknowledged a STALL.

1 = host has acknowledge the stall.

Write

0 = reset the STALLSENT flag, clear the interrupt.

1 = No effect.

This is mandatory for the device firmware to clear this flag. Otherwise the interrupt remains.

590
1768I–ATARM–09-Jul-09

AT91RM9200

Please refer to chapters 8.4.4 and 9.4.5 of the Universal Serial Bus Specification, Rev. 1.1 to get more information on the
STALL handshake.

ISOERROR: a CRC error has been detected in an isochronous transfer

Read

0 = No error in the previous isochronous transfer.

1 = CRC error has been detected, data available in the FIFO are corrupted.

Write

0 = reset the ISOERROR flag, clear the interrupt.

1 = No effect.

• TXPKTRDY: Transmit Packet Ready
This flag is cleared by the USB device.

This flag is set by the USB device firmware.

Read

0 = Data values can be written in the FIFO.

1 = Data values can not be written in the FIFO.

Write

0 = No effect.

1 = A new data payload is has been written in the FIFO by the firmware and is ready to be sent.

This flag is used to generate a Data IN transaction (device to host). Device firmware checks that it can write a data payload
in the FIFO, checking that TXPKTRDY is cleared. Transfer to the FIFO is done by writing in the UDP_FDRx register. Once
the data payload has been transferred to the FIFO, the firmware notifies the USB device setting TXPKTRDY to one. USB
bus transactions can start. TXCOMP is set once the data payload has been received by the host.

• FORCESTALL: Force Stall (used by Control, Bulk and Isochronous endpoints)
Write-only

0 = No effect.

1 = Send STALL to the host.

Please refer to chapters 8.4.4 and 9.4.5 of the Universal Serial Bus Specification, Rev. 1.1 to get more information on the
STALL handshake.

Control endpoints: during the data stage and status stage, this indicates that the microcontroller can not complete the
request.

Bulk and interrupt endpoints: notify the host that the endpoint is halted.

The host acknowledges the STALL, device firmware is notified by the STALLSENT flag.

• RX_DATA_BK1: Receive Data Bank 1 (only used by endpoints with ping-pong attributes)
This flag generates an interrupt while it is set to one.

Write (Cleared by the firmware)

591
1768I–ATARM–09-Jul-09

AT91RM9200

0 = Notify USB device that data have been read in the FIFO’s Bank 1.

1 = No effect.

Read (Set by the USB peripheral)

0 = No data packet has been received in the FIFO's Bank 1.

1 = A data packet has been received, it has been stored in FIFO's Bank 1.

When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to
microcontroller memory. The number of bytes received is available in RXBYTECNT field. Bank 1 FIFO values are read
through UDP_FDRx register. Once a transfer is done, the device firmware must release Bank 1 to the USB device by clear-
ing RX_DATA_BK1.

• DIR: Transfer Direction (only available for control endpoints)
Read/Write

0 = Allow Data OUT transactions in the control data stage.

1 = Enable Data IN transactions in the control data stage.

Please refer to Chapter 8.5.2 of the Universal Serial Bus Specification, Rev. 1.1 to get more information on the control data
stage.

This bit must be set before UDP_CSRx/RXSETUP is cleared at the end of the setup stage. According to the request sent in
the setup data packet, the data stage is either a device to host (DIR = 1) or host to device (DIR = 0) data transfer. It is not
necessary to check this bit to reverse direction for the status stage.

• EPTYPE[2:0]: Endpoint Type

• DTGLE: Data Toggle
Read-only

0 = Identifies DATA0 packet.

1 = Identifies DATA1 packet.

Please refer to Chapter 8 of the Universal Serial Bus Specification, Rev. 1.1 to get more information on DATA0, DATA1
packet definitions.

• EPEDS: Endpoint Enable Disable
Read

Read/Write

000 Control

001 Isochronous OUT

101 Isochronous IN

010 Bulk OUT

110 Bulk IN

011 Interrupt OUT

111 Interrupt IN

592
1768I–ATARM–09-Jul-09

AT91RM9200

0 = Endpoint disabled.

1 = Endpoint enabled.

Write

0 = Disable endpoint.

1 = Enable endpoint.

• RXBYTECNT[10:0]: Number of Bytes Available in the FIFO
Read-only.

When the host sends a data packet to the device, the USB device stores the data in the FIFO and notifies the microcon-
troller. The microcontroller can load the data from the FIFO by reading RXBYTECENT bytes in the UDP_FDRx register.

593
1768I–ATARM–09-Jul-09

AT91RM9200

34.6.11 UDP FIFO Data Register
Register Name: UDP_FDRx [x = 0. 7]

Access Type: Read/Write

• FIFO_DATA[7:0]: FIFO Data Value
The microcontroller can push or pop values in the FIFO through this register.

RXBYTECNT in the corresponding UDP_CSRx register is the number of bytes to be read from the FIFO (sent by the host).

The maximum number of bytes to write is fixed by the Max Packet Size in the Standard Endpoint Descriptor. It can not be
more than the physical memory size associated to the endpoint. Please refer to the Universal Serial Bus Specification, Rev.
1.1 to get more information.

34.6.12 UDP Transceiver Control Register
Register Name: UDP_TXVC

Access Type: Read/Write

• TXVDIS: Transceiver Disable
When UDP is disabled, power consumption can be reduced significantly by disabling the embedded transceiver. This can
be done by setting TXVDIS field.

To enable the transceiver, TXVDIS must be cleared.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

FIFO_DATA

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – TXVDIS

7 6 5 4 3 2 1 0
– – – – – – – –

594
1768I–ATARM–09-Jul-09

AT91RM9200

595
1768I–ATARM–09-Jul-09

AT91RM9200

35. USB Host Port (UHP)

35.1 Overview
The USB Host Port interfaces the USB with the host application. It handles Open HCI protocol
(Open Host Controller Interface) as well as USB v2.0 Full-speed and Low-speed protocols. It
also provides a simple Read/Write protocol on the ASB.

The USB Host Port integrates a root hub and transceivers on downstream ports. It provides sev-
eral high-speed half-duplex serial communication ports at a baud rate of 12 Mbit/s. Up to 127
USB devices (printer, camera, mouse, keyboard, disk, etc.) and the USB hub can be connected
to the USB host in the USB “tiered star” topology.

The USB Host Port controller is fully compliant with the Open HCI specification. The standard
OHCI USB stack driver can be easily ported to ATMEL’s architecture in the same way all exist-
ing class drivers run without hardware specialization.

This means that all standard class devices are automatically detected and available to the user
application. As an example, integrating an HID (Human Interface Device) class driver provides a
plug & play feature for all USB keyboards and mouses.

Key features of the USB Host Port are:

• Compliance with Open HCI Rev 1.0 Specification

• Compliance with USB V2.0 Full Speed and Low Speed Specification

• Supports Both Low-speed 1.5 Mbps and Full-speed 12 Mbps USB devices

• Root Hub Integrated with Two Downstream USB Ports

• Embedded USB Transceivers (Number of Transceivers is Product Dependant)

• Supports Power Management

• Operates as a Master on the ASB Bus

596
1768I–ATARM–09-Jul-09

AT91RM9200

35.2 Block Diagram

Figure 35-1. USB Host Port Block Diagram

Access to the USB host operational registers is achieved through the ASB bus interface. The
Open HCI host controller initializes master DMA transfers with the ASB bus as follows:

• Fetches endpoint descriptors and transfer descriptors

• Access to endpoint data from system memory

• Access to the HC communication area

• Write status and retire transfer Descriptor

Memory access errors (abort, misalignment) lead to an “UnrecoverableError” indicated by the
corresponding flag in the host controller operational registers.

All of the ASB memory map is accessible to the USB host master DMA. Thus there is no need to
define a dedicated physical memory area to the USB host.

The USB root hub is integrated in the USB host. Several USB downstream ports are available.
The number of downstream ports can be determined by the software driver reading the root
hub’s operational registers. Device connection is automatically detected by the USB host port
logic.

Warning: a pull-down must be connected to DP on the board. Otherwise The USB host will per-
manently detect a device connection on this port.

USB physical transceivers are integrated in the product and driven by the root hub’s ports.

Over current protection on ports can be activated by the USB host controller. Atmel’s standard
product does not dedicate pads to external over current protection.

PORT S/M

PORT S/M

USB transceiver

USB transceiver

DP
DM

DP
DM

Embedded USB
v2.0 Full-speed Transceiver

Root Hub
and

Host SIE

List Processor
Block

FIFO 64 x 8

HCI
Slave Block

OHCI
Registers

OHCI Root
Hub Registers

ASB

ED & TD
Regsisters

Control

HCI
Master Block

Data

uhp_int

MCK

UDPCK

597
1768I–ATARM–09-Jul-09

AT91RM9200

35.3 Product Dependencies

35.3.1 I/O Lines
DPs and DMs are not controlled by any PIO controllers. The embedded USB physical transceiv-
ers are controlled by the USB host controller.

35.3.2 Power Management
The USB host controller requires a 48 MHz clock. This clock must be generated by a PLL with a
correct accuracy of ± 0.25%.

Thus the USB device peripheral receives two clocks from the Power Management Controller
(PMC): the master clock MCK used to drive the peripheral user interface (MCK domain) and the
UHPCLK 48 MHz clock used to interface with the bus USB signals (Recovered 12 MHz domain).

35.3.3 Interrupt
The USB host interface has an interrupt line connected to the Advanced Interrupt Controller
(AIC).

Handling USB host interrupts requires programming the AIC before configuring the UHP.

598
1768I–ATARM–09-Jul-09

AT91RM9200

35.4 Functional Description
Please refer to the Open Host Controller Interface Specification for USB Release 1.0.a.

35.4.1 Host Controller Interface
There are two communication channels between the Host Controller and the Host Controller
Driver. The first channel uses a set of operational registers located on the USB Host Controller.
The Host Controller is the target for all communications on this channel. The operational regis-
ters contain control, status and list pointer registers. They are mapped in the ASB memory
mapped area. Within the operational register set there is a pointer to a location in the processor
address space named the Host Controller Communication Area (HCCA). The HCCA is the sec-
ond communication channel. The host controller is the master for all communication on this
channel. The HCCA contains the head pointers to the interrupt Endpoint Descriptor lists, the
head pointer to the done queue and status information associated with start-of-frame
processing.

The basic building blocks for communication across the interface are Endpoint Descriptors (ED,
4 double words) and Transfer Descriptors (TD, 4 or 8 double words). The host controller assigns
an Endpoint Descriptor to each endpoint in the system. A queue of Transfer Descriptors is linked
to the Endpoint Descriptor for the specific endpoint.

Figure 35-2. USB Host Communication Channels

Operational
Registers

Mode

HCCA

Status

Event

Frame Int

Ratio

Control

Bulk

Host Controller
Communications Area

Interrupt 0

Interrupt 1

Interrupt 2

Interrupt 31

Done

. . .

. . .

Open HCI

Shared RAM
Device Register
in Memory Space

Device Enumeration

= Transfer Descriptor = Endpoint Descriptor

. . .

599
1768I–ATARM–09-Jul-09

AT91RM9200

35.4.2 Host Controller Driver

Figure 35-3. USB Host Drivers

USB Handling is done through several layers as follows:

• Host controller hardware and serial engine: Transmit and receive USB data on the bus.

• Host controller driver: Drives the Host controller hardware and handle the USB protocol

• USB Bus driver and hub driver: Handles USB commands and enumeration. Offers a
hardware independent interface.

• Mini driver: Handles device specific commands.

Class driver: handles standard devices. This acts as a generic driver for a class of devices, for
example the HID driver.

Host Controller Hardware

HUB Driver

Host Controller Driver

USBD Driver

Mini Driver Class Driver Class Driver

User Application

Kernel Drivers

User Space

Hardware

600
1768I–ATARM–09-Jul-09

AT91RM9200

35.5 Typical Connection

Figure 35-4. Board Schematic to Interface UHP Device Controller

As device connection is automatically detected by the USB host port logic, a pull-down must be
connected on DP and DM on the board. Otherwise the USB host will permanently detect a
device connection on this port.

47pF

47pF

27ΩHDMA
or

HDMB

HDPA
or

HDPB
27Ω

15kΩ15kΩ

10nF100nF10μF

5V 0.20A

Type A Connector

601
1768I–ATARM–09-Jul-09

AT91RM9200

36. Ethernet MAC (EMAC)

36.1 Overview
The Ethernet MAC is the hardware implementation of the MAC sub-layer OSI reference model
between the physical layer (PHY) and the logical link layer (LLC). It controls the data exchange
between a host and a PHY layer according to Ethernet IEEE 802.3u data frame format. The
Ethernet MAC contains the required logic and transmit and receive FIFOs for DMA manage-
ment. In addition, it is interfaced through MDIO/MDC pins for PHY layer management.

The Ethernet MAC can transfer data in media-independent interface (MII) or reduced media-
independent interface (RMII) modes depending on the pinout configuration.

The aim of the reduced interface is to lower the pin count for a switch product that can be con-
nected to multiple PHY interfaces. The characteristics specific to RMII mode are:

• Single clock at 50 MHz frequency

• Reduction of required control pins

• Reduction of data paths to di-bit (2-bit wide) by doubling clock frequency

• 10 Mbits/sec. and 100 Mbits/sec. data capability

The major features of the EMAC are:

• Compatibility with IEEE Standard 802.3

• 10 and 100 Mbits per second data throughput capability

• Full- and half-duplex operation

• MII or RMII interface to the physical layer

• Register interface to address, status and control registers

• DMA interface

• Interrupt generation to signal receive and transmit completion

• 28-byte transmit and 28-byte receive FIFOs

• Automatic pad and CRC generation on transmitted frames

• Address checking logic to recognize four 48-bit addresses

• Supports promiscuous mode where all valid frames are copied to memory

• Supports physical layer management through MDIO interface control of alarm and update
time/calendar data in

602
1768I–ATARM–09-Jul-09

AT91RM9200

36.2 Block Diagram

Figure 36-1. Block Diagram

36.3 Application Block Diagram

Figure 36-2. Ethernet MAC Application Block Diagram

Ethernet MAC

Interrupt Control

PIO

APB Bridge

PMC MCK

EMAC IRQ

ETXCK-ERXCK-EREFCK

EXTEN-EXTER

ECRS-ECOL

ERXER-ERXDV

ERX0-ERX3

ETX0-ETX3

DMA

APB

ASB

EMDC

EMDIO

EF100

TCP/IP Socket API

UDP TCP

IP ARP/RARP

SNMP

SNMP AGENT

MIB Functions

HTTP TELNET FTP

WEB Server TELNET Server FTP Server

WEB Pages TELNET Console

ETHERNET Driver

EMAC (802.3 compliant)

Physical Medium Independant Layer (MII or RMII)

Physical Medium Dependant Layer (10 Base-T Phy)

Link Connector (RJ45)

NETWORK

603
1768I–ATARM–09-Jul-09

AT91RM9200

36.4 Product Dependencies

36.4.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the EMAC pins to their periph-
eral functions. In RMII mode, unused pins (see Table 36-1: MII/RMII Signal Mapping) can be
used as general I/O lines.

36.4.2 Power Management
The EMAC may be clocked through the Power Management Controller (PMC), so the program-
mer must first configure the PMC to enable the EMAC clock.

If not used, about 400 µA current consumption can be saved by switching the EMAC in Local
Loopback Mode with the following sequence:

• EMAC clock is enabled

– write 0x1000000 in PMC_PCER

• EMAC Local Loopback is enabled

– set bit 1 in EMAC_CTL

• EMAC clock is disabled

– write 0x1000000 in PMC_PCDR

36.4.3 Interrupt
The EMAC has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling
the EMAC interrupt requires programming the AIC before configuring the EMAC.

604
1768I–ATARM–09-Jul-09

AT91RM9200

36.5 Functional Description
The Ethernet Media Access Control (EMAC) engine is fully compatible with the IEEE 802.3
Ethernet standard. It manages frame transmission and reception including collision detection,
preamble generation and detection, CRC control and generation and transmitted frame padding.

The MAC functions are:

• Frame encapsulation and decapsulation

• Error detection

• Media access management (MII, RMII)

Figure 36-3. EMAC Functional Block Diagram

Address Checker

Control Registers

Ethernet Receive

Ethernet Transmit

Statistics Registers

DMA Interface

Register InterfaceAPB

ASB RMII/MII

MDIO

MII/RMII

EMAC

605
1768I–ATARM–09-Jul-09

AT91RM9200

36.5.1 Media Independent Interface

36.5.1.1 General
The Ethernet MAC is capable of interfacing to both RMII and MII Interfaces. The RMII bit in the
ETH_CFG register controls the interface that is selected. When this bit is set, the RMII interface
is selected, else the MII interface is selected.

The MII and RMII interface are capable of both 10Mb/s and 100Mb/s data rates as described in
the IEEE 802.3u standard. The signals used by the MII and RMII interfaces are described in the
Table 36-1.

The intent of the RMII is to provide a reduced pin count alternative to the IEEE 802.3u MII. It
uses 2 bits for transmit (ETX0 and ETX1) and two bits for receive (ERX0 and ERX1). There is a
Transmit Enable (ETXEN), a Receive Error (ERXER), a Carrier Sense (ECRS_DV), and a 50
MHz Reference Clock (ETXCK_REFCK) for 100Mb/s data rate.

36.5.1.2 RMII Transmit and Receive Operation
The same signals are used internally for both the RMII and the MII operations. The RMII maps
these signals in a more pin-efficient manner. The transmit and receive bits are converted from a
4-bit parallel format to a 2-bit parallel scheme that is clocked at twice the rate. The carrier sense
and data valid signals are combined into the ECRS_ECRSDV signal. This signal contains infor-
mation on carrier sense, FIFO status, and validity of the data. Transmit error bit (ETXER) and
collision detect (ECOL) are not used in RMII mode.

36.5.2 Transmit/Receive Operation
A standard IEEE 802.3 packet consists of the following fields: preamble, start of frame delimiter
(SFD), destination address (DA), source address (SA), length, data (Logical Link Control Data)
and frame check sequence CRC32 (FCS).

Table 36-1. Pin Configurations

Pin Name MII RMII

ETXCK_REFCK ETXCK: Transmit Clock REFCK: Reference Clock

ECRS_ECRSDV ECRS: Carrier Sense ECRSDV: Carrier Sense/Data Valid

ECOL ECOL: Collision Detect

ERXDV ERXDV: Data Valid

ERX0 - ERX3 ERX0 - ERX3: 4-bit Receive Data ERX0 - ERX1: 2-bit Receive Data

ERXER ERXER: Receive Error ERXER: Receive Error

ERXCK ERXCK: Receive Clock

ETXEN ETXEN: Transmit Enable ETXEN: Transmit Enable

ETX0-ETX3 ETX0 - ETX3: 4-bit Transmit Data ETX0 - ETX1: 2-bit Transmit Data

ETXER ETXER: Transmit Error

Table 36-2. Packet Format

Preamble Frame(1)

Alternating 1s/0s SFD DA SA Length/type LLC Data PAD FCS

Up to 7 bytes 1 byte 6 bytes 6 bytes 2 bytes 4 bytes

606
1768I–ATARM–09-Jul-09

AT91RM9200

Note: Frame Length between 64 bytes and 1518 bytes.

The packets are Manchester-encoded and -decoded and transferred serially using NRZ data
with a clock. All fields are of fixed length except for the data field. The MAC generates and
appends the preamble, SFD and CRC fields during transmission.

The preamble and SFD fields are stripped during reception.

36.5.2.1 Preamble and Start of Frame Delimiter (SFD)
The preamble field is used to acquire bit synchronization with an incoming packet. When trans-
mitted, each packet contains 62 bits of alternating 1,0 preamble. Some of this preamble is lost
as the packet travels through the network. Byte alignment is performed with the Start of Frame
Delimiter (SFD) pattern that consists of two consecutive 1's.

36.5.2.2 Destination Address
The destination address (DA) indicates the destination of the packet on the network and is used
to filter unwanted packets. There are three types of address formats: physical, multicast and
broadcast. The physical address is a unique address that corresponds only to a single node. All
physical addresses have an MSB of 0.

Multicast addresses begin with an MSB of 1. The MAC filters multicast addresses using a stan-
dard hashing algorithm that maps all multicast addresses into a 6-bit value. This 6-bit value
indexes a 64-bit array that filters the value. If the address consists of all ones, it is a broadcast
address, indicating that the packet is intended for all nodes.

36.5.2.3 Source Address
The source address (SA) is the physical address of the node that sent the packet. Source
addresses cannot be multicast or broadcast addresses. This field is passed to buffer memory.

36.5.2.4 Length/Type
If the value of this field is less than or equal to 1500, then the Length/Type field indicates the
number of bytes in the subsequent LLC Data field. If the value of this field is greater than or
equal to 1536, then the Length/Type field indicates the nature of the MAC client protocol (proto-
col type).

36.5.2.5 LLC Data
The data field consists of anywhere from 46 to 1500 bytes. Messages longer than 1500 bytes
need to be broken into multiple packets. Messages shorter than 46 bytes require appending a
pad to bring the data field to the minimum length of 46 bytes. If the data field is padded, the num-
ber of valid data bytes is indicated in the length field.

36.5.2.6 FCS Field
The Frame Check Sequence (FCS) is a 32-bit CRC field, calculated and appended to a packet
during transmission to allow detection of errors when a packet is received. During reception,
error free packets result in a specific pattern in the CRC generator. Packets with improper CRC
will be rejected.

36.5.3 Frame Format Extensions
The original Ethernet standards defined the minimum frame size as 64 bytes and the maximum
as 1518 bytes. These numbers include all bytes from the Destination MAC Address field through
the Frame Check Sequence field. The Preamble and Start Frame Delimiter fields are not
included when quoting the size of a frame. The IEEE 802.3ac standard extended the maximum

607
1768I–ATARM–09-Jul-09

AT91RM9200

allowable frame size to 1522 bytes to allow a VLAN tag to be inserted into the Ethernet frame
format. The bit BIG defined in the ETH_CFG register aims to process packet with VLAN tag.

The VLAN protocol permits insertion of an identifier, or tag, into the Ethernet frame format to
identify the VLAN to which the frame belongs. It allows frames from stations to be assigned to
logical groups. This provides various benefits, such as easing network administration, allowing
formation of work groups, enhancing network security, and providing a means of limiting broad-
cast domains (refer to IEEE standard 802.1Q for definition of the VLAN protocol). The 802.3ac
standard defines only the implementation details of the VLAN protocol that are specific to
Ethernet.

If present, the 4-byte VLAN tag is inserted into the Ethernet frame between the Source MAC
Address field and the Length field. The first 2-bytes of the VLAN tag consist of the “802.1Q Tag
Type” and are always set to a value of 0x8100. The 0x8100 value is a reserved Length/Type
field assignment that indicates the presence of the VLAN tag, and signals that the traditional
Length/Type field can be found at an offset of four bytes further into the frame. The last two
bytes of the VLAN tag contain the following information:

• The first three bits are a User Priority Field that may be used to assign a priority level to the
Ethernet frame.

• The following one bit is a Canonical Format Indicator (CFI) used in Ethernet frames to
indicate the presence of a Routing Information Field (RIF).

• The last twelve bits are the VLAN Identifier (VID) that uniquely identifies the VLAN to which
the Ethernet frame belongs.

With the addition of VLAN tagging, the 802.3ac standard permits the maximum length of an
Ethernet frame to be extended from 1518 bytes to 1522 bytes. Table 36-3 illustrates the format
of an Ethernet frame that has been “tagged” with a VLAN identifier according to the IEEE
802.3ac standard.

36.5.4 DMA Operations
Frame data is transferred to and from the Ethernet MAC via the DMA interface. All transfers are
32-bit words and may be single accesses or bursts of two, three or four words. Burst accesses
do not cross 16-byte boundaries.

Table 36-3. Ethernet Frame with VLAN Tagging

Preamble 7 bytes

Start Frame Delimiter 1 byte

Dest. MAC Address 6 bytes

Source MAC Address 6 bytes

Length/Type = 802.1Q Tag Type 2 byte

Tag Control Information 2 bytes

Length / Type 2 bytes

MAC Client Data 0 - n bytes

Pad 0 - p bytes

Frame Check Sequence 4 bytes

608
1768I–ATARM–09-Jul-09

AT91RM9200

The DMA controller performs four types of operations on the ASB bus. In order of priority, these
operations are receive buffer manager read, receive buffer manager write, transmit data DMA
read and receive data DMA write.

36.5.4.1 Transmitter Mode
Transmit frame data needs to be stored in contiguous memory locations. It does not need to be
word-aligned.

The transmit address register is written with the address of the first byte to be transmitted.

Transmit is initiated by writing the number of bytes to transfer (length) to the transmit control
register.

The transmit channel then reads data from memory 32 bits at a time and places them in the
transmit FIFO.

The transmit block starts frame transmission when three words have been loaded into the FIFO.

The transmit address register must be written before the transmit control register. While a frame
is being transmitted, it is possible to set up one other frame for transmission by writing new val-
ues to the transmit address and control registers. Reading the transmit address register returns
the address of the buffer currently being accessed by the transmit FIFO.

Reading the transmit control register returns the total number of bytes to be transmitted. The
BNQ bit in the Transmit Status Register indicates whether another buffer can be safely queued.
An interrupt is generated whenever this bit is set.

Frame assembly starts by adding preamble and the start frame delimiter. Data is taken from the
transmit FIFO word-by-word. If necessary, padding is added to make the frame length 60 bytes.
The CRC is calculated as a 32-bit polynomial. This is inverted and appended to the end of the
frame, making the frame length a minimum of 64 bytes. The CRC is not appended if the NCRC
bit is set in the transmit control register.

In full-duplex mode, frames are transmitted immediately. Back-to-back frames are transmitted at
least 96 bit times apart to guarantee the inter-frame gap.

In half-duplex mode, the transmitter checks carrier sense. If asserted, it waits for it to de-assert
and then starts transmission after the inter-frame gap of 96 bit-times.

If the collision signal is asserted during transmission, the transmitter transmits a jam sequence
of 32 bits taken from the data register and then retries transmission after the backoff time has
elapsed. An error is indicated and any further attempts aborted if 16 attempts cause collisions.

If transmit DMA underruns, bad CRC is automatically appended using the same mechanism as
jam insertion. Underrun also causes TXER to be asserted.

36.5.4.2 Receiver Mode
When a packet is received, it is checked for valid preamble, CRC, alignment, length and
address. If all these criteria are met, the packet is stored successfully in a receive buffer. If at the
end of reception the CRC is bad, then the received buffer is recovered. Each received frame
including CRC is written to a single receive buffer.

Receive buffers are word-aligned and are capable of containing 1518 or 1522 bytes (BIG = 1 in
ETH_CFG) of data (the maximum length of an Ethernet frame).

The start location for each received frame is stored in memory in a list of receive buffer descrip-
tors at a location pointed to by the receive buffer queue pointer register. Each entry in the list

609
1768I–ATARM–09-Jul-09

AT91RM9200

consists of two words. The first word is the address of the received buffer; the second is the
receive status. Table 36-4 defines an entry in the received buffer descriptor list.

To receive frames, the buffer queue must be initialized by writing an appropriate address to bits
[31:2] in the first word of each list entry. Bit zero of word zero must be written with zero.

After a frame is received, bit zero becomes set and the second word indicates what caused the
frame to be copied to memory. The start location of the received buffer descriptor list should be
written to the received buffer queue pointer register before receive is enabled (by setting the
receive enable bit in the network control register). As soon as the received block starts writing
received frame data to the receive FIFO, the received buffer manager reads the first receive buf-
fer location pointed to by the received buffer queue pointer register. If the filter block is active,
the frame should be copied to memory; the receive data DMA operation starts writing data into
the receive buffer. If an error occurs, the buffer is recovered. If the frame is received without
error, the queue entry is updated. The buffer pointer is rewritten to memory with its low-order bit
set to indicate successful frame reception and a used buffer. The next word is written with the
length of the frame and how the destination address was recognized. The next receive buffer
location is then read from the following word or, if the current buffer pointer had its wrap bit set,
the beginning of the table. The maximum number of buffer pointers before a wrap bit is seen is
1024. If a wrap bit is not seen by then, a wrap bit is assumed in that entry. The received buffer
queue pointer register must be written with zero in its lower-order bit positions to enable the
wrap function to work correctly.

If bit zero is set when the receive buffer manager reads the location of the receive buffer, then
the buffer has already been used and cannot be used again until software has processed the
frame and cleared bit zero. In this case, the DMA block sets the buffer unavailable bit in the
received status register and triggers an interrupt. The frame is discarded and the queue entry is
reread on reception of the next frame to see if the buffer is now available. Each discarded frame
increments a statistics register that is cleared on being read. When there is network congestion,
it is possible for the MAC to be programmed to apply back pressure.

This is when half-duplex mode collisions are forced on all received frames by transmitting 64 bits
of data (a default pattern).

Reading the received buffer queue register returns the location of the queue entry currently
being accessed. The queue wraps around to the start after either 1024 entries (i.e., 2048 words)
or when the wrap bit is found to be set in bit 1 of the first word of an entry.

Table 36-4. Received Buffer Descriptor List

Bit Function

Word 0

31:2 Base address of receive buffer

1 Wrap bit. If this bit is set, the counter that is ORed with the received buffer queue
pointer register to give the pointer to entries in this table is cleared after the buffer is
used.

0 Ownership bit. 1 indicates software owns the pointer, 0 indicates that the DMA owns
the buffer. If this bit is not zero when the entry is read by the receiver, the buffer
unavailable bit is set in the received status register and the receiver goes inactive.

Word 1

31 Global all ones broadcast address detected

610
1768I–ATARM–09-Jul-09

AT91RM9200

36.5.5 Address Checking
Whether or not a frame is stored depends on what is enabled in the network configuration regis-
ter, the contents of the specific address and hash registers and the frame destination address. In
this implementation of the MAC the frame source address is not checked.

A frame is not copied to memory if the MAC is transmitting in half-duplex mode at the time a des-
tination address is received.

The hash register is 64 bits long and takes up two locations in the memory map.

There are four 48-bit specific address registers, each taking up two memory locations. The first
location contains the first four bytes of the address; the second location contains the last two
bytes of the address stored in its least significant byte positions. The addresses stored can be
specific, group, local or universal.

Ethernet frames are transmitted a byte at a time, LSB first. The first bit (i.e., the LSB of the first
byte) of the destination address is the group/individual bit and is set one for multicast addresses
and zero for unicast. This bit corresponds to bit 24 of the first word of the specific address regis-
ter. The MSB of the first byte of the destination address corresponds to bit 31 of the specific
address register.

The specific address registers are compared to the destination address of received frames once
they have been activated. Addresses are deactivated at reset or when the first byte [47:40] is
written and activated or when the last byte [7:0] is written. If a receive frame address matches an
active address, the local match signal is set and the store frame pulse signal is sent to the DMA
block via the HCLK synchronization block.

A frame can also be copied if a unicast or multicast hash match occurs, it has the broadcast
address of all ones, or the copy all frames bit in the network configuration register is set.

The broadcast address of 0xFFFFFFFF is recognized if the no broadcast bit in the network con-
figuration register is zero. This sets the broadcast match signal and triggers the store frame
signal.

The unicast hash enable and the multicast hash enable bits in the network configuration register
enable the reception of hash matched frames. So all multicast frames can be received by setting
all bits in the hash register.

30 Multicast hash match

29 Unicast hash match

28 External address (optional)

27 Unknown source address (reserved for future use)

26 Local address match (Specific address 1 match)

25 Local address match (Specific address 2 match)

24 Local address match (Specific address 3 match)

23 Local address match (Specific address 4 match)

22:11 Reserved; written to 0

10:0 Length of frame including FCS

Table 36-4. Received Buffer Descriptor List

Bit Function

611
1768I–ATARM–09-Jul-09

AT91RM9200

The CRC algorithm reduces the destination address to a 6-bit index into a 64-bit hash register.If
the equivalent bit in the register is set, the frame is matched depending on whether the frame is
multicast or unicast and the appropriate match signals are sent to the DMA block. If the copy all
frames bit is set in the network configuration register, the store frame pulse is always sent to the
DMA block as soon as any destination address is received.

612
1768I–ATARM–09-Jul-09

AT91RM9200

36.6 Ethernet MAC (EMAC) User Interface

Table 36-5. EMAC Register Mapping

Offset Register Register Name Read/Write Reset

0x00 EMAC Control Register ETH_CTL Read/Write 0x0

0x04 EMAC Configuration Register ETH_CFG Read/Write 0x800

0x08 EMAC Status Register ETH_SR Read-only 0x6

0x0C EMAC Transmit Address Register ETH_TAR Read/Write 0x0

0x10 EMAC Transmit Control Register ETH_TCR Read/Write 0x0

0x14 EMAC Transmit Status Register ETH_TSR Read/Write 0x18

0x18 EMAC Receive Buffer Queue Pointer ETH_RBQP Read/Write 0x0

0x1C Reserved – Read-only 0x0

0x20 EMAC Receive Status Register ETH_RSR Read/Write 0x0

0x24 EMAC Interrupt Status Register ETH_ISR Read/Write 0x0

0x28 EMAC Interrupt Enable Register ETH_IER Write-only –

0x2C EMAC Interrupt Disable Register ETH_IDR Write-only –

0x30 EMAC Interrupt Mask Register ETH_IMR Read-only 0xFFF

0x34 EMAC PHY Maintenance Register ETH_MAN Read/Write 0x0

Statistics Registers(1)

0x40 Frames Transmitted OK Register ETH_FRA Read/Write 0x0

0x44 Single Collision Frame Register ETH_SCOL Read/Write 0x0

0x48 Multiple Collision Frame Register ETH_MCOL Read/Write 0x0

0x4C Frames Received OK Register ETH_OK Read/Write 0x0

0x50 Frame Check Sequence Error Register ETH_SEQE Read/Write 0x0

0x54 Alignment Error Register ETH_ALE Read/Write 0x0

0x58 Deferred Transmission Frame Register ETH_DTE Read/Write 0x0

0x5C Late Collision Register ETH_LCOL Read/Write 0x0

0x60 Excessive Collision Register ETH_ECOL Read/Write 0x0

0x64 Transmit Underrun Error Register ETH_TUE Read/Write 0x0

0x68 Carrier Sense Error Register ETH_CSE Read/Write 0x0

0x6C Discard RX Frame Register ETH_DRFC Read/Write 0x0

0x70 Receive Overrun Register ETH_ROV Read/Write 0x0

0x74 Code Error Register ETH_CDE Read/Write 0x0

0x78 Excessive Length Error Register ETH_ELR Read/Write 0x0

0x7C Receive Jabber Register ETH_RJB Read/Write 0x0

0x80 Undersize Frame Register ETH_USF Read/Write 0x0

0x84 SQE Test Error Register ETH_SQEE Read/Write 0x0

613
1768I–ATARM–09-Jul-09

AT91RM9200

Note: 1. For further details on the statistics registers, see Table 36-6 on page 629.

Address Registers

0x90 EMAC Hash Address Low [31:0] ETH_HSL Read/Write 0x0

0x94 EMAC Hash Address High [63:32] ETH_HSH Read/Write 0x0

0x98
EMAC Specific Address 1 Low, First 4
Bytes

ETH_SA1L Read/Write 0x0

0x9C
EMAC Specific Address 1 High, Last 2
Bytes

ETH_SA1H Read/Write 0x0

0xA0
EMAC Specific Address 2 Low, First 4
Bytes

ETH_SA2L Read/Write 0x0

0xA4
EMAC Specific Address 2 High, Last 2
Bytes

ETH_SA2H Read/Write 0x0

0xA8
EMAC Specific Address 3 Low, First 4
Bytes

ETH_SA3L Read/Write 0x0

0xAC
EMAC Specific Address 3 High, Last 2
Bytes

ETH_SA3H Read/Write 0x0

0xB0
EMAC Specific Address 4 Low, First 4
Bytes

ETH_SA4L Read/Write 0x0

0xB4
EMAC Specific Address 4 High, Last 2
Bytes

ETH_SA4H Read/Write 0x0

Table 36-5. EMAC Register Mapping (Continued)

Offset Register Register Name Read/Write Reset

614
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.1 EMAC Control Register
Name: ETH_CTL

Access Type: Read/Write

• LB: Loopback
Optional. When set, loopback signal is at high level.

• LBL: Loopback Local
When set, connects ETX[3:0] to ERX[3:0], ETXEN to ERXDV, forces full duplex and drives ERXCK and ETXCK_REFCK
with MCK divided by 4.

• RE: Receive Enable
When set, enables the Ethernet MAC to receive data.

• TE: Transmit Enable
When set, enables the Ethernet transmitter to send data.

• MPE: Management Port Enable
Set to one to enable the management port. When zero, forces MDIO to high impedance state.

• CSR: Clear Statistics Registers
This bit is write-only. Writing a one clears the statistics registers.

• ISR: Increment Statistics Registers
This bit is write-only. Writing a one increments all the statistics registers by one for test purposes.

• WES: Write Enable for Statistics Registers
Setting this bit to one makes the statistics registers writable for functional test purposes.

• BP: Back Pressure
If this field is set, then in half-duplex mode collisions are forced on all received frames by transmitting 64 bits of data
(default pattern).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – BP

7 6 5 4 3 2 1 0

WES ISR CSR MPE TE RE LBL LB

615
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.2 EMAC Configuration Register
Name: ETH_CFG

Access Type: Read/Write

• SPD: Speed
Set to 1 to indicate 100 Mbit/sec, 0 for 10 Mbit/sec. Has no other functional effect.

• FD: Full Duplex
If set to 1, the transmit block ignores the state of collision and carrier sense and allows receive while transmitting.

• BR: Bit Rate
Optional.

• CAF: Copy All Frames
When set to 1, all valid frames are received.

• NBC: No Broadcast
When set to 1, frames addressed to the broadcast address of all ones are not received.

• MTI: Multicast Hash Enable
When set multicast frames are received when six bits of the CRC of the destination address point to a bit that is set in the
hash register.

• UNI: Unicast Hash Enable
When set, unicast frames are received when six bits of the CRC of the destination address point to a bit that is set in the
hash register.

• BIG: Receive 1522 Bytes
When set, the MAC receives up to 1522 bytes. Normally the MAC receives frames up to 1518 bytes in length.

This bit allows to receive extended Ethernet frame with “VLAN tag” (IEEE 802.3ac)

• EAE: External Address Match Enable
Optional.

• CLK

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – RMII RTY CLK EAE BIG

7 6 5 4 3 2 1 0

UNI MTI NBC CAF – BR FD SPD

616
1768I–ATARM–09-Jul-09

AT91RM9200

The system clock (MCK) is divided down to generate MDC (the clock for the MDIO). To conform with IEEE standard 802.3
MDC must not exceed 2.5 MHz. At reset this field is set to 10 so that MCK is divided by 32.

• RTY: Retry Test
When set, the time between frames is always one time slot. For test purposes only. Must be cleared for normal operation.

• RMII: Reduce MII
When set, this bit enables the RMII operation mode. When reset, it selects the MII mode.

CLK MDC

00 MCK divided by 8

01 MCK divided by 16

10 MCK divided by 32

11 MCK divided by 64

617
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.3 EMAC Status Register
Name: ETH_SR

Access Type: Read only

• LINK
Reserved.

• MDIO
0 = MDIO pin not set.

1 = MDIO pin set.

• IDLE
0 = PHY logic is idle.

1 = PHY logic is running.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – IDLE MDIO LINK

618
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.4 EMAC Transmit Address Register
Name: ETH_TAR

Access Type: Read/Write

• ADDRESS: Transmit Address Register
Written with the address of the frame to be transmitted, read as the base address of the buffer being accessed by the trans-
mit FIFO. Note that if the two least significant bits are not zero, transmit starts at the byte indicated.

36.6.5 EMAC Transmit Control Register
Name: ETH_TCR

Access Type: Read/Write

• LEN: Transmit Frame Length
This register is written to the number of bytes to be transmitted excluding the four CRC bytes unless the no CRC bit is
asserted. Writing these bits to any non-zero value initiates a transmission. If the value is greater than 1514 (1518 if no CRC
is being generated), an oversize frame is transmitted. This field is buffered so that a new frame can be queued while the
previous frame is still being transmitted. Must always be written in address-then-length order. Reads as the total number of
bytes to be transmitted (i.e., this value does not change as the frame is transmitted.) Frame transmission does not start
until two 32-bit words have been loaded into the transmit FIFO. The length must be great enough to ensure two words are
loaded.

• NCRC: No CRC
If this bit is set, it is assumed that the CRC is included in the length being written in the low-order bits and the MAC does not
append CRC to the transmitted frame. If the buffer is not at least 64 bytes long, a short frame is sent. This field is buffered
so that a new frame can be queued while the previous frame is still being transmitted. Reads as the value of the frame cur-
rently being transmitted.

31 30 29 28 27 26 25 24

ADDRESS

23 22 21 20 19 18 17 16

ADDRESS

15 14 13 12 11 10 9 8

ADDRESS

7 6 5 4 3 2 1 0

ADDRESS

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

NCRC – – – – LEN

7 6 5 4 3 2 1 0

LEN

619
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.6 EMAC Transmit Status Register
Name: ETH_TSR

Access Type: Read/Write

• OVR: Ethernet Transmit Buffer Overrun
Software has written to the Transmit Address Register (ETH_TAR) or Transmit Control Register (ETH_TCR) when bit BNQ
was not set. Cleared by writing a one to this bit.

• COL: Collision Occurred
Set by the assertion of collision. Cleared by writing a one to this bit.

• RLE: Retry Limit Exceeded
Cleared by writing a one to this bit.

• IDLE: Transmitter Idle
Asserted when the transmitter has no frame to transmit. Cleared when a length is written to transmit frame length portion of
the Transmit Control register. This bit is read-only.

• BNQ: Ethernet Transmit Buffer not Queued
Software may write a new buffer address and length to the transmit DMA controller when set. Cleared by having one frame
ready to transmit and another in the process of being transmitted. This bit is read-only.

• COMP: Transmit Complete
Set when a frame has been transmitted. Cleared by writing a one to this bit.

• UND: Transmit Underrun
Set when transmit DMA was not able to read data from memory in time. If this happens, the transmitter forces bad CRC.
Cleared by writing a one to this bit.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– UND COMP BNQ IDLE RLE COL OVR

620
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.7 EMAC Receive Buffer Queue Pointer Register
Name: ETH_RBQP

Access Type: Read/Write

• ADDRESS: Receive Buffer Queue Pointer
Written with the address of the start of the receive queue, reads as a pointer to the current buffer being used. The receive
buffer is forced to word alignment.

36.6.8 EMAC Receive Status Register
Name: ETH_RSR

Access Type: Read/Write

• BNA: Buffer Not Available
An attempt was made to get a new buffer and the pointer indicated that it was owned by the processor. The DMA rereads
the pointer each time a new frame starts until a valid pointer is found. This bit is set at each attempt that fails even if it has
not had a successful pointer read since it has been cleared. Cleared by writing a one to this bit.

• REC: Frame Received
One or more frames have been received and placed in memory. Cleared by writing a one to this bit.

• OVR: RX Overrun
The DMA block was unable to store the receive frame to memory, either because the ASB bus was not granted in time or
because a not OK HRESP was returned. The buffer is recovered if this happens. Cleared by writing a one to this bit.

31 30 29 28 27 26 25 24

ADDRESS

23 22 21 20 19 18 17 16

ADDRESS

15 14 13 12 11 10 9 8

ADDRESS

7 6 5 4 3 2 1 0

ADDRESS

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – OVR REC BNA

621
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.9 EMAC Interrupt Status Register
Name: ETH_ISR

Access Type: Read/Write

• DONE: Management Done
The PHY maintenance register has completed its operation. Cleared on read.

• RCOM: Receive Complete
A frame has been stored in memory. Cleared on read.

• RBNA: Receive Buffer Not Available
Cleared on read.

• TOVR: Transmit Buffer Overrun
Software has written to the Transmit Address Register (ETH_TAR) or Transmit Control Register (ETH_TCR) when BNQ of
the Transmit Status Register (ETH_TSR) was not set. Cleared on read.

• TUND: Transmit Buffer Underrun
Ethernet transmit buffer underrun. The transmit DMA did not complete fetch frame data in time for it to be transmitted.
Cleared on read.

• RTRY: Retry Limit
Retry limit exceeded. Cleared on read.

• TBRE: Transmit Buffer Register Empty
Software may write a new buffer address and length to the transmit DMA controller. Cleared by having one frame ready to
transmit and another in the process of being transmitted. Cleared on read.

• TCOM: Transmit Complete
Set when a frame has been transmitted. Cleared on read.

• TIDLE: Transmit Idle
Set when all frames have been transmitted. Cleared on read.

• LINK

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – ABT ROVR LINK TIDLE

7 6 5 4 3 2 1 0

TCOM TBRE RTRY TUND TOVR RBNA RCOM DONE

622
1768I–ATARM–09-Jul-09

AT91RM9200

Set when LINK pin changes value. Optional.

• ROVR: RX Overrun
Set when the RX overrun status bit is set. Cleared on read.

• ABT: Abort
Set when an abort occurs during a DMA transfer. Cleared on read.

623
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.10 EMAC Interrupt Enable Register
Name: ETH_IER

Access Type: Write only

• DONE: Management Done Interrupt Enable

• RCOM: Receive Complete Interrupt Enable

• RBNA: Receive Buffer Not Available Interrupt Enable

• TOVR: Transmit Buffer Overrun Interrupt Enable

• TUND: Transmit Buffer Underrun Interrupt Enable

• RTRY: Retry Limit Interrupt Enable

• TBRE: Transmit Buffer Register Empty Interrupt Enable

• TCOM: Transmit Complete Interrupt Enable

• TIDLE: Transmit Idle Interrupt Enable

• LINK: LINK Interrupt Enable

• ROVR: RX Overrun Interrupt Enable

• ABT: Abort Interrupt Enable
0: No effect.

1: Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – ABT ROVR LINK TIDLE

7 6 5 4 3 2 1 0

TCOM TBRE RTRY TUND TOVR RBNA RCOM DONE

624
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.11 EMAC Interrupt Disable Register
Name: ETH_IDR

Access Type: Write only

• DONE: Management Done Interrupt Disable

• RCOM: Receive Complete Interrupt Disable

• RBNA: Receive Buffer Not Available Interrupt Disable

• TOVR: Transmit Buffer Overrun Interrupt Disable

• TUND: Transmit Buffer Underrun Interrupt Disable

• RTRY: Retry Limit Interrupt Disable

• TBRE: Transmit Buffer Register Empty Interrupt Disable

• TCOM: Transmit Complete Interrupt Disable

• TIDLE: Transmit Idle Interrupt Disable

• LINK: LINK Interrupt Disable

• ROVR: RX Overrun Interrupt Disable

• ABT: Abort Interrupt Disable
0: No effect.

1: Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – ABT ROVR LINK TIDLE

7 6 5 4 3 2 1 0

TCOM TBRE RTRY TUND TOVR RBNA RCOM DONE

625
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.12 EMAC Interrupt Mask Register
Name: ETH_IMR

Access Type: Read only

• DONE: Management Done Interrupt Mask

• RCOM: Receive Complete Interrupt Mask

• RBNA: Receive Buffer Not Available Interrupt Mask

• TOVR: Transmit Buffer Overrun Interrupt Mask

• TUND: Transmit Buffer Underrun Interrupt Mask

• RTRY: Retry Limit Interrupt Mask

• TBRE: Transmit Buffer Register Empty Interrupt Mask

• TCOM: Transmit Complete Interrupt Mask

• TIDLE: Transmit Idle Interrupt Mask

• LINK: LINK Interrupt Mask

• ROVR: RX Overrun Interrupt Mask

• ABT: Abort Interrupt Mask
0: The corresponding interrupt is enabled.

1: The corresponding interrupt is not enabled.

Important Note: The interrupt is disabled when the corresponding bit is set. This is non-standard for AT91 products as
generally a mask bit set enables the interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – ABT ROVR LINK TIDLE

7 6 5 4 3 2 1 0

TCOM TBRE RTRY TUND TOVR RBNA RCOM DONE

626
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.13 EMAC PHY Maintenance Register
Name: ETH_MAN

Access Type: Read/Write

Writing to this register starts the shift register that controls the serial connection to the PHY. On each shift cycle the MDIO
pin becomes equal to the MSB of the shift register and LSB of the shift register becomes equal to the value of the MDIO
pin. When the shifting is complete an interrupt is generated and the IDLE field is set in the Network Status register.

When read, gives current shifted value.

• DATA
For a write operation this is written with the data to be written to the PHY. After a read operation this contains the data read
from the PHY.

• CODE
Must be written to 10 in accordance with IEEE standard 802.3. Reads as written.

• REGA
Register address. Specifies the register in the PHY to access.

• PHYA
PHY address. Normally is 0.

• RW
Read/Write Operation. 10 is read. 01 is write. Any other value is an invalid PHY management frame.

• HIGH
Must be written with 1 to make a valid PHY management frame. Conforms with IEEE standard 802.3.

• LOW
Must be written with 0 to make a valid PHY management frame. Conforms with IEEE standard 802.3.

31 30 29 28 27 26 25 24

LOW HIGH RW PHYA

23 22 21 20 19 18 17 16

PHYA REGA CODE

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

627
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.14 EMAC Hash Address Low Register
Name: ETH_HSL

Access Type: Read/Write

• ADDR
Hash address bits 31 to 0.

36.6.15 EMAC Hash Address High Register
Name: ETH_HSH

Access Type: Read/Write

• ADDR
Hash address bits 63 to 32.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

628
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.16 EMAC Specific Address (1, 2, 3 and 4) High Register
Name: ETH_SA1H,...ETH_SA4H

Access Type: Read/Write

• ADDR
Unicast addresses (1, 2, 3 and 4), Bits 47:32.

36.6.17 EMAC Specific Address (1, 2, 3 and 4) Low Register
Name: ETH_SA1L,...ETH_SA4L

Access Type: Read/Write

• ADDR
Unicast addresses (1, 2, 3 and 4), Bits 31:0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

629
1768I–ATARM–09-Jul-09

AT91RM9200

36.6.18 EMAC Statistics Register Block Registers
These registers reset to zero on a read and remain at all ones when they count to their maximum value. They should be
read frequently enough to prevent loss of data.

The statistics register block contains the registers found in Table 36-6.

Table 36-6. EMAC Statistic Register Block Register Descriptions

Register Register Name Description

Frames Transmitted OK Register ETH_FRA A 24-bit register counting the number of frames successfully transmitted.

Single Collision Frame Register ETH_SCOL A 16-bit register counting the number of frames experiencing a single collision
before being transmitted and experiencing no carrier loss nor underrun.

Multiple Collision Frame
Register

ETH_MCOL A 16-bit register counting the number of frames experiencing between two and
fifteen collisions prior to being transmitted (62 - 1518 bytes, no carrier loss, no
underrun).

Frames Received OK Register ETH_OK A 24-bit register counting the number of good frames received, i.e., address
recognized. A good frame is of length 64 to 1518 bytes and has no FCS,
alignment or code errors.

Frame Check Sequence Error
Register

ETH_SEQE An 8-bit register counting address-recognized frames that are an integral
number of bytes long, that have bad CRC and that are 64 to 1518 bytes long.

Alignment Error Register ETH_ALE An 8-bit register counting frames that:
- are address-recognized,
- are not an integral number of bytes long,
- have bad CRC when their length is truncated to an integral number of bytes,
- are between 64 and 1518 bytes long.

Deferred Transmission Frame
Register

ETH_DTE A 16-bit register counting the number of frames experiencing deferral due to
carrier sense active on their first attempt at transmission (no underrun or
collision).

Late Collision Register ETH_LCOL An 8-bit register counting the number of frames that experience a collision after
the slot time (512 bits) has expired. No carrier loss or underrun. A late collision
is counted twice, i.e., both as a collision and a late collision.

Excessive Collision Register ETH_ECOL An 8-bit register counting the number of frames that failed to be transmitted
because they experienced 16 collisions (64 - 1518 bytes, no carrier loss or
underrun).

Transmit Underrun Error
Register

ETH_TUE An 8-bit register counting the number of frames not transmitted due to a
transmit DMA underrun. If this register is incremented, then no other register is
incremented.

Carrier Sense Error Register ETH_CSE An 8-bit register counting the number of frames for which carrier sense was not
detected and that were maintained in half-duplex mode one slot time (512 bits)
after the start of transmission (no excessive collision).

Discard RX Frame Register ETH_DRFC This 16-bit counter is incremented every time an address-recognized frame is
received but cannot be copied to memory because no receive buffer is
available.

Receive Overrun Register ETH_ROV An 8-bit register counting the number of frames that are address-recognized
but were not copied to memory due to a receive DMA overrun.

Code Error Register ETH_CDE An 8-bit register counting the number of frames that are address-recognized,
had RXER asserted during reception. If this counter is incremented, then no
other counters are incremented.

630
1768I–ATARM–09-Jul-09

AT91RM9200

Excessive Length Error Register ETH_ELR An 8-bit register counting the number of frames received exceeding 1518 bytes
in length but that do not have either a CRC error, an alignment error or a code
error.

Receive Jabber Register ETH_RJB An 8-bit register counting the number of frames received exceeding 1518 bytes
in length and having either a CRC error, an alignment error or a code error.

Undersize Frame Register ETH_USF An 8-bit register counting the number of frames received less that are than 64
bytes in length but that do not have either a CRC error, an alignment error or a
code error.

SQE Test Error Register ETH_SQEE An 8-bit register counting the number of frames where pin ECOL was not
asserted within a slot time of pin ETXEN being deasserted.

Table 36-6. EMAC Statistic Register Block Register Descriptions (Continued)

Register Register Name Description

631
1768I–ATARM–09-Jul-09

AT91RM9200

37. AT91RM9200 Electrical Characteristics

37.1 Absolute Maximum Ratings

Table 37-1. Absolute Maximum Ratings*

Operating Temperature (Industrial)-40⋅ C to +85⋅ C *NOTICE: Stresses beyond those listed under “Absolute Maxi-
mum Ratings” may cause permanent damage to
the device. This is a stress rating only and func-
tional operation of the device at these or other con-
ditions beyond those indicated in the operational
sections of this specification is not implied. Expo-
sure to absolute maximum rating conditions for
extended periods may affect device reliability.

Storage Temperature -60°C to +150°C

Voltage on Input Pins
with Respect to Ground -0.3V to VDDIO+0.3V
.. (+4V max)

Maximum Operating Voltage
(VDDCORE, VDDPLL and VDDOSC) 2V

Maximum Operating Voltage
(VDDIOM and VDDIOP) .. 4V

DC Output Current
(SDA10, SDCKE, SDWE, RAS, CAS) 16 mA

DC Output Current
(Any other pin) .. 8 mA

632
1768I–ATARM–09-Jul-09

AT91RM9200

37.2 DC Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C, unless otherwise spec-
ified and are certified for a junction temperature up to TJ = 100°C.

Notes: 1. VDD is applicable to VDDIOM, VDDIOP, VDDPLL and VDDOSC

2. IO = Output Current.

Table 37-2. DC Characteristics

Symbol Parameter Conditions Min Typ Max Units

VDDCORE DC Supply Core 1.65 1.95 V

VDDOSC DC Supply Oscillator 1.65 1.95 V

VDDPLL DC Supply PLL 1.65 1.95 V

VDDIOM DC Supply Memory I/Os 3.0 3.6 V

VDDIOP
DC Supply Peripheral
I/Os

3.0 3.6 V

VIL Input Low-level Voltage -0.3 0.8 V

VIH Input High-level Voltage 2 VDD + 0.3(1) V

VOL Output Low-level Voltage

SDA10, SDCKE, SDWE, RAS, CAS
pins:

IOL = 16 mA(2)

IOL = 0 mA(2)

0.4

0.2

V

Other pins:

IOL = 8 mA(2)

IOL = 0 mA(2)

0.4

0.2

VOH Output High-level Voltage

SDA10, SDCKE, SDWE, RAS, CAS
pins:

IOH = 16 mA(2)
IOH = 0 mA(2)

VDD - 0.4(1)

VDD - 0.2(1)

V

Other pins:
IOH = 8 mA(2)

IOH = 0 mA(2)

VDD - 0.4(1)

VDD - 0.2(1)

ILEAK Input Leakage Current Pullup resistors disabled 1 µA

IPULL Input Pull-up Current
VDD = 3.0V(1), VIN = 0 8

µA
VDD = 3.6V(1), VIN = 0 30

RPULLUP Internal Pull-up Value 200 kOhm

CIN Input Capacitance
208-PQFP Package 8.8

pF
256-LFBGA Package 7.6

ISC Static Current

On VDDCORE = 2V,
MCK = 0 Hz

TA = 25°C 350 2000

µA
All inputs driven TMS,
TDI, TCK, NRST = 1

TA = 85°C 2800 14000

633
1768I–ATARM–09-Jul-09

AT91RM9200

37.3 Clock Characteristics
These parameters are given in the following conditions:

• VDDCORE = 1.8V

• Ambient Temperature = 25°C
The Temperature Derating Factor described in the section 38.1.2 “Temperature Derating Factor” on page 640 and
VDDCORE Voltage Derating Factor described in the section 38.1.3 “VDDCORE Voltage Derating Factor” on page 640 are
both applicable to these characteristics.

37.3.1 Processor Clock Characteristics

37.3.2 Master Clock Characteristics

37.4 Crystal Oscillator Characteristics

37.4.1 32 kHz Oscillator Characteristics

Note: 1. Rs is the equivalent series resistance, CL is the equivalent load capacitance

Table 37-3. Processor Clock Waveform Parameters

Symbol Parameter Conditions Min Max Units

1/(tCPPCK) Processor Clock Frequency 209.0 MHz

tCPPCK Processor Clock Period 4.8 ns

tCHPCK Processor Clock High Half-period 2.2 ns

tCLPCK Processor Clock Low Half-period 2.2 ns

Table 37-4. Master Clock Waveform Parameters

Symbol Parameter Conditions Min Max Units

1/(tCPMCK) Master Clock Frequency 80.0 MHz

tCPMCK Master Clock Period 12.5 ns

tCHMCK Master Clock High Half-period 6.3 ns

tCLMCK Master Clock Low Half-period 6.3 ns

Table 37-5. 32 kHz Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

1/(tCP32KHz) Crystal Oscillator Frequency 32.768 kHz

Duty Cycle Measured at the PCK output pin 40 50 60 %

tST Startup Time
VDDOSC = 1.8V

Rs = 50 kΩ, CL = 12.5 pF(1) 900 ms

634
1768I–ATARM–09-Jul-09

AT91RM9200

37.4.2 Main Oscillator Characteristics

37.4.3 XIN Clock Characteristics (1)

Notes: 1. These characteristics apply only when the Main Oscillator is in bypass mode (i.e., when MOSCEN = 0 in the CKGR_MOR
register. (See Section 23.6.7 ”PMC Clock Generator Main Oscillator Register” on page 283.)

37.5 Power Consumption
The values in Table 37-8 and Table 37-9 are measured values on the AT91RM9200DK Evalua-
tion Board with operating conditions as follows:

• VDDIO = 3.3V

• VDDCORE = VDDPLL = VDDOSC = 1.8V

• TA = 25⋅ C

• MCK = 60 MHz

Table 37-6. Main Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

1/(tCPMAIN) Crystal Oscillator Frequency 3 16 20 MHz

CL1, CL2
Internal Load Capacitance

(CL1 = CL2)
Integrated load capacitance (XIN,
GND) and (XOUT GND) in series

17 20 23 pF

CL Equivalent Load Capacitance Max external capacitors: 10 pF 20 25 pF

Duty Cycle Measured at the PCK output pin 30 50 70 %

tST Startup Time

@ 3 MHz CSHUNT = 3 pF

@ 8 MHz CSHUNT = 7 pF
@ 16 MHz CSHUNT = 7 pF

@ 20 MHz CSHUNT = 7 pF

14.5

4
1.4

1

ms

PON Drive Level

@ 3 MHz

@ 8 MHz

@ 16 MHz
@ 20 MHz

15

30

50
50

µW

ESR Equivalent Series Resistor Rs

Fundamental @ 3 MHz
Fundamental @ 8 MHz

Fundamental @ 16 MHz

Fundamental @ 20 MHz

200
100

80

50

Ω

CM Motional capacitance 8 fF

CSHUNT Shunt capacitance 7 pF

Table 37-7. XIN Clock Electrical Characteristics

Symbol Parameter Conditions Min Max Units

1/(tCPXIN) XIN Clock Frequency 50.0 MHz

tCPXIN XIN Clock Period 20.0 ns

tCHXIN XIN Clock High Half-period 0.4 x tCPXIN 0.6 x tCPXIN

tCLXIN XIN Clock Low Half-period 0.4 x tCPXIN 0.6 x tCPXIN

CIN XIN Input Capacitance Note (1) 40 pF

RIN XIN Pulldown Resistor Note (1) 500 kOhm

635
1768I–ATARM–09-Jul-09

AT91RM9200

• PCK = 180 Mhz

• SLCK = 32.768 kHz

• EMACK 50 MHz clock not connected

These figures represent the power consumption measured on the VDDCORE power supply.

Note: 1. Code in internal SRAM.

Notes: 1. Code in internal SRAM.

2. Master Clock related power consumption only.

3. Power consumption on the VDDPLL power supply.

4. Power consumption on the VDDOSC power supply.

Table 37-8. Power Consumption for PMC Modes(1)

Mode Conditions Consumption Unit

Normal
ARM Core clock enabled.
All peripheral clocks deactivated.

24.4

mAIdle
ARM Core clock disabled and waiting for the next interrupt.

All peripheral clocks deactivated.
13.8

Slow Clock
Main oscillator and PLLs are switched off.

Processor and all peripherals run at slow clock.
1.44

Standby

ARM Core clock disabled and waiting for the next interrupt.
All peripheral clocks deactivated.

Main oscillator and PLLs are switched off.

Slow clock still enabled.

520 µA

Table 37-9. Power Consumption by Peripheral (1)

Peripheral Consumption Unit

PIO Controller 0.5

mA

USART 1.3

MCI 1.6

UDP 1.2

TWI 0.3

SPI 1.2

SSC 1.5

Timer Counter Channel 0.4

UHP 2.5

EMAC (2) 3.5

PMC
PLL(3)

Slow Clock Oscillator (3)

Main Oscillator (4)

3144

858

350

uA

nA

uA

636
1768I–ATARM–09-Jul-09

AT91RM9200

37.6 PLL Characteristics

37.7 Transceiver Characteristics

37.7.1 Electrical Characteristics

Table 37-10. Phase Lock Loop Characteristics

Symbol Parameter Conditions Min Typ Max Unit

FOUT Output Frequency

Field OUTA of CKGR_PLLA
00 80 160 MHz

10 150 180 MHz

Field OUTB of CKGR_PLLB
00 80 160 MHz

10 150 180 MHz

FIN Input Frequency 1 32 MHz

Table 37-11. Electrical Parameters

Symbol Parameter Conditions Min Typ Max Unit

Input Levels

VIL Low Level 0.8 V

VIH High Level 2.0 V

VDI Differential Input Sensitivity |(D+) - (D-)| 0.2 V

VCM

Differential Input Common
Mode Range

0.8 2.5 V

CIN Transceiver capacitance Capacitance to ground on each line 20 pF

I Hi-Z State Data Line Leakage 0V < VIN < 3.3V -5 +5 µA

REXT

Recommended External USB
Series Resistor

In series with each USB pin with ±5% 27

Output Levels

VOL Low Level Output
Measured with RL of 1.425 kOhm tied
to 3.6V

0.3 V

VOH High Level Output
Measured with RL of 14.25 kOhm tied
to GND

2.8 V

VCRS

Output Signal Crossover
Voltage

Measure conditions described in
Figure 37-1

1.3 2.0 V

637
1768I–ATARM–09-Jul-09

AT91RM9200

37.7.2 Switching Characteristics

Figure 37-1. USB Data Signal Rise and Fall Times

Table 37-12. In Slow Mode

Symbol Parameter Conditions Min Typ Max Unit

tFR Transition Rise Time CLOAD = 400 pF 75 300 ns

tFE Transition Fall Time CLOAD = 400 pF 75 300 ns

tFRFM Rise/Fall time Matching CLOAD = 400 pF 80 120 %

Table 37-13. In Full Speed

Symbol Parameter Conditions Min Typ Max Unit

tFR Transition Rise Time CLOAD = 50 pF 4 20 ns

tFE Transition Fall Time CLOAD = 50 pF 4 20 ns

tFRFM Rise/Fall Time Matching 90 111.11 %

10% 10%

90%VCRS

tR tF
Differential
Data Lines

Rise Time Fall Time

Fosc = 6MHz/750kHz
REXT=27 ohms

CloadBuffer

(b)

(a)

638
1768I–ATARM–09-Jul-09

AT91RM9200

639
1768I–ATARM–09-Jul-09

AT91RM9200

38. AT91RM9200 AC Characteristics

38.1 Applicable Conditions and Derating Data

38.1.1 Conditions and Timings Computation
The delays are given as typical values in the following conditions:

• VDDIOM = 3.3V

• VDDCORE = 1.8V

• Ambient Temperature = 25°C

• Load Capacitance = 0 pF

• The output level change detection is (0.5 x VDDIOM).

• The input level is (0.3 x VDDIOM) for a low-level detection and is (0.7 x VDDIOM) for a high-level
detection.

The minimum and maximum values given in the AC characteristics tables of this datasheet take
into account process variation and design. In order to obtain the timing for other conditions, the
following equation should be used:

where:

• δT° is the derating factor in temperature given in Figure 38-1 on page 640.

• δVDDCORE is the derating factor for the Core Power Supply given in Figure 38-2 on page 640.

• tDATASHEET is the minimum or maximum timing value given in this datasheet for a load
capacitance of 0 pF.

• δVDDIOM is the derating factor for the IOM Power Supply given in Figure 38-3 on page 641.

• CSIGNAL is the capacitance load on the considered output pin(1).

• δCSIGNAL is the load derating factor depending on the capacitance load on the related output
pins given in Min and Max in this datasheet.

The input delays are given as typical values.

Note: 1. The user must take into account the package capacitance load contribution (CIN) described in
Table 37-2, “DC Characteristics,” on page 632.

t δT° δVDDCORE tDATASHEET×() δVDDIOM CSIGNAL δCSIGNAL×()∑×⎝ ⎠
⎛ ⎞+⎝ ⎠

⎛ ⎞×=

640
1768I–ATARM–09-Jul-09

AT91RM9200

38.1.2 Temperature Derating Factor

Figure 38-1. Derating Curve for Different Operating Temperatures

38.1.3 VDDCORE Voltage Derating Factor

Figure 38-2. Derating Curve for Different Core Supply Voltages

0,8

0,9

1

1,1

1,2

-40 -20 0 20 40 60 80

Operating Temperature (°C)

D
er

at
in

g
F

ac
to

r

0,9

0,95

1

1,05

1,1

1,15

1,65 1,7 1,75 1,8 1,85 1,9 1,95

Core Supply Voltage (V)

D
er

at
in

g
Fa

ct
or

641
1768I–ATARM–09-Jul-09

AT91RM9200

38.1.4 VDDIOM Voltage Derating Factor

Figure 38-3. Derating Curve for Different IO Supply Voltages

Note: The derating factor in this example is applicable only to timings related to output pins.

0,9

0,95

1

1,05

1,1

3 3,1 3,2 3,3 3,4 3,5 3,6

I/O Supply Voltage (V)

D
er

at
in

g
F

ac
to

r

642
1768I–ATARM–09-Jul-09

AT91RM9200

38.2 EBI Timings

38.2.1 SMC Signals Relative to MCK
Table 38-1, Table 38-2 and Table 38-3 show timings relative to operating condition limits defined in the section 38.1.1
“Conditions and Timings Computation” on page 639.

Notes: 1. The derating factor is not to be applied to tCPMCK.

2. nacss = Number of Address to Chip Select Setup Cycles inserted.

3. n = Number of standard Wait States inserted.

Table 38-1. General-purpose SMC Signals

Symbol Parameter Conditions Min Max Units

SMC1 MCK Falling to NUB Valid
CNUB = 0 pF 5.0 7.5 ns

CNUB derating 0.028 0.045 ns/pF

SMC2 MCK Falling to NLB/A0 Valid
CNLB = 0 pF 4.9 7.5 ns

CNLB derating 0.028 0.045 ns/pF

SMC3 MCK Falling to A1 - A25 Valid
CADD = 0 pF 4.9 7.4 ns

CADD derating 0.028 0.045 ns/pF

SMC4
MCK Falling to Chip Select Change
(No Address to Chip Select Setup)

CNCS = 0 pF 4.3 6.5 ns

CNCS derating 0.028 0.045 ns/pF

SMC5
MCK Falling to Chip Select Active
(Address to Chip Select Setup) (1)

CNCS = 0 pF (nacss x tCPMCK) + 4.3 (2) (nacss x tCPMCK) + 6.5 (2) ns

CNCS derating 0.028 0.045 ns/pF

SMC6
Chip Select Inactive to MCK Falling
(Address to Chip Select Setup) (1)

CNCS = 0 pF (nacss x tCPMCK) + 4.4 (2) (nacss x tCPMCK) + 6.5 (2) ns

CNCS derating -0.028 -0.045 ns/pF

SMC7
NCS Minimum Pulse Width
(Address to Chip Select Setup) (1) CNCS = 0 pF

(((n + 2) - (2 x nacss))
x tCPMCK) (2) (3) ns

SMC8 NWAIT Minimum Pulse Width (1) tCPMCK ns

643
1768I–ATARM–09-Jul-09

AT91RM9200

.
Table 38-2. SMC Write Signals

Symbol Parameter Conditions Min Max Units

SMC10
MCK Rising to NWR Active
(No Wait States) (5)

CNWR = 0 pF 4.8 7.2 ns

CNWR derating 0.028 0.045 ns/pF

SMC11
MCK Rising to NWR Active
(Wait States)

CNWR = 0 pF 4.8 7.2 ns

CNWR derating 0.028 0.045 ns/pF

SMC12
MCK Falling to NWR Inactive
(No Wait States) (5)

CNWR = 0 pF 4.8 7.2 ns

CNWR derating 0.028 0.045 ns/pF

SMC13
MCK Rising to NWR Inactive
(Wait States)

CNWR = 0 pF 4.8 7.2 ns

CNWR derating 0.028 0.045 ns/pF

SMC14 MCK Rising to D0 - D15 Out Valid
CDATA = 0 pF 4.1 7.9 ns

CDATA derating 0.028 0.044 ns/pF

SMC15 NWR High to NUB Change (5)
CNUB = 0 pF 3.4 ns

CNUB derating 0.028 ns/pF

SMC16 NWR High to NLB/A0 Change (5)
CNLB = 0 pF 3.7 ns

CNLB derating 0.028 ns/pF

SMC17 NWR High to A1 - A25 Change (5)
CADD = 0 pF 3.3 ns

CADD derating 0.028 ns/pF

SMC18 NWR High to Chip Select Inactive (5)
CNCS = 0 pF 3.3 ns

CNCS derating 0.028 ns/pF

SMC19
Data Out Valid before NWR High
(No Wait States) (1) (5)

C = 0 pF tCHMCK - 0.8 ns

CDATA derating - 0.044 ns/pF

CNWR derating 0.045 ns/pF

SMC20
Data Out Valid before NWR High
(Wait States) (1) (5)

C = 0 pF n x tCPMCK - 0.6 (2) ns

CDATA derating - 0.044 ns/pF

CNWR derating 0.045 ns/pF

SMC21
Data Out Valid after NWR High
(No Wait States) (1) (5)

C = 0 pF tCLMCK - 1.0 ns

CDATA derating 0.044 ns/pF

CNWR derating - 0.045 ns/pF

SMC22
Data Out Valid after NWR High
(Wait States without Hold Cycles) (1) (5)

C = 0 pF tCHMCK - 1.2 ns

CDATA derating 0.044 ns/pF

CNWR derating - 0.045 ns/pF

SMC23
Data Out Valid after NWR High
(Wait States with Hold Cycles) (1) (5)

C = 0 pF h x tCPMCK - 1.1 (4) ns

CDATA derating 0.044 ns/pF

CNWR derating - 0.045 ns/pF

644
1768I–ATARM–09-Jul-09

AT91RM9200

Notes: 1. The derating factor is not to be applied to tCLMCK, tCHMCK or tCPMCK.

2. n = Number of standard Wait States inserted.

3. nacss = Number of Address to Chip Select Setup Cycles inserted.

4. h = Number of Hold Cycles inserted.

5. Not applicable when Address to Chip Select Setup Cycles are inserted.

SMC24
Data Out Valid before NCS High
(Address to Chip Select Setup Cycles) (1)

C = 0 pF
(((n + 1) - nacss) x tCPMCK) +

tCHMCK - 1.4 (2) (3) ns

CDATA derating - 0.044 ns/pF

CNCS derating 0.045 ns/pF

SMC25
Data Out Valid after NCS High
(Address to Chip Select Setup Cycles) (1)

C = 0 pF nacss x tCPMCK - 0.4 (3) ns

CDATA derating 0.044 ns/pF

CNCS derating - 0.045 ns/pF

SMC26
NWR Minimum Pulse Width
(No Wait States) (1) (5)

CNWR = 0 pF tCHMCK - 0.1 ns

CNWR derating 0.002 ns/pF

SMC27 NWR Minimum Pulse Width
(Wait States) (1) (5)

CNWR = 0 pF n x tCPMCK (2) ns

CNWR derating 0.002 ns/pF

SMC28 NWR Minimum Pulse Width
(Address to Chip Select Setup Cycles) (1)

CNWR = 0 pF (n + 1) x tCPMCK (2) ns

CNWR derating 0.002 ns/pF

Table 38-2. SMC Write Signals (Continued)

Symbol Parameter Conditions Min Max Units

645
1768I–ATARM–09-Jul-09

AT91RM9200

Table 38-3. SMC Read Signals

Symbol Parameter Conditions Min Max Units

SMC29 MCK Falling to NRD Active (1) (7)
CNRD = 0 pF 4.5 6.8 ns

CNRD derating 0.028 0.045 ns/pF

SMC30 MCK Rising to NRD Active (2)
CNRD = 0 pF 4.7 7.0 ns

CNRD derating 0.028 0.045 ns/pF

SMC31 MCK Falling to NRD Inactive (1) (7)
CNRD = 0 pF 4.5 6.8 ns

CNRD derating 0.028 0.045 ns/pF

SMC32 MCK Falling to NRD Inactive (2)
CNRD = 0 pF 4.5 6.8 ns

CNRD derating 0.028 0.045 ns/pF

SMC33 D0-D15 in Setup before MCK Falling (8) 0.8 ns

SMC34 D0-D15 in Hold after MCK Falling (9) 1.7 ns

SMC35 NRD High to NUB Change (3)

CNUB = 0 pF (h x tCPMCK) + 0.5 (6) (h x tCPMCK)
+ 0.8 (6) ns

CNUB derating 0.028 0.045 ns/pF

CNRD derating -0.028 -0.045 ns/pF

SMC36 NRD High to NLB/A0 Change (3)

CNLB = 0 pF (h x tCPMCK) + 0.4 (6) (h x tCPMCK)
+ 0.7 (6) ns

CNLB derating 0.028 0.045 ns/pF

CNRD derating -0.028 -0.045 ns/pF

SMC37 NRD High to A1-A25 Change (3)

CADD = 0 pF (h x tCPMCK) + 0.3 (6) (h x tCPMCK)
+ 0.6 (6) ns

CADD derating 0.028 0.045 ns/pF

CNRD derating -0.028 -0.045 ns/pF

SMC38 NRD High to Chip Select Inactive (3)

CNCS = 0 pF (h x tCPMCK) - 0.3 (6) (h x tCPMCK)
-0.2 (6) ns

CNCS derating 0.028 0.045 ns/pF

CNRD derating -0.028 -0.045 ns/pF

SMC39 Chip Select Inactive to NRD High (3)

CNCS = 0 pF (nacss x tCPMCK) + 0.2 (5) (nacss x tCPMCK)
+ 0.3 (5) ns

CNCS derating - 0.028 - 0.045 ns/pF

CNRD derating 0.028 0.045 ns/pF

SMC40 Data Setup before NRD High (8)
CNRD = 0 pF 7.5 ns

CNRD derating 0.045 ns/pF

SMC41 Data Hold after NRD High (9)
CNRD = 0 pF -3.4 ns

CNRD derating - 0.028 ns/pF

SMC42 Data Setup before NCS High
CNRD = 0 pF 7.3 ns

CNRD derating 0.045 ns/pF

646
1768I–ATARM–09-Jul-09

AT91RM9200

Notes: 1. Early Read Protocol.

2. Standard Read Protocol.

3. The derating factor is not to be applied to tCHMCK or tCPMCK.

4. n = Number of standard Wait States inserted.

5. nacss = Number of Address to Chip Select Setup Cycles inserted.

6. h = Number of Hold Cycles inserted.

7. Not applicable when Address to Chip Select Setup Cycles are inserted.

8. Only one of these two timings needs to be met.

9. Only one of these two timings needs to be met.

SMC43 Data Hold after NCS High
CNRD = 0 pF -3.2 ns

CNRD derating - 0.028 ns/pF

SMC44 NRD Minimum Pulse Width (1) (3) (7)
CNRD = 0 pF n x tCPMCK - 0.02 (4) ns

CNRD derating 0.002 ns/pF

SMC45 NRD Minimum Pulse Width (2) (3) (7)
CNRD = 0 pF

n x tCHMCK
+ tCHMCK - 0.2 (4) ns

CNRD derating 0.002 ns/pF

SMC46 NRD Minimum Pulse Width (2) (3)
CNRD = 0 pF

((n + 1) x tCHMCK)
+ tCHMCK- 0.2 (4) ns

CNRD derating 0.002 ns/pF

Table 38-3. SMC Read Signals (Continued)

Symbol Parameter Conditions Min Max Units

647
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 38-4. SMC Signals Relative to MCK in Memory Interface Mode

Notes: 1. Early Read Protocol
2. Standard Read Protocol with or without Setup and Hold Cycles.

M
C

K
in

te
rn

al
si

gn
al

N
R

D
(1

)

N
R

D
(2

)

N
C

S

N
W

A
IT

A
1

-
A

25

D
0

-
D

15
R

ea
d

N
W

R

D
0

-
D

15
to

 W
rit

e

N
U

B
/N

LB
/A

0

S
M

C
4

S
M

C
4

S
M

C
4

S
M

C
4

S
M

C
3

S
M

C
3

S
M

C
1

S
M

C
2

S
M

C
1

S
M

C
2

SMC29

SMC31

SMC30

SMC32

SMC10

SMC12

SMC14

S
M

C
40

S
M

C
41

S
M

C
33

S
M

C
34

S
M

C
44

S
M

C
45

SMC19

SMC21

S
M

C
18

S
M

C
17

S
M

C
15

S
M

C
16

S
M

C
26

S
M

C
38

S
M

C
37

S
M

C
35

S
M

C
36

S
M

C
1

S
M

C
2

S
M

C
3

S
M

C
4

S
M

C
8

SMC29

SMC30

SMC31 SMC32

S
M

C
33

S
M

C
34

S
M

C
35

S
M

C
36

S
M

C
37

S
M

C
38

S
M

C
4

S
M

C
40

S
M

C
41

S
M

C
44

S
M

C
45

S
M

C
4

S
M

C
4

S
M

C
3

S
M

C
1

S
M

C
2

SMC11

SMC13
S

M
C

27

SMC14

SMC22

S
M

C
20

S
M

C
1

S
M

C
2

S
M

C
3

SMC30

SMC32

S
M

C
4

S
M

C
4

S
M

C
33

S
M

C
34S
M

C
35

S
M

C
36

S
M

C
37

S
M

C
38

S
M

C
40

S
M

C
41

S
M

C
45

S
M

C
1

S
M

C
2

S
M

C
3

S
M

C
4

S
M

C
4

SMC11

SMC13

SMC14

S
M

C
20

S
M

C
23

S
M

C
27

648
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 38-5. SMC Signals Relative to MCK in LCD Interface Mode

Notes: 1. Standard Read Protocol only.

2. With standard Wait States inserted only.

M
C

K
in

te
rn

al
si

gn
al

N
R

D
(1

)

N
C

S

N
W

A
IT

A
1

-
A

25

D
0

-
D

15
R

ea
d

N
W

R
(2

)

D
0

-
D

15
to

 W
rit

e

N
U

B
/N

LB
/A

0

S
M

C
8

S
M

C
1

S
M

C
2

S
M

C
1

S
M

C
2

S
M

C
3

S
M

C
3

S
M

C
5

S
M

C
6

S
M

C
7

S
M

C
5

S
M

C
6

S
M

C
7

S
M

C
30

S
M

C
33

S
M

C
34

SMC32S
M

C
35

S
M

C
36

S
M

C
37

S
M

C
39

S
M

C
42

S
M

C
43

S
M

C
46

S
M

C
11

S
M

C
13

S
M

C
14

S
M

C
24

S
M

C
25

S
M

C
28

649
1768I–ATARM–09-Jul-09

AT91RM9200

38.2.2 SDRAMC Signals Relative to SDCK
Table 38-4 and Table 38-5 below show timings relative to operating condition limits defined in the section 38.1.1 “Condi-
tions and Timings Computation” on page 639.

Table 38-4. SDRAMC Clock Signal

Symbol Parameter Conditions Min Max Units

1/(tCPSDCK) SDRAM Controller Clock Frequency 80.0 MHz

tCPSDCK SDRAM Controller Clock Period 12.5 ns

tCHSDCK SDRAM Controller Clock High Half-Period 5.6 ns

tCLSDCK SDRAM Controller Clock Low Half-Period 6.9 ns

tMCKtoSDCK_RISING MCK Rising to SDCK Rising 5.381 8.038 ns

tMCKtoSDCK_FALLING MCK Falling to SDCK Falling 4.832 7.219 ns

Table 38-5. SDRAMC Signals

Symbol Parameter Conditions Min Max Units

SDRAMC1 SDCKE High before SDCK Rising Edge (1)
CSDCKE = 0 pF tCLMCK + 1.2 ns

CSDCKE derating - 0.015 ns/pF

SDRAMC2 SDCKE Low after SDCK Rising Edge (1)
CSDCKE = 0 pF tCHMCK - 1.4 ns

CSDCKE derating 0.023 ns/pF

SDRAMC3 SDCKE Low before SDCK Rising Edge (1)
CSDCKE = 0 pF tCLMCK + 1.0 ns

CSDCKE derating - 0.015 ns/pF

SDRAMC4 SDCKE High after SDCK Rising Edge (1)
CSDCKE = 0 pF tCHMCK - 1.7 ns

CSDCKE derating 0.023 ns/pF

SDRAMC5 SDCS Low before SDCK Rising Edge (1)
CSDCS = 0 pF tCLMCK + 1.2 ns

CSDCS derating - 0.028 ns/pF

SDRAMC6 SDCS High after SDCK Rising Edge (1)
CSDCS = 0 pF tCHMCK - 1.9 ns

CSDCS derating 0.045 ns/pF

SDRAMC7 RAS Low before SDCK Rising Edge (1)
CRAS = 0 pF tCLMCK + 0.6 ns

CRAS derating - 0.015 ns/pF

SDRAMC8 RAS High after SDCK Rising Edge (1)
CRAS = 0 pF tCHMCK - 1.1 ns

CRAS derating 0.023 ns/pF

SDRAMC9 SDA10 Change before SDCK Rising Edge (1)
CSDA10 = 0 pF tCLMCK + 0.8 ns

CSDA10 derating - 0.015 ns/pF

SDRAMC10 SDA10 Change after SDCK Rising Edge (1)
CSDA10 = 0 pF tCHMCK - 1.2 ns

CSDA10 derating 0.023 ns/pF

SDRAMC11 Address Change before SDCK Rising Edge (1)
CADD = 0 pF tCLMCK + 0.6 ns

CADD derating - 0.028 ns/pF

650
1768I–ATARM–09-Jul-09

AT91RM9200

Note: 1. The derating factor is not to be applied to tCLMCK or tCHMCK.

SDRAMC12 Address Change after SDCK Rising Edge (1)
CADD = 0 pF tCHMCK - 1.5 ns

CADD derating 0.045 ns/pF

SDRAMC13 Bank Change before SDCK Rising Edge (1)
CBA = 0 pF tCLMCK + 0.8 ns

CBA derating - 0.028 ns/pF

SDRAMC14 Bank Change after SDCK Rising Edge (1)
CBA = 0 pF tCHMCK - 1.6 ns

CBA derating 0.045 ns/pF

SDRAMC15 CAS Low before SDCK Rising Edge (1)
CCAS = 0 pF tCLMCK + 0.9 ns

CCAS derating - 0.015 ns/pF

SDRAMC16 CAS High after SDCK Rising Edge (1)
CCAS = 0 pF tCHMCK - 1.5 ns

CCAS derating 0.023 ns/pF

SDRAMC17 DQM Change before SDCK Rising Edge (1)
CDQM = 0 pF tCLMCK + 0.7 ns

CDQM derating - 0.028 ns/pF

SDRAMC18 DQM Change after SDCK Rising Edge (1)
CDQM = 0 pF tCHMCK - 1.4 ns

CDQM derating 0.045 ns/pF

SDRAMC19 D0-D15 in Setup before SDCK Rising Edge 1.3 ns

SDRAMC20 D0-D15 in Hold after SDCK Rising Edge 0.03 ns

SDRAMC21 D16-D31 in Setup before SDCK Rising Edge 2.0 ns

SDRAMC22 D16-D31 in Hold after SDCK Rising Edge -0.2 ns

SDRAMC23 SDWE Low before SDCK Rising Edge
CSDWE = 0 pF tCLMCK + 1.0 ns

CSDWE derating - 0.015 ns/pF

SDRAMC24 SDWE High after SDCK Rising Edge
CSDWE = 0 pF tCHMCK - 1.8 ns

CSDWE derating 0.023 ns/pF

SDRAMC25 D0-D15 Out Valid before SDCK Rising Edge
C = 0 pF tCLMCK - 2.7 ns

CDATA derating -0.044 ns/pF

SDRAMC26 D0-D15 Out Valid after SDCK Rising Edge
C = 0 pF tCHMCK - 2.4 ns

CDATA derating 0.044 ns/pF

SDRAMC27 D16-D31 Out Valid before SDCK Rising Edge
C = 0 pF tCLMCK - 3.2 ns

CDATA derating -0.044 ns/pF

SDRAMC28 D16-D31 Out Valid after SDCK Rising Edge
C = 0 pF tCHMCK - 2.4 ns

CDATA derating 0.044 ns/pF

Table 38-5. SDRAMC Signals (Continued)

Symbol Parameter Conditions Min Max Units

651
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 38-6. SDRAMC Signals Relative to SDCK

RAS

A0 - A9,
A11 - A13

D0 - D15
Read

SDCK

SDA10

D0 - D15
to Write

SDRAMC1

SDCKE

SDRAMC2 SDRAMC3 SDRAMC4

SDCS

SDRAMC5 SDRAMC6 SDRAMC5 SDRAMC6 SDRAMC5 SDRAMC6

SDRAMC7 SDRAMC8

CAS

SDRAMC15 SDRAMC16 SDRAMC15 SDRAMC16

SDWE

SDRAMC23 SDRAMC24

SDRAMC9 SDRAMC10SDRAMC9 SDRAMC10SDRAMC9 SDRAMC10

SDRAMC11 SDRAMC12 SDRAMC11 SDRAMC12SDRAMC11 SDRAMC12

BA0/BA1

SDRAMC13 SDRAMC14 SDRAMC13 SDRAMC14 SDRAMC13 SDRAMC14

SDRAMC17 SDRAMC18SDRAMC17 SDRAMC18

DQM0 -
DQM3

SDRAMC19 SDRAMC20

D16 - D31
Read

SDRAMC21 SDRAMC22

SDRAMC25 SDRAMC26

D16 - D31
to Write

SDRAMC27 SDRAMC28

652
1768I–ATARM–09-Jul-09

AT91RM9200

38.2.3 BFC Signals Relative to BFCK
Table 38-6, Table 38-7 and Table 38-8 show timings relative to operating condition limits defined in the section “Conditions
and Timings Computation” on page 639.

Notes: 1. Field BFCC = 1 in Register BFC_MR, see Section 20.7.1 “Burst Flash Controller Mode Register” on page 227.

2. Field BFCC = 2 in Register BFC_MR, see Section 20.7.1 “Burst Flash Controller Mode Register” on page 227.

3. Field BFCC = 3 in Register BFC_MR, see Section 20.7.1 “Burst Flash Controller Mode Register” on page 227.

Table 38-6. BFC Clock Signal

Symbol Parameter Conditions Min Max Units

1/(tCPBFCK) BF Controller Clock Frequency

BFCK is MCK (1) 80.0 MHz

BFCK is MCK/2 (2) 40.0 MHz

BFCK is MCK/4 (3) 20.0 MHz

tCPBFCK BF Controller Clock Period

BFCK is MCK (1) 12.5 ns

BFCK is MCK/2 (2) 25.0 ns

BFCK is MCK/4 (3) 50.0 ns

tCHBFCK BF Controller Clock High Half-Period

BFCK is MCK (1) 6.5 ns

BFCK is MCK/2 (2) 12.8 ns

BFCK is MCK/4 (3) 25.3 ns

tCLBFCK BF Controller Clock Low Half-Period

BFCK is MCK (1) 6.1 ns

BFCK is MCK/2 (2) 12.3 ns

BFCK is MCK/4 (3) 24.8 ns

Table 38-7. BFC Signals in Asynchronous Mode

Symbol Parameter Conditions Min Max Units

BFC1 BFCK Rising to A1-A25 Valid (1)
CADD = 0 pF tCLBFCK - 0.2 ns

CADD derating 0.045 ns/pF

BFC2 BFCK Rising to A1-A25 Change (1)
CADD = 0 pF tCLBFCK - 1.0 ns

CADD derating 0.028 ns/pF

BFC3 BFCK Falling to BFAVD Active (1)
CBFAVD = 0 pF tCLBFCK - 1.1 tCLBFCK - 0.3 ns

CBFAVD derating 0.028 0.044 ns/pF

BFC4 BFCK Falling to BFAVD Inactive (1)
CBFAVD = 0 pF tCLBFCK - 1.8 tCLBFCK + 0.2 ns

CBFAVD derating 0.028 0.044 ns/pF

BFC5 BFAVD Minimum Pulse Width (1)
CBFAVD = 0 pF tCPBFCK + 1.0 ns

CBFAVD derating 0.001 ns/pF

BFC6 BFCK Rising to BFOE Active
CBFOE = 0 pF - 0.4 0.1 ns

CBFOE derating 0.028 0.044 ns/pF

BFC7 BFCK Rising to BFOE Inactive
CBFOE = 0 pF - 1.1 0.7 ns

CBFOE derating 0.028 0.044 ns/pF

653
1768I–ATARM–09-Jul-09

AT91RM9200

Notes: 1. The derating factor is not to be applied to tCPBFCK.

2. a = Number of Address Valid Latency Cycles defined in the BFC_MR AVL field.

3. o = Number of Output Enable Latency Cycles defined in the BFC_MR OEL field.

4. Applicable only with multiplexed Address and Data Buses.

5. Only one of these two timings needs to be met.

6. Only one of these two timings needs to be met.

BFC8 BFOE Minimum Pulse Width (1)
CBFOE = 0 pF

(a x tCPBFCK)
+ 0.9 (2)) ns

CBFOE derating 0.001 ns/pF

BFC9 D0-D15 in Setup before BFCK Rising Edge (5) - 0.1 ns

BFC10 D0-D15 in Hold after BFCK Rising Edge (6) 1.0 ns

BFC11 Data Setup before BFOE High (5)
CBFOE = 0 pF - 0.9 ns

CBFOE derating - 0.044 ns/pF

BFC12 Data Hold after BFOE High (6))
CBFOE = 0 pF 2.0 ns

CBFOE derating 0.028 ns/pF

BFC13 BFCK Rising to BFWE Active
CBFWE = 0 pF - 0.6 - 0.05 ns

CBFWE derating 0.028 0.044 ns/pF

BFC14 BFCK Rising to BFWE Inactive
CBFWE = 0 pF - 1.3 0.5 ns

CBFWE derating 0.028 0.044 ns/pF

BFC15 BFCK Rising to AD0-AD15 Valid (1) (4)
CDATA = 0 pF tCLBFCK - 0.2 ns

CDATA derating 0.044 ns/pF

BFC16 BFCK Rising to AD0-AD15 Not Valid (1) (4)
CDATA = 0 pF tCLBFCK - 0.8 ns

CDATA derating 0.028 ns/pF

BFC17 Data Out Valid before BFCK Rising (1) (5)
CDATA = 0 pF tCLBFCK + 0.5 ns

CDATA derating -0.044 ns/pF

BFC18 Data Out Valid after BFCK Rising (1) (6)
CDATA = 0 pF tCHBFCK + 0.7 ns

CDATA derating 0.028 ns/pF

BFC19 Data Out Valid before BFWE High (1) (5)

C = 0 pF tCLBFCK - 0.5 ns

CDATA derating - 0.028 ns/pF

CBFWE derating 0.044 ns/pF

BFC20 Data Out Valid after BFWE High (1) (6)

C = 0 pF tCHBFCK + 0.3 ns

CDATA derating 0.028 ns/pF

CBFWE derating - 0.044 ns/pF

BFC21 Number of Address Valid Latency Cycles (1) ((a + 1) x
tCPBFCK) (2)

((a + 1) x
tCPBFCK) (2) ns

BFC22 Number of Output Enable Latency Cycles (1) (o x tCPBFCK)
(3)

(o x tCPBFCK)
(3) ns

Table 38-7. BFC Signals in Asynchronous Mode (Continued)

Symbol Parameter Conditions Min Max Units

654
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 38-7. BFC Signals Relative to BFCK in Asynchronous Mode

Note: 1. BFCS is asserted as soon as the BFCOM field in BFC_MR is different from 0.

B
F

A
V

D

D
0

-
D

15
R

ea
d

B
F

C
K

in
te

rn
al

si
gn

al

D
0

-
D

15
to

 W
rit

e

B
F

C
S

(1
)

A
1

-
A

25

B
F

O
E

B
F

W
E

B
F

C
1

B
F

C
1

B
F

C
3

B
F

C
4

B
F

C
5

B
F

C
3

B
F

C
4

B
F

C
5

B
F

C
6

B
F

C
7

B
F

C
8 B

F
C

9
B

F
C

10
B

F
C

12
B

F
C

11

B
F

C
13

B
F

C
14

B
F

C
15

B
F

C
16

B
F

C
21

B
F

C
22

B
F

C
21

B
F

C
15

B
F

C
16

B
F

C
17

B
F

C
18

B
F

C
19

B
F

C
20

655
1768I–ATARM–09-Jul-09

AT91RM9200

Notes: 1. The derating factor is not to be applied to tCPBFCK.

2. a = Number of Address Valid Latency Cycles defined in the BFC_MR AVL field.

3. o = Number of Output Enable Latency Cycles defined in the BFC_MR OEL field.

4. Applicable only with multiplexed Address and Data Buses.

Table 38-8. BFC Signals in Burst Mode

Symbol Parameter Conditions Min Max Units

BFC1 BFCK Rising to A1-A25 Valid (1)
CADD = 0 pF tCLBFCK - 0.2 ns

CADD derating 0.045 ns/pF

BFC2 BFCK Rising to A1-A25 Change (1)
CADD = 0 pF tCLBFCK - 1.0 ns

CADD derating 0.028 ns/pF

BFC3 BFCK Falling to BFAVD Active (1)
CBFAVD = 0 pF tCLBFCK - 1.1 tCLBFCK - 0.3 ns

CBFAVD derating 0.028 0.044 ns/pF

BFC4 BFCK Falling to BFAVD Inactive (1)
CBFAVD = 0 pF tCLBFCK - 1.8 tCLBFCK + 0.2 ns

CBFAVD derating 0.028 0.044 ns/pF

BFC5 BFAVD Minimum Pulse Width (1)
CBFAVD = 0 pF tCPBFCK + 1.0 ns

CBFAVD derating 0.001 ns/pF

BFC6 BFCK Rising to BFOE Active
CBFOE = 0 pF - 0.4 0.1 ns

CBFOE derating 0.028 0.044 ns/pF

BFC7 BFCK Rising to BFOE Inactive
CBFOE = 0 pF - 1.1 0.7 ns

CBFOE derating 0.028 0.044 ns/pF

BFC9 D0-D15 in Setup before BFCK Rising Edge - 0.1 ns

BFC10 D0-D15 in Hold after BFCK Rising Edge 1.0 ns

BFC15 BFCK Rising to AD0-AD15 Valid (1) (4)
CDATA = 0 pF tCLBFCK - 0.2 ns

CDATA derating 0.044 ns/pF

BFC16 BFCK Rising to AD0-AD15 Not Valid (1) (4)
CDATA = 0 pF tCLBFCK - 0.8 ns

CDATA derating 0.028 ns/pF

BFC21 Number of Address Valid Latency Cycles (1) ((a + 1) x
tCPBFCK) (2)

((a + 1) x
tCPBFCK) (2) ns

BFC22 Number of Output Enable Latency Cycles (1) (o x tCPBFCK)
(3)

(o x tCPBFCK)
(3) ns

BFC23 BFCK Falling to BFBAA Active (1)
CBFBAA = 0 pF tCLBFCK - 1.0 tCLBFCK - 0.1 ns

CBFBAA derating 0.028 0.044 ns/pF

BFC24 BFCK Falling to BFBAA Inactive (1)
CBFBAA = 0 pF tCLBFCK - 1.7 tCLBFCK + 0.1 ns

CBFBAA derating 0.028 0.044 ns/pF

BFC25 BFRDY Change Hold after BFCK Rising Edge 0.1 ns

BFC26 BFRDY Change Setup before BFCK Rising Edge 0.3 ns

656
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 38-8. BFC Signals Relative to BFCK in Burst Mode

Note: 1. BFCS is asserted as soon as the BFCOM field in BFC_MR is different from 0.

B
F

A
V

D

D
0

-
D

15
R

ea
d

B
F

C
K

if
si

gn
al

 c
on

tr
ol

le
d

ad
dr

es
s

ad
va

nc
e

D
0

-
D

15
to

 W
rit

e
if

m
ul

tip
le

xe
d

bu
s

on
ly

B
F

C
S

(1
)

A
1

-
A

25

B
F

O
E

B
F

R
D

Y

B
F

C
1 B

F
C

3
B

F
C

4

B
F

C
5

B
F

C
6

B
F

C
7

B
F

C
15

B
F

C
16

B
F

C
21

B
F

C
22

B
F

B
A

A
if

si
gn

al
 c

on
tr

ol
le

d
ad

dr
es

s
ad

va
nc

e

B
F

C
23

B
F

C
24

B
F

C
24

B
F

C
23

B
F

C
K

if
cl

oc
k

co
nt

ro
lle

d
ad

dr
es

s
ad

va
nc

e

B
F

C
25

B
F

C
25

B
F

C
6

B
F

C
7

B
F

C
26

B
F

C
26

BFC9

BFC10

BFC9

BFC10

BFC9

BFC10

BFC9

BFC9

BFC10

BFC9

BFC10

BFC9

BFC10

BFC9

BFC10

BFC9

BFC10

BFC9

BFC10

BFC9

BFC10

657
1768I–ATARM–09-Jul-09

AT91RM9200

38.3 JTAG/ICE Timings

38.3.1 ICE Interface Signals
Table 38-9 shows timings relative to operating condition limits defined in the section Section
38.1.1 “Conditions and Timings Computation” on page 639

Figure 38-9. ICE Interface Signals

Table 38-9. ICE Interface Timing Specifications

Symbol Parameter Conditions Min Max Units

ICE0 NTRST Minimum Pulse Width 20.00 ns

ICE1 NTRST High Recovery to TCK High 0.86 ns

ICE2
NTRST High Removal from TCK
High

0.90 ns

ICE3 TCK Low Half-period 8.00 ns

ICE4 TCK High Half-period 8.00 ns

ICE5 TCK Period 20.00 ns

ICE6 TDI, TMS, Setup before TCK High -0.13 ns

ICE7 TDI, TMS, Hold after TCK High 0.10 ns

ICE8 TDO Hold Time
CTDO = 0 pF 4.17 ns

CTDO derating 0 ns/pF

ICE9 TCK Low to TDO Valid
CTDO = 0 pF 6.49 ns

CTDO derating 0.028 ns/pF

TCK

ICE3 ICE4

ICE7ICE6

ICE9

ICE8

TMS/TDI

TDO

ICE0

ICE5

NTRST

ICE1 ICE2

658
1768I–ATARM–09-Jul-09

AT91RM9200

38.3.2 JTAG Interface Signals
Table 38-10 shows timings relative to operating condition limits defined in the section 38.1.1
“Conditions and Timings Computation” on page 639.

Table 38-10. JTAG Interface Timing Specifications

Symbol Parameter Conditions Min Max Units

JTAG0 NTRST Minimum Pulse Width 20.00 ns

JTAG1 NTRST High Recovery to TCK High -0.16 ns

JTAG2 NTRST High Recovery to TCK Low -0.16 ns

JTAG3 NTRST High Removal from TCK High -0.07 ns

JTAG4 NTRST High Removal from TCK Low -0.07 ns

JTAG5 TCK Low Half-period 8.00 ns

JTAG6 TCK High Half-period 8.00 ns

JTAG7 TCK Period 20.00 ns

JTAG8 TDI, TMS Setup before TCK High 0.01 ns

JTAG9 TDI, TMS Hold after TCK High 3.21 ns

JTAG10 TDO Hold Time
CTDO = 0 pF 2.38 ns

CTDO derating 0 ns/pF

JTAG11 TCK Low to TDO Valid
CTDO = 0 pF 4.66 ns

CTDO derating 0.028 ns/pF

JTAG12 Device Inputs Setup Time -1.23 ns

JTAG13 Device Inputs Hold Time 3.81 ns

JTAG14 Device Outputs Hold Time
COUT = 0 pF 7.15 ns

COUT derating 0 ns/pF

JTAG15 TCK to Device Outputs Valid
COUT = 0 pF 7.22 ns

COUT derating 0.028 ns/pF

659
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 38-10. JTAG Interface Signals

TCK

JTAG7JTAG6

JTAG9

JTAG8

TMS/TDI

TDO

NTRST

JTAG12

JTAG13

Device
Outputs

JTAG5

JTAG4JTAG3

 JTAG0

JTAG1 JTAG2

JTAG11JTAG10

Device
 Inputs

660
1768I–ATARM–09-Jul-09

AT91RM9200

38.4 ETM Timings

38.4.1 Timings Data
Table 38-11 shows timings relative to operating condition limits defined in the section 38.1.1
“Conditions and Timings Computation” on page 639.

Figure 38-11. ETM Signals

38.4.2 Design Considerations
When designing a PCB, it is important to keep the differences between trace length of ETM sig-
nals as small as possible to minimize skew between them. In addition, crosstalk on the trace port
must be kept to a minimum as it can cause erroneous trace results. Stubs on these traces can
cause unpredictable responses, thus it is recommended to avoid stubs on the trace lines.

The TCLK line should be series-terminated as close as possible to the microcontroller pins.

The maximum capacitance presented by the trace connector, cabling and interfacing logic must
be less than 15 pF.

Table 38-11. ETM Timing Characteristics

Symbol Parameter Conditions Min Typ Max Units

1/(tCPTCLK) Trace Clock Frequency 1/(2 x tCPPCK) 86.54 MHz

tCPTCLK Trace Clock Period 11.56 2 x tCPPCK ns

tCHTCLK TCLK High Half-period tCPTCLK/2 + 0.02 ns

tCLTCLK TCLK Low Half-period tCPTCLK/2 - 0.02 ns

ETM0
Data Signals Out Valid
before TCLK Rising Edge

tCLTCLK - 1.06 ns

ETM1
Data Signals Out Valid after
TCLK Rising Edge

C = 0 pF tCHTCLK - 0.49 ns

CDATA derating 0.044 ns/pF

ETM2
Data Signals Out Valid
before TCLK Falling Edge

tCHTCLK - 1.03 ns

ETM3
Data Signals Out Valid after
TCLK Falling Edge

C = 0 pF tCLTCLK - 0.51 ns

CDATA derating 0.044 ns/pF

tCHTCLK

tCLTCLK

tCPTCLK

TCLK

TSYNC
TPS[2:0]

TPK[15:0]

E
T

M
0

E
T

M
1

E
T

M
2

E
T

M
3

661
1768I–ATARM–09-Jul-09

AT91RM9200

39. AT91RM9200 Mechanical Characteristics

39.1 Thermal and Reliability Considerations

39.1.1 Thermal Data
Table 39-1 summarizes the thermal resistance data depending on the package.

39.1.2 Reliability Data
The number of gates and the device die size are provided Table 39-2 so that the user can calcu-
late reliability data for another standard and/or in another environmental model.

Table 39-1. Thermal Resistance Data

Symbol Parameter Condition Package Typ Unit

θJA Junction-to-ambient thermal resistance Still Air
PQFP208 33.9

°C/W
LFBGA256 35.6

θJC Junction-to-case thermal resistance
PQFP208 15.7

LFBGA256 7.7

Table 39-2. Reliability Data

Parameter Data Unit

Number of Logic Gates 4461 K gates

Number of Memory Gates 2458 K gates

Device Die Size 33.9 mm2

662
1768I–ATARM–09-Jul-09

AT91RM9200

39.1.3 Junction Temperature
The average chip-junction temperature, TJ, in °C can be obtained from the following:

1.

2.

where:

• θJA = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 39-1 on
page 661.

• θJC = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in
Table 39-1 on page 661.

• θHEAT SINK = cooling device thermal resistance (°C/W), provided in the device datasheet.

• PD = device power consumption (W) estimated from data provided in the section 37.5 “Power
Consumption” on page 634.

• TA = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a
cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second
equation should be used to compute the resulting average chip-junction temperature TJ in °C.

39.2 Package Drawings

Figure 39-1. 208-pin PQFP Package Drawing

TJ TA PD θJA×()+=

TJ TA P(D θ(HEATSINK× θJC))+ +=

C C1

663
1768I–ATARM–09-Jul-09

AT91RM9200

The Green package respects the recommendations of the NEMI User Group.

Table 39-3. 208-pin PQFP Package Dimensions (in mm)

Symbol Min Nom Max Symbol Min Nom Max

c 0.11 0.23 b1 0.17 0.20 0.23

c1 0.11 0.15 0.19 ddd 0.10

L 0.65 0.88 1.03 Tolerances of Form and Position

L1 1.60 REF aaa 0.25

R2 0.13 0.3 ccc 0.1

R1 0.13 BSC

S 0.4 D 31.20

A 4.10 D1 28.00

A1 0.25 0.50 E 31.20

A2 3.20 3.40 3.60 E1 28.00

b 0.17 0.27 e 0.50

Table 39-4. Device and 208-pin Package Maximum Weight

Package Type Weight Unit

Standard and Green 5809 mg

Table 39-5. 208-pin PQFP

Package Type Moisture Sensitivity Level

Standard and Green 3

Table 39-6. Package Reference

Package Type Standard

Standard JEDEC Drawing MS-022

Green
JEDEC Drawing MS-212

JESD97 Classification: e2

664
1768I–ATARM–09-Jul-09

AT91RM9200

Figure 39-2. 256-ball BGA Package Drawing

The RoHS-compliant package respects the recommendations of the NEMI User Group.

Table 39-7. Device and 256-ball BGA Package Maximum Weight

Package Type Weight Unit

Standard
620 mg

RoHS-compliant

Table 39-8. 256-ball BGA Package Characteristics

Package Type Moisture Sensitivity Level

Standard and RoHS-compliant 3

Table 39-9. Package Reference

Package Type Standard

Standard JEDEC Drawing MO-205E

RoHS-compliant
JEDEC Drawing MO-205E

JESD97 Classification: e1

665
1768I–ATARM–09-Jul-09

AT91RM9200

39.3 Soldering Profiles

39.3.1 Standard Packages
Table 39-10 gives the recommended soldering profile from J-STD-20.

Small packages may be subject to higher temperatures if they are reflowed in boards with larger
components. In this case, small packages may have to withstand temperatures of up to 235⋅ C,
not 220⋅ C (IR reflow).

Recommended package reflow conditions depend on package thickness and volume. See
Table 39-11.

Notes: 1. The packages are qualified by Atmel by using IR reflow conditions, not convection or VPR.

2. By default, the package level 1 is qualified at 220⋅ C (unless 235⋅ C is stipulated).

3. The body temperature is the most important parameter but other profile parameters such as
total exposure time to hot temperature or heating rate may also influence component reliability.

A maximum of three reflow passes is allowed per component.

Table 39-10. Soldering Profile

Convection or
IR/Convection VPR

Average Ramp-up Rate (183⋅ C to Peak) 3⋅ C/sec. max. 10⋅ C/sec.

Preheat Temperature 125⋅ C ±25⋅ C 120 sec. max

Temperature Maintained Above 183⋅ C 60 sec. to 150 sec.

Time within 5⋅ C of Actual Peak Temperature 10 sec. to 20 sec. 60 sec.

Peak Temperature Range
220 +5/-0⋅ C or
235 +5/-0⋅ C

215 to 219⋅ C or
235 +5/-0⋅ C

Ramp-down Rate 6⋅ C/sec. 10⋅ C/sec.

Time 25⋅ C to Peak Temperature 6 min. max

Table 39-11. Recommended Package Reflow Conditions (LQFP and BGA)(1) (2)(3)

Parameter Temperature

Convection 220 +5/-0⋅ C

VPR 215 to 219⋅ C

IR/Convection 220 +5/-0⋅ C

666
1768I–ATARM–09-Jul-09

AT91RM9200

39.3.2 Green and RoHS-compliant Packages
Table 39-12 gives the recommended soldering profile from J-STD-20.

Notes: 1. The package is certified to be backward compatible with Pb/Sn soldering profile.

2. Atmel Green Definition is: RoHS and <900ppm Br; <900ppm Sb; no TBTO use, no Phospho-
rous use.

3. It is recommended to apply a soldering temperature higher than 250°.

Table 39-12. Soldering Profile

Profile Feature
PQFP208
Green Package (1)(2)

BGA256 RoHS
Compliant Package (3)

Average Ramp-up Rate (183⋅ C to Peak) 3⋅ C/sec. max. 3⋅ C/sec. max

Preheat Temperature 175⋅ C ±25⋅ C 180 sec. max 180 sec. max

Temperature Maintained Above 217⋅ C 60 sec. to 150 sec. 60 sec. to 150 sec.

Time within 5⋅ C of Actual Peak Temperature 20sec. to 40 sec. 20 sec. to 40 sec.

Peak Temperature Range 260⋅ C 260⋅ C

Ramp-down Rate 6⋅ C/sec. max 6⋅ C/sec. max

Time 25⋅ C to Peak Temperature 8 min. max 8 min. max

667
1768I–ATARM–09-Jul-09

AT91RM9200

668
1768I–ATARM–09-Jul-09

AT91RM9200

669
1768I–ATARM–09-Jul-09

AT91RM9200

40. AT91RM9200 Ordering Information

Table 40-1. Ordering Information

Ordering Code Package Package Type Temperature Operating Range

AT91RM9200-QU-002 PQFP 208 Green Industrial
(-40° C to 85° C)AT91RM9200-CJ-002 BGA 256 RoHS-compliant

670
1768I–ATARM–09-Jul-09

AT91RM9200

671
1768I–ATARM–09-Jul-09

AT91RM9200

41. AT91RM9200 Errata

41.1 Marking
All devices are marked with the Atmel logo and the ordering code.

Additional marking may be in one of the following formats:

where

• “YY”: manufactory year

• “WW”: manufactory week

• “V”: revision

• “XXXXXXXXX”: lot number

where

• “ZZZZZZ”: manufactory number

• “YY”: manufactory year

• “WW”: manufactory week

• “XXXXXXXXX”: lot number

YYWW V�
XXXXXXXXX ARM

ZZZZZZ YYWW�
XXXXXXXXX ARM

672
1768I–ATARM–09-Jul-09

AT91RM9200

41.2 EBI

41.2.1 A24 not wired internally between the EBI and the PIO
A24 is not wired internally between the EBI and the PIO. Use only PIO mode on it.

Problem Fix/Workaround

Due to this error, static memories over 16M bytes per chip select cannot be used. To interface
32-Mbyte memories and over, the user must use two memory chips connected on two different
chip selects.

41.3 EMAC

41.3.1 Using Receive frames and buffers not word-aligned
A dead lock may appear when the Ethernet MAC attempts to store a new received valid frame
while there are no more rx buffer descriptors. This appears only when the received frame length
is not a multiple of 4 bytes. In this configuration, even if the application enables new receive buf-
fer descriptors, all packets will be rejected.

Problem Fix/Workaround

The software workaround is to disable and re-enable the receive function in the network function
register ETH_CTL each time a buffer is not available (RBNA in the status register).

ETH CTL &= ~0x00000004 ;

ETH CTL |= 0x00000004 ;

Note that an interrupt can be activated for the RBNA detection.

Another workaround is to align the address of the receive buffer descriptor on a boundary of 16
Words (address 0xaaaa aa00, 0xaaaa aa40, 0xaaaa aa80,.....)

41.4 MCI

41.4.1 Data Endianess inversion from the MCI to MMC or SD Card
The data endianess is inverted when writing or reading to or from an MMC or SD card. If the MCI
interface is exclusively used to read/write from/to a dedicated card the inversion is not visible
(two inversions). Furthermore, if the card is shared with other systems then endianess will not
match. This endianess inversion concerns only data sectors and not command and response.

Problem Fix/Workaround

A software workaround consists of swapping the order of word bytes before writing and after
reading.

41.4.2 Data Timeout Error Flag
As the data timeout error flag cannot rise, the MCI is stalled indefinitely waiting for the data start
bit.

Problem Fix/Workaround

A STOP command must be sent with a software timeout.

41.4.3 STREAM command not supported
The STREAM READ/WRITE commands are not supported by the MCI.

673
1768I–ATARM–09-Jul-09

AT91RM9200

Problem Fix/Workaround

None.

41.4.4 STOP during a WRITE_MULTIPLE_BLOCK command
The WRITE_MULTIPLE_BLOCK with a transfer size (PDC) not a multiple of the block length is
not stopped by the STOP command.

Problem Fix/Workaround

Choose an appropriate size for the block length.

41.4.5 DTIP flag
The DTIP flag is not reset if STOP_COMMAND is received in the middle of a block data transfer.

Problem Fix/Workaround

None.

41.4.6 STOP command with SYNCHRONISED special command
A STOP command with SYNCHRONISED special command is sent after the block data transfer
ends. During this time the MMCI receives data but the RXRDY flag is no longer asserted.

Problem Fix/Workaround

Do not send a STOP command with SYNCHRONISED special command.

41.4.7 Data FIFO and status bits
Do not read/write the Data FIFO if RXRDY/TXRDY status bits are not set.

Problem Fix/Workaround

None.

41.4.8 DATA FIFO problem with PDC
The shared FIFO is reset at the beginning of a transfer command.

Problem Fix/Workaround

So as to avoid losing data, it is mandatory to enable the PDC channel after writing to the com-
mand register. In order to achieve this sequence correctly, it is mandatory to disable all IT
sources.

41.4.9 DATA_CRC_ERR flag never rises
The DATA_CRC_ERR (error flag) never rises during the checking of bad data CRC status sent
by MMC/SD card after block writing.

Problem Fix/Workaround

CRC must be done by software.

41.4.10 STOP during a READ_MULTIPLE_BLOCK command
I f the user sends a READ_MULTIPLE_BLOCK command and stops i t by using a
STOP_COMMAND in the middle of a data block transfer then the internal state of the MMCI
controller stops in a bad state.After that the following read block (with READ_SINGLE_BLOCK
or READ_MULTIPLE_BLOCK) will be entirely corrupted.

674
1768I–ATARM–09-Jul-09

AT91RM9200

Problem Fix/Workaround

It consists in doing a software reset if RXRDY = 1 after the STOP_COMMAND. This flag indi-
cates that the MMCI receives more data than the PDC has been settle to transfer. After this soft
reset the MCI_CR, MCI_MR, MCI_DTOR, MCI_SDCR need to be reassigned.

41.4.11 Data write operation and number of bytes
The Data Write operation with a number of bytes less than 12 is impossible.

Problem Fix/Workaround

The PDC counters must always be equal to 12 bytes for data transfers lower than 12 bytes. The

BLKLEN or BCNT field are used to specify the real count number.

41.5 PIO

41.5.1 NWAIT activity depends on use of PC6
NWAIT activity depends on use of PC6. The PC6 line multiplexes with the NWAIT function. As
the PIO Controller is transparent in input, the level on the PC6 line has direct impact on the
behavior of the EBI. In particular, driving the PC6 line to 0 might lead to a deadlock of the
system.

Problem Fix/Workaround

Use PC6 carefully. In general, it is recommended to not use PC6 and to make sure the pull-up is
enabled.

41.5.2 Output Data Status Register is always Read/Write
The programming of the register PIO_OWSR has no effect on the read/write features of
PIO_ODSR, which is always read/write accessible.

Problem Fix/Workaround

None.

41.6 PMC

41.6.1 Constraints on the Master Clock selection sequence
The PMC_MCKR register must not be programmed in a single write operation.

Problem Fix/Workaround

The preferred programming sequence for the PMC_MCKR register is as follows:

1. Program the CSS field in the PMC_MCKR.

2. Wait for the MCKRDY bit to be set in the PMC_SR register.

3. Program the PRES field (in the PMC_MCKR).

An exception to this sequence occurs when the processor clock frequency is greater than the
master clock frequency. In this case, the PRES field should be written first.

41.6.2 MCKRDY does not rise in some cases
When re-programming the Master Clock Register, if both fields PRES and CSS are written with
the same values as the ones already stored, or if both fields are written with different values than

675
1768I–ATARM–09-Jul-09

AT91RM9200

the ones already stored, the status bit MCKRDY does not rise. When one and only one of the
fields PRES and CSS is changed, the MCKRDY bit operates normally.

Problem Fix/Workaround

If both fields must be re-programmed, carry out the change in two steps.

41.6.3 PMC, Clock Generator: Bad switching when writing PLL registers with same MUL and DIV values
When the fields MUL and DIV in the CKGR_PLLBR register are written with the same values as
already programmed, the Master Clock signal switches to Main Clock (output of the Main Oscil-
lator) until a different value is programmed in the register.

When the fields MUL and DIV in the CKGR_PLLAR register are written with the same values as
already programmed, the Master Clock signal switches to Slow Clock (output of the 32768 Hz
Oscillator) until a different value is programmed in the register.

Problem Fix/Workaround

The user must be sure that either the DIV or MUL field changes when setting the CKGR_PLLBR
or CKGR_PLLAR register.

41.6.4 OSCBYPASS is not functional with PLLA
With PLLA, it is not possible to have an MCKRDY flag raised.

Problem Fix/Workaround

Even if MCKRDY flag does not raise with PLLA, it will not prevent you from switching on it.

You just need to wait for the PLLA lock time; for that program, PLLA then PLLB. When PLLB is
ready, PLLA is ready too.

Main Oscillator in Bypass Mode: CKGR_MOR = 0x00000002

PLLA programming: CKGR_PLLAR = 0x20063E01

PLLB programming: CKGR_PLLBR = 0x10173F05

Wait PLLB LOCKB bit: PMC_SR will be 0x0000000C

Switch on PLLACK clock: PMC_MCKR -> 0x00000102

PMC_SR will be 0x0000000C

41.7 ROM Bootloader

ROM Bootloader: Limitation with 8-bit parallel memories.
Limitation with 8-bit parallel memories. In the internal Boot Rom program, version 1.0, the wait
state number on CS0 is set to 0 during Boot ROM initialization. This gives an access time of 20
ns at 48 MHz Master Clock Frequency. This limitation of the ROM Bootloader applies to
AT91RM9200 with the product number 58A07F.

Problem Fix/Workaround

None.

676
1768I–ATARM–09-Jul-09

AT91RM9200

41.8 SDRAMC

41.8.1 SDRC_IMR can be written
The Interrupt Mask Register in the SDRAM Controller is not read-only. Thus, writing to it modi-
fies the contents instead of having no effect.

Problem Fix/Workaround

None.

41.8.2 No wrap-around for SDRAM devices with two internal banks
In the case of SDRAM devices featuring two internal banks, when the physical address is higher
than the memory size, the SDRAM controller does not wrap around. It activates virtual bank
numbers three or four.

Problem Fix/Workaround

None.

41.8.3 No tRC after refresh when low-power mode is enabled
When low-power mode is enabled and after a refresh command is sent to the SDRAM, the
SDRAM Controller enters low-power mode by asserting SDCKE low. The tRC timing between
Auto-refresh and Low-power mode is not respected. As SDCKE is low, the INHIBIT and NOP
commands are not sent to the SDRAM.

For the moment this warning has no effect on the correct functionality of the SDRAM.

Problem Fix/Workaround

None.

41.8.4 Some devices are not supported
The SDRAM controller does not support the following devices in 32-bit mode:

• 128 Mbit device: 32M*4bits: 4 banks/12 rows/11 columns

• 256 Mbit device: 64M*4bits: 4 banks/13 rows/11 columns

Problem Fix/Workaround

None.

41.8.5 Interrupt Disable Register
Writing 0 to the Interrupt Enable Register or to the Interrupt Disable Register modifies the value
of Interrupt Mask Register.

Problem Fix/Workaround

None.

41.9 SMC

41.9.1 Address Bus continuously active
The address bus is continuously driven with the address of the current access, even if it is an
internal one.

Problem Fix/Workaround

677
1768I–ATARM–09-Jul-09

AT91RM9200

None.

41.9.2 16-bit write access constraints
When at least two SMC_CSR registers are programmed as follows:

– SMC_SCRx: With wait states (1 < NWS < 127), 16-bit data bus width, and byte write
access (BAT field set to 0)

– SMC_CSRy: With wait states (1 < NWS < 127), 16-bit data bus width, and byte
select access (BAT field set to 1),

the associated NCSx signal is not asserted for the write access.

Problem Fix/Workaround

For registers programmed with wait states and 16-bit data bus width configuration, the BAT
fields in these registers must be programmed with the same value.

41.10 SPI

41.10.1 Slave Mode Receiver does not mask the highest data bits
If the SPI receives a frame followed by 8 bits of data, the user needs to mask the highest byte of
the Receive Holding Register, as this data may be incorrect and not 0.

Problem Fix/Workaround

The user should implement the PDC. If the PDC is not implemented, the user should mask the
highest byte of the Receive Holding register.

41.10.2 No chip select configuration change before end of current transfer
If the SPI is programmed in Master Mode and in Fixed Peripheral Mode, and data is being sent
to a slave, the user has to wait for completion of the transfer before changing the slave number.
Programming a new slave number (PCS) and/or a new DLYBCS field locks the SPI on the cur-
rent slave.

Problem Fix/Workaround

The user should use the Variable Peripheral Mode.

41.10.3 NPCSx rises if no data is to be transmitted
If the SPI has sent all the data written in the SPI_TDR, the current NPCS rises immediately. This
might be inconvenient in the case of several SPI peripherals requiring their chip select line to
remain active until a complete data buffer has been transmitted. The PDC channel may be late
in providing data to be transmitted when bus latencies are too high.

Problem Fix/Workaround

For high-speed applications, the relevant PIO pins can be used to manage the data
transmission.

41.10.4 Mode Fault does not allow more than one Master on Chip Select 0
If Mode fault is disabled, Chip Select 0 cannot be driven by a component other than the SPI oth-
erwise the transfer does not occur.

Problem Fix/Workaround

None.

678
1768I–ATARM–09-Jul-09

AT91RM9200

41.11 SSC

41.11.1 Receiver does not take into account a start condition while receiving data
The SSC receiver does not support reception of the last data sequence of a frame that overlaps
a new start of frame, regardless of the mode of detection of the start condition. For example, this
prevents reception of the last data of a TDM bus.

Problem Fix/Workaround

None.

41.11.2 RXSYN and TXSYN not cleared when read
The status bits RXSYN and TXSYN are active during a complete serial clock period and are not
immediately cleared when SSC_SR is read.

Problem Fix/Workaround

The user must enable the interrupt relevant to RXSYN and TXSYN.

41.11.3 Receiver Speed Limitations

– If RF is programmed as input, the maximum clock frequency is MCK divided by 2.

– If RF is programmed as output and RK is programmed as input, the maximum clock
frequency is MCK divided by 6.

– If RF and RK are both programmed as output, the maximum clock frequency is MCK
divided by 4.

Problem Fix/Workaround

None.

41.11.4 Transmitter Speed Limitations

– If both TF and TK are programmed as output, the maximum clock frequency is MCK
divided by 4.

– If TF is programmed in output and TK is programmed as input, the maximum clock
frequency is MCK divided by 8.

– If both TF and TK are programmed as input, the maximum clock frequency is MCK
divided by 8.

– If TF is programmed in input and TK is programmed as output, the maximum clock
frequency is MCK divided by 4.

Problem Fix/Workaround

None.

41.11.5 Disabling the SSC does not stop the Frame Synchronization signal generation
Generating RF can be stopped only by programming the FSOS field in SSC_RFMR to 0x0.

Generating TF can be stopped only by programming the FSOS field in SSC_TFMR to 0x0.

Problem Fix/Workaround

None.

679
1768I–ATARM–09-Jul-09

AT91RM9200

41.11.6 No delay when start condition overlays data transmit
When transmission of data is programmed at the end of a frame and the start condition of the
following frame is detected at the end of the current frame, the delay programmed by the
STTDLY bit (in the SSC_RCMR and in the SSC_TCMR registers) is not performed on the next
frame. Transmission starts immediately regardless of the programming of the field STTDLY.

Problem Fix/Workaround

None.

41.11.7 Unexpected delay on TD output
When SSC is configured with the following conditions:

• TCMR.STTDLY more than 0

• RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge

• RFMR.FSOS = None (input)

• TCMR.START = Receive Start

An unexpected delay of 2 or 3 system clock cycles is added to TD output.

Problem Fix/Workaround

None.

41.12 TC

41.12.1 Wrong Compare at restart if burst low
If the counter was stopped or disabled, unwanted Compare RA, RB or RC may occur at restart if
the clock selected by the counter is masked by a low selected burst input when the trigger event
is recognized at the selected clock active edge. All compare effects are affected, as the flags are
set incorrectly and CPC trigger, CPC stop or CPC disable may occur.

Problem Fix/Workaround

None.

41.12.2 Wrong 0 captured before Compare RC trigger
A wrong 0 is captured in RA or RB during the last selected counter clock period if CPCTRG is
active and the capture event occurred at least one Master Clock cycle after the last counter
value update.

Problem Fix/Workaround

None.

41.12.3 Erroneous capture with burst low
The value captured is not equal to the Counter Value if the selected burst input is low at capture
time, i.e., at the selected clock active edge where the capture event is recognized.

The captured value may be 0; otherwise, it is the Counter Value plus one instead of the Counter
Value.

Problem Fix/Workaround

None.

680
1768I–ATARM–09-Jul-09

AT91RM9200

41.12.4 Bad capture at restart if burst low
The captured value is not zero if burst is low when the preceding trigger event is recognized.
Instead, the captured value is the Counter Value before the trigger.

Problem Fix/Workaround

None.

41.12.5 TIOA and TIOB outputs stuck in case of simultaneous events
In the register TC_CMR, if at least one of the fields ASWTRG or AEEVT or ACPC is set to 0x0
(none), the event programmed by ACPA is not carried out.

In the register TC_CMR, if at least one of the fields ASWTRG or AEEVT is set to 0x0 (none), the
event programmed by ACPC is not carried out.

In the register TC_CMR, if the field ASWTRG is set to 0x0 (none), the event programmed by
AEEVT is not carried out.

The same problem exists on the TIOB output with the fields BSWTRG, BEEVT, BCPC and
BCPB.

Problem Fix/Workaround

An order of priority for TIOA and/or TIOB events must be defined depending on the user
application.

41.12.6 TIMER_CLOCK2 not sampled on same edge as TIMER_CLOCK0 and TIMER_CLOCK1
TIMER_CLOCK2/TIMER_CLOCK5 is sampled on the system clock falling edge of Master Clock,
whereas TIMER_CLOCK0/TIMER_CLOCK3 and TIMER_CLOCK1/TIMER_CLOCK4 are sam-
pled on the rising edge of Master Clock. This should not have any effect on the functional
operations of the Timer Counter unless the Timer Counter is used at its speed limit.

Problem Fix/Workaround

None.

41.12.7 Triggers do not clear the counter in Up/Down Mode
When the field WAVESEL in TC_CMR is at value 0x1 or 0x3, the triggers do not reset the coun-
ter value. The counter value can be reset only by modifying the field WAVESEL.

Problem Fix/Workaround

None.

41.12.8 Triggers in Up/Down Mode are lost when burst signal is active
When the field WAVESEL in TC_CMR is at value 0x1 or 0x3, the triggers occurring while the
selected burst signal is active (clock disabled) are not taken into account.

Problem Fix/Workaround

None.

41.12.9 Clock Selection Limitation in Up/Down Mode
Selecting the Master Clock or the Master Clock divided by 2 as the Timer Counter Clock may
lead to unpredictable result when the field WAVESEL in TC_CMR is at value 0x1 or 0x3.

Problem Fix/Workaround

681
1768I–ATARM–09-Jul-09

AT91RM9200

None.

41.12.10 Spurious counter overflow in Up/Down Mode
When the field WAVESEL in TC_CMR is at value 0x1 or 0x3 and when the counter reaches the
value 0xFFFF, it inverts its sense and decrements to 0xFFFE. At the same time, the OVF bit in
TC_SR is set.

Problem Fix/Workaround

None.

41.13 TWI

41.13.1 Disabling Does not Operate Correctly
Any transfer in progress is immediately frozen if the Control Register (TWI_CR) is written with
the bit MSDIS at 1. Furthermore, the status bits TXCOMP and TXRDY in the Status Register
(TWI_SR) are not reset.

Problem Fix/Workaround

The user must wait for the end of transfer before disabling the TWI. In addition, the interrupts
must be disabled before disabling the TWI.

41.13.2 NACK Status Bit Lost
During a master frame, if TWI_SR is read between the Non Acknowledge condition detection
and the TXCOMP bit rising in the TWI_SR, the NACK bit is not set.

Problem Fix/Workaround

The user must wait for the TXCOMP status bit by interrupt and must not read the TWI_SR as
long as transmission is not completed.

Note: TXCOMP and NACK fields are set simultaneously and the NACK field is reset after the read of the
TWI_SR.

41.13.3 Possible Receive Holding Register Corruption
When loading the TWI_RHR, the transfer direction is ignored. The last data byte received in the
TWI_RHR is corrupted at the end of the first subsequent transmit data byte. Neither RXRDY nor
OVERRUN status bits are set if this occurs.

Problem Fix/Workaround

The user must be sure that received data is read before transmitting any new data.

41.13.4 Clock Divider
The value of CLDIV x 2CKDIV must be less than or equal to 8191; the value of CHDIV x 2CKDIV

must be less than or equal to 8191.

Problem Fix/Workaround

None.

41.13.5 Software reset
When a software reset is performed during a frame and when TWCK is low, it is impossible to
initiate a new transfer in READ or WRITE mode.

682
1768I–ATARM–09-Jul-09

AT91RM9200

Problem Fix/Workaround

None.

41.13.6 TXCOMP and TXRDY reset
TXCOMP and TXRDY are not reset by MSDIS.

Problem Fix/Workaround

None.

41.13.7 Data lost on high latency
In case of high latency to process the RXRDY interrupt, with RXRDY set, if the receive data reg-
ister is read at the same time as new data is captured into the register, the RXRDY flag is
cleared and the new data is lost because the associated RXRDY is not set.

Problem Fix/Workaround

None.

41.14 USART

41.14.1 RTS0 not connected
Internally, the RTS0 signal of the USART0 is not connected to PA21.

Problem Fix/Workaround

The RTS0 signal of the USART0 is connected to the PIO Controller D. The PIOD can be used to
control the RTS0 signal. The PIOD is only available in the AT91RM9200 BGA package.

41.14.2 US_IF must be initialized
US_IF must be initialized even in transmission mode.

Problem Fix/Workaround

None.

41.14.3 TXD signal is floating in Modem and Hardware Handshaking modes
The TXD signal should be pulled up in Modem and Hardware Handshaking modes.

Problem Fix/Workaround

TXD is multiplexed with PIO which integrates a pull-up resistor.

This internal pull-up needs to be enabled.

41.14.4 DCD is active High instead of Low
The DCD signal is active at 'High' level into the USART block (Modem mode).

DCD should be active at 'Low' level.

Problem Fix/Workaround

Add an inverter.

41.14.5 Bad value in Number of Errors Register
The Number of Errors Register always returns 0 instead of the ISO7816 error number.

683
1768I–ATARM–09-Jul-09

AT91RM9200

Problem/Fix Workaround

None.

41.15 USB Host Port

41.15.1 No pulldown on port 2 using 208-lead PQFP package
The second port of the UHP is unbonded and there is no pull-down on DP and DM.

This may result in an unexpected connect detection on the second port.

Problem Fix/Workaround

A software workaround is to hardcode the NDP field of the HcRhDescriptorA operational register
to 1.

684
1768I–ATARM–09-Jul-09

AT91RM9200

685
1768I–ATARM–09-Jul-09

AT91RM9200

42. Revision History
Revision History

Version A Publication Date: 22-Apr-03

Version B Publication Date: 22-Aug-03

Page Version B Changes Since Last Issue

Page 36 New Figure 8, ARM920T Internal Functional Block Diagram.

Page 56 Corrected fields in CP15 Register 7 register table.

Page 62
Updated Figure 9, AT91RM9200 Debug and Test Block Diagram with corrected DTXD and DRXD signal names and
transfer direction of signals TST0 - TST1 and NRST.

Page 85 Change signal name to NPCS0.

Page 86 Changes to Figure 15, Boot Program Algorithm Flow Diagram.

Page 87 Corrected BMS state to high during reset. Corrected address for internal ROM mapping.

Page 89 In Table 21 and text, corrected device names AT45DBxxx.

Page 91 Changes to Figure 20, Serial DataFlash Download.

Page 96 Updated Table 24 with new pins used and table note.

Page 108 Code change in section Description of the SvcXmodem Structure.

Page 109 Code change in Table 29: Xmodem Service, first table cell.

Page 110 Code change in section Using the Service.

Page 111 Code change in Table 30: DataFlash Service Methods, first table cell.

Page 116 Code change in Steps 1 and 2 in section Using the Service.

Page 233 Changed Table 58, I/O Line Description.

Page 245 In AIC Source Mode Register, corrected descriptions of bits PRIOR and SRCTYPE.

Page 255 Change number of programmable clocks to four. Correct oscillator speed to read 32.768 kHz.

Page 256 Updated section I/O Lines with new information on clocks.

Page 257 New PMC Block Diagram, Figure 117.

Page 258 Updated Processor Clock and Programmable Clock Outputs descriptions. Updated Clock Generator description.

Page 259 New Clock Generator Block Diagram, Figure 118. Section Slow Clock Oscillator Startup Time updated.

Page 261 Added section Main Oscillator Bypass.

Page 263 Updated section PLLB Divider by 2.

Page 264
In section Master Clock Controller, changed references to PLLB Output to PLLB Clock. New Figure 124: Master
Clock Controller. In section Processor Clock Source, specified differences between ARM7-based and ARM9-based
systems.

Page 265 Section Programmable Clock Output Controller updated to show change in number of programmable clocks.

Page 267
In Table 60: Clock Switching Timings (Worst Case), changed PLLA Output to PLLA Clock and PLLB Output to PLLB
Clock.

Page 268
In Figure 125: Switch Master Clock from Slow Clock to PLLA Clock and in Figure 126: Switch Master Clock from
Main Clock to Slow Clock, changed signal names and waveform labels.

Page 269
In Figure 127: Change PLLA Programming, changed signal names and labels. New Figure 128: Programmable
Clock Output Programming.

686
1768I–ATARM–09-Jul-09

AT91RM9200

Page 270
Changed register names in Table 61: PMC Register Mapping: PMC_MOR to CKGR_MOR, PMC_MCFR to
CKGR_MCFR, PMC_PLLAR to CKGR_PLLAR and PCM_PLLBR to CKGR_PLLBR. Remove registers
PMC_PCK4, PMC_PCK5, PMC_PCK6 and PMC_PCK7 (addresses 0x0050 to 0x005C).

Page 271
In register PMC_SCER, deleted bits PCK7 to PCK4, fields 15 to 12. All bit names updated to include “Enable”. In
UHP bit description, deleted reference to 12 MHz clock.

Page 272
In register PMC_SCDR, deleted bits PCK7 to PCK4, fields 15 to 12. All bit names updated to include “Disable”. In
UHP bit description, deleted reference to 12 MHz clock.

Page 273
In register PMC_SCSR, deleted bits PCK7 to PCK4, fields 15 to 12. All bit names updated to include “Status”. In
UHP bit description, corrected to read “USB Host Port”.

Page 276
Changed register name to PMC Clock Generator Main Oscillator Register. MOSCEN bit description changed to
include information on Main Clock signal and crystal connection. OSCOUNT bit description changed to remove
multiplication factor for Slow Clock cycles.

Page 277
Changed register name to PMC Clock Generator Main Clock Frequency Register. Corrected in MAINRDY field
description reference to MAINF.

Page 278
Changed register name to PMC Clock Generator PLL A Register. In OUTA and MULA bits, changed references to
PLLA Output to PLL A Clock.

Page 279
Changed register name to PMC Clock Generator PLL B Register. In OUTB and MULB bits, changed references to
PLLB Output to PLL B Clock. Changed bit description for USB_96M.

Page 280 In PMC_MCKR, new clock source selections specified for CSS. MDIV bit condition added.

Page 281 In PMC_PCK0 to PMC_PCK3, new clock source selections specified for CSS.

Page 282 In PMC_IER and PMC_IDR, bits PCK7RDY, PCK6RDY, PCK5RDY and PCK4RDY removed.

Page 283 In PMC_SR, bits PCK7RDY, PCK6RDY, PCK5RDY and PCK4RDY removed.

Page 284 In PMC_IMR, bits PCK7RDY, PCK6RDY, PCK5RDY and PCK4RDY removed.

Page 312 Added Note to Figure 135.

Page 331 In DBGU Chip ID Register, corrected NVPTYP field to 000 for ROM.

Page 343 In Table 67: PIO Register Mapping, PIO_OWSR access changed to read-only.

Page 358 In PIO_OWSR, access changed to read-only.

Page 368 Changed all references from CPHA to NCPHA. Updated Figures 159 and 160 for clarity.

Page 391
In CHDIV and CLDIV bit descriptions in register TWI_CWGR, corrected equations for calculation of SCL high and
low periods. In CHDIV, CLDIV and CKDIV bit descriptions in register TWI_CWGR, SCL replaced by TWCK.

Page 452
Updated Figure 214, Transmit Frame Format in Continuous Mode. Updated Figure 215, Receive Frame Format in
Continuous Mode.

Page 460 In register SSC_RFMR, new description of bit DATLEN.

Page 596 In Table 109, DC Characteristics, changed conditions for Static Current.

Page 598 New consumption figures in Table 113 and Table 114.

Page 599
In Table 115: 32 kHz Oscillator Characteristics, VDDOSC defined in Startup Time conditions. In Table 116: Main
Oscillator Characteristics, VDDPLL defined in Startup Time conditions. In Table 117: Phase Lock Loop
Characteristics, corrected errors in Pump current max/min values.

Page 601 In Table 120: Switching Characteristics in Full Speed, min/max values for Rise/Fall Time Matching added.

Page 614 In Table 125: SDRAMC Signals, changed min values for SDRAMC23 to SDRAMC28.

Page Version B Changes Since Last Issue (Continued)

687
1768I–ATARM–09-Jul-09

AT91RM9200

Version C Publication Date: 11-Feb-05

(Note: Page numbers listed below do not correspond to the page numbers as they appear in the revised datasheet format.)

Page Version C Changes Since Last Issue

Global All reference to Fast Forcing removed.

Global Peripheral Data Controller (PDC) changed to Peripheral DMA Controller (PDC)

Global SmartMedia. NAND Flash coupled to all references to SmartMedia, to read as; NAND Flash/SmartMedia.

Global Input voltage range for VDDIOM and VDDIOP is 3.0. CSR 05-012

Page 1 Features: USART Hardware Handshaking. Reference to Software Handshaking removed. CSR 04-066

Page 3 Figure 1: NWAIT pin added to block diagram. CSR 03-209

Page 14
Table 1: AT91RM9200 Pinout for 208-lead PQFP package, pins 28, 30, 37 and 39 names modified. CSR 03-
244

Page 23
Table 7: Pin Description, ICE and JTAG description, “Internal Pullup” added to comments for all signals, except
TDO. CSR 04-315

Page 24 Table 7: Pin Description, NWAIT pin added. CSR 03-209

Page 68 Figure 14: AMP Mictor Connector Orientation, correct illustration inserted. CSR 03-242

Page 89 Table 21: DataFlash Device, AT45DB2562 removed. CSR 03-221

Page 91 Figure 20: Serial DataFlash Download, Correct illustration inserted. CSR 04-404

Page 127 Internal Memory Area 0 and Table 35: 16-bit value given to Memory Area 0.

Page 137 Boot Mode Select: 16-bit value given to external boot memory. CSR 03-205

Page 139 Table 37: I/O Lines Description NWAIT signal relocated to SMC. CSR 03-209

Page 150
Table 39: EBI Pins and External Device Connections, Pin/Controller line A13 - A15 changed to A13-A14 and
SDRAMC changed to A11- A12. Pin/Controller line A15 added. CSR 03-217

Page 191 SMC Chip Select Registers; figures cross-referenced to RWHOLD signal.

Page 226 EBI_CFGR Register: Warning added to bit #1. CSR 03-243

Page 245 Table 57: Register Mapping. PERIPH_PTSR offset changed to 0x124. CSR 04-188

Page 259 SRCTYPE Interrupt source type descriptions changed.

Page 260 Figure 119. Typical Slow Clock Oscillator Connection; GNDPLL changed to GNDOSC.

Page 261 Figure 121. Typical Crystal Connection; GNDPLL changed to GNDOSC.

Page 261
Main Oscillator Control: sentence corrected to read; “....counting down on Slow Clock from the OSCOUNT
value. CSR 03-232

Page 278 Main Oscillator Bypass: XIN pin information changed. CSR 04-405

Page 279 PMC Clock Generator PLL A Register; Line added to CKGR_PLLA limitations. CSR 05-005

Page 279 PMC Clock Generator PLL B Register; Line added to CKGR_PLLB limitations. CSR 05-005

Page 289 Table 62: Register Mapping. ST_IMR Register is read-only. CSR 03-232

Page 295 Real Time Controller changed to Real Time Clock. CSR 04-020

Page 311(GLobal) Debug Unit (DBGU), ICE Access Prevention removed.

Page 320, 332 Debut Unit User Interface: Force NTRST Register removed.

Page 348 PIO. Pull-up Resistor Control. Value of resistor changed from approximately 100 kΩ to 10 kΩ.

Page 351 (Global) PIO. Change PIO_PDSR from Peripheral Data Status Register to Pin Data Status Register

688
1768I–ATARM–09-Jul-09

AT91RM9200

Page 362 Master Mode Operations: Cross reference to SPI User interface clarified. CSR 04-406

Page 368 Table 69: SPI Bus Protocol Mode, NCPHA column corrected. CSR 04-239

Page 386 Figure 170. TWI Write in Master Mode. “Set the control register”; reference to slave removed.

Page 387 Figure 171. TWI Read in Master Mode. Set the control register”; reference to slave removed.

Page 399 Changes to definitions of abbreviations in TWI “Transmitting Data” figure drawings.

Page 404 TWI Master Mode Register. IADRSZ[9:8], change to first line.

Page 405 TWI Internal Address Register. Text added to IADR description.

Page 406 TWI Status Register. Change to TXCOMP bit. Reference to slave removed.

Page 408 Multi-drop Mode: PAR field setting changed. CSR 04-187

Page 415 Receive NACK Inhibit: “Moreover, if INACK is reset”......(replaces; if INACK is set) CSR 05-006

Page 419
RS485 Mode and Figure 196. Typical Connection to an RS485 bus; changed RTS signal information. CSR 03-
190

Page 502 Table 94. Bus Topology; footnote added to Type column of Pin Number “2” row.

Page 503
Command/Response Operation: PWSEN bit power saving formula changed...dividing the MCI clock by
[(2PWSDIV)+1].

Page 512
MCI_MR: PSWSDIV bit power saving formula changed... MCI clock divided by [(2PWSDIV)+1] when entering
Power Saving Mode. CSR 05-009

Page 523 UDP: Overview, text changed.

Page 525 Main features of UDP changed. CSR 04-026

Page 526 Figure 244. Board Schematic to Interface USB Device Peripheral. USB signals added to figure.

Page 528 Figure 244: Resistor level changed. CSR 04-025, CSR 04-116

Page 544 &560 UDP User Interface: Transceiver Control Register (USB_TXVC) added.

Page 567 Power Management: Steps to put EMAC in Local Loopback Mode added. CSR 05-014

Page 594

Table 109: VDDIOM and VDDIOP DC Supply Characteristics, Max changed to 3.6.
CSR 04-076

VDDIOM and VDDIOP DC Supply Characteristics, Min changed to 3.0

ISC Condition changed to On VDDcore = 1.95V

Page 596

Power Consumption: added; • EMAC 50MHz clock not connected

Table 113: Power Consumption for PMC Modes, and Table 114: Power Consumption by Peripheral,
Consumption values changed. CSR 03-234

Table 114: Power Consumption by Peripheral. Note added to EMAC line

Page 597
Table 117: Phase Lock Loop Characteristics, changes to “FOUT” line. The “K0“ and “IP” lines have been
eliminated. CSR 04-234, CSR 04-006

Page 604 - 605 Temperature Derating Factor: Figures 266, 267 and 268; derating curves changed. CSR 05-013

Page 626-629 Package Drawings: Tables 136 - 141 added, figure 278; 256-ball BGA package drawing changed.

Page 630-631
Soldering Profiles: Tables 142 - 143 added for Standard package and table 144 for Green and RoHS-
compliant package.

Page 633 Table 145; Ordering Information. New information added.

Page Version C Changes Since Last Issue (Continued)

689
1768I–ATARM–09-Jul-09

AT91RM9200

Version D Publication Date: 11-Jul-05

Page Change CSR Ref.

25
In Table 4-7, “Pin Description List,” on page 25 added mention of Schmitt trigger for pins JTAGSEL,
TDI, TCK, TMS, NTRST, TST0, TST1 AND NRST.

05-348

140
Changed use of NWR1 for 8-bit static device in Table 17-3, “EBI Pins and External Device
Connections” from WE to “-”.

-

217

218

Removed Flash device references in Figure 20-2 in “Burst Flash Controller (BFC)” .

Removed Section 20.5.1 “I/O Lines” on page 218.
05-122

342
In “SRAMSIZ: Internal SRAM Size” bit description in “Debug Unit (DBGU)” , changed Size from
“Reserved” to “80K bytes”.

05-115

348 New information on value of internal pull-ups in “Pull-up Resistor Control” , Section 21.4.1. 05-352

422

427

437

Corrected information on parity levels in “Universal Synchronous Asynchronous Receiver
Transceiver (USART)” , Section 30.6.3.5.

Corrected stop bit level in Figure 30-15.

Made all reset values hexadecimal in Table 30-12 on page 437.

05-067

05-181

All
570

586

In “USB Device Port (UDP)” , changed all register names to UDP_xxx.

Replaced ENDBURST by ENDBUSRES in “USB Device Port (UDP)” , Section 34.5.3.1 and “UDP
Interrupt Clear Register” .

Updated “ENDBUSRES: Clear End of Bus Reset Interrupt” bit description,

05-147
05-148

596 Added information on memory access errors in “USB Host Port (UHP)” , Section 35.2. 05-240

632 In Table 37-2, changed min and max values for IPULL and added new information on RPULLUP. 05-352

633
Changed references from Master Clock to Processor Clock in Table 37-3, “Processor Clock
Waveform Parameters,” on page 633.

05-123

642 and
following

In “AT91RM9200 AC Characteristics” , updated derating figures in Table 38-1, Table 38-2,
Table 38-5, Table 38-7, Table 38-8 and Table 38-11.

05-287

669 Updated ordering reference for PQFP208 Green package option in Table 40-1.

690
1768I–ATARM–09-Jul-09

AT91RM9200

Revision History (cont.)

Document Version Change CSR Ref.

1768E

In ”Features” on page 1, corrected power consumption values. 05-371

In Section 23.6.7 “PMC Clock Generator Main Oscillator Register” on page 283, removed
all references to OSCBYPASS.

05-450

In Table 36-5, “EMAC Register Mapping,” on page 612, update Statistics Registers with
offset correction and new registers. In Table 36-6, “EMAC Statistic Register Block Register
Descriptions,” on page 629, update with new offset corrections and registers.

05-435

Removed MTBF data from Section 39.1.1 “Thermal Data” on page 661. 05-453

Included new Section 41. “AT91RM9200 Errata” on page 671 in datasheet. Formerly
document 6015G.

1768F

Reformatted Section 8. “Memories” on page 17. Inserted new figure Figure 8-1 on page 17
with overall product memory map.

Removed note in Table 17-3, “EBI Pins and External Device Connections,” on page 137
giving information on ALE and CLE pins.

1730

Added Section 17.7 “Implementation Examples” on page 147 with figures,

Removed Application Example from “Static Memory Controller (SMC)” .
Removed Application Example from “SDRAM Controller (SDRAMC)” .

2663

Revised and updated Section 33. “MultiMedia Card Interface (MCI)” on page 519. 2664

Corrected errata: Updated Static Current Typ and Max values in Table 37-2, “DC
Characteristics,” on page 632; updated max PLL output frequency in Table 37-10, “Phase
Lock Loop Characteristics,” on page 636.

Renumbered and updated Section 41. “AT91RM9200 Errata” on page 671.

2516, 2517,
2525, 2608

Changed values in Table 39-12, “Soldering Profile,” on page 666. 2492

1768G

Updated “Features” and Section 4. “Package and Pinout” on page 8 with additional details
on package options.

PMC: Updated capacitor details in Section 23.4.5.1 “Main Oscillator Connections” on page
266 and Section 23.4.5.5 “Main Oscillator Bypass” on page 267.

3339

UDP: In Section 34.6.4 “UDP Interrupt Enable Register” on page 576, Section 34.6.5
“UDP Interrupt Disable Register” on page 578, Section 34.6.6 “UDP Interrupt Mask
Register” on page 580, Section 34.6.7 “UDP Interrupt Status Register” on page 582 and
Section 34.6.9 “UDP Reset Endpoint Register” on page 587, removed all references to
Endpoint 6 and Endpoint 7 (bits and bit descriptions).

3203

Updated Table 37-1, “Absolute Maximum Ratings*,” on page 631. 3063

Updated Input Capacitance value in Table 37-7, “XIN Clock Electrical Characteristics,” on
page 634.

3339

Updated CL, CL1, CL2 values in Table 37-6, “Main Oscillator Characteristics,” on page 634. 3287, 3339

Updated Table 40-1, “Ordering Information,” on page 669.

In “AT91RM9200 Errata” , added Section 41.1 “Marking” on page 671.

1768H
Ordering code AT91RM9200-CI-002 removed from Section 40. “AT91RM9200 Ordering
Information” on page 669

6423

691
1768I–ATARM–09-Jul-09

AT91RM9200

1768I

USB Endpoint Size values edited in Table 34-1 on page 557 3481

A Warning paragraph added to Section 34.6.10 “UDP Endpoint Control and Status
Register” on page 588

3764

LDR Opcode edited in Figure 13-3 on page 86 4453

Sections 37.4 and 37.5 reversed, to have “Clock Characteristics” followed by “Crystal
Oscillator Characteristics”

4666

Section 41.14.3 “TXD signal is floating in Modem and Hardware Handshaking modes” on
page 682 and Section 41.14.4 “DCD is active High instead of Low” on page 682 added to
USART Errata

4723

240 MHz value changed into 180 MHz in Section 23.4.3 “Clock Generator” on page 264 4923

240 MHz value in OUTA and OUTB tables changed into 180 MHz in Section 23.6.9 “PMC
Clock Generator PLL A Register” on page 285 and Section 23.6.10 “PMC Clock Generator
PLL B Register” on page 286

4925

Section 41.6.4 “OSCBYPASS is not functional with PLLA” on page 675 added to PMC
Errata

4964

USART3 0XFFECC000 changed into 0XFFFCC000 in Figure 8-1 on page 17 5067

OSCBYPASS added, MOSCEN and OSCOUNT edited in Section 23.6.7 “PMC Clock
Generator Main Oscillator Register” on page 283

5077

2 rows added to Table 38-4 on page 649 5102

Section 25.4.5 “Updating Time/Calendar” on page 307 edited 5113

Standby conditions edited in Table 37-8 on page 635 5192

A footnote added to USART “Overview” on page 411 5208

Weight values changed in Table 39-4 on page 663 and Table 39-7 on page 664 5258

2CKDIV changed into 2CKDIV in Section 41.13.4 “Clock Divider” on page 681 5431

Section 18. “Static Memory Controller (SMC)” on page 155 changed, using SMC_ABC
(6153) Programmer Datasheet content

5618

SDIO, SDIORQA and SDIORQB removed from Section 33.9 “MultiMedia Card Interface
(MCI) User Interface” on page 533

5628

NWDOVF removed from Figure 24-1 on page 293 and Figure 24-4 on page 295.
Section 24.4.3 Watchdog Overflow removed.

EXTEN removed from Figure 24-4 on page 295, from Section 24.5.3 “Watchdog Timer
(WDT)” on page 295, and from Section 24.6.3 “ST Watchdog Mode Register” on page 298

5683

Main Oscillator Table 37-6 on page 634 edited, and 4 values (Driver Level, ESR, Shunt
and Motionless Capacitance) added

6333

MCI erratum added: Section 41.4.11 “Data write operation and number of bytes” on page
674

6426

- XIN Clock moved from “Clock Characteristics” to “Crystal Oscillator Characteristics” .

- SSC erratum added: Section 41.11.7 “Unexpected delay on TD output” on page 679

- USART erratum added: Section 41.14.5 “Bad value in Number of Errors Register” on
page 682.

RFO

Document Version Change CSR Ref.

692
1768I–ATARM–09-Jul-09

AT91RM9200

i
1768I–ATARM–09-Jul-09

AT91RM9200

Table of Contents

Features ... 1

1 Description ... 2

2 Block Diagram .. 3

3 Signal Description ... 4

4 Package and Pinout ... 8

4.1208-pin PQFP Package Outline ..8

4.2208-pin PQFP Package Pinout ...9

4.3256-ball BGA Package Outline ..10

4.4256-ball BGA Package Pinout ...11

5 Power Considerations ... 13

5.1Power Supplies ...13

5.2Power Consumption ..13

6 I/O Considerations ... 13

6.1JTAG Port Pins ..13

6.2Test Pin ...13

6.3Reset Pin ...13

6.4PIO Controller A, B, C and D Lines ...14

7 Processor and Architecture .. 14

7.1ARM920T Processor ...14

7.2Debug and Test ...14

7.3Boot Program ..15

7.4Embedded Software Services ...15

7.5Memory Controller ...15

8 Memories .. 17

8.1Embedded Memories ..18

9 System Peripherals .. 19

9.1Reset Controller ..19

9.2Advanced Interrupt Controller ...19

9.3Power Management Controller ..19

9.4Debug Unit ..20

9.5PIO Controller ..20

ii
1768I–ATARM–09-Jul-09

AT91RM9200

10 User Peripherals .. 21

10.1User Interface ..21

10.2Peripheral Identifiers ...21

10.3Peripheral Multiplexing on PIO Lines ..22

10.4External Bus Interface ...27

10.5Static Memory Controller ...27

10.6SDRAM Controller ...28

10.7Burst Flash Controller ..28

10.8Peripheral DMA Controller (PDC) ..29

10.9System Timer ..29

10.10Real-time Clock ...29

10.11USB Host Port ...29

10.12USB Device Port ...29

10.13Ethernet MAC ..29

10.14Serial Peripheral Interface ...30

10.15Two-wire Interface ...30

10.16USART ..30

10.17Serial Synchronous Controller ...31

10.18Timer Counter ...31

10.19MultiMedia Card Interface ...32

11 ARM920T Processor Overview ... 33

11.1Overview ...33

11.2Block Diagram ...35

11.3ARM9TDMI Processor ..36

11.4CP15 Coprocessor ..41

11.5Memory Management Unit (MMU) ..43

11.6Caches, Write Buffers and Physical Address ..44

11.7ARM920T User Interface ...46

12 Debug and Test Features (DBG Test) .. 59

12.1Overview ...59

12.2Block Diagram ...60

12.3Application Examples ..61

12.4Test Environment ..61

12.5Debug and Test Pin Description ..62

12.6Functional Description ...63

iii
1768I–ATARM–09-Jul-09

AT91RM9200

13 Boot Program ... 83

13.1Overview ..83

13.2Flow Diagram ..84

13.3Bootloader ...85

13.4Boot Uploader ...92

13.5Hardware and Software Constraints ...94

14 Embedded Software Services ... 95

14.1Overview ...95

14.2Service Definition ..95

14.3Embedded Software Services ...99

15 AT91RM9200 Reset Controller .. 117

15.1Overview ...117

16 Memory Controller (MC) .. 121

16.1Overview ...121

16.2Block Diagram ...122

16.3Functional Description ...123

16.4User Interface ..128

17 External Bus Interface (EBI) .. 133

17.1Overview ...133

17.2Block Diagram ...134

17.3I/O Lines Description ...135

17.4Application Example ..137

17.5Product Dependencies ..140

17.6Functional Description ...140

17.7Implementation Examples ...147

17.8External Bus Interface (EBI) User Interface ..151

18 Static Memory Controller (SMC) ... 155

18.1Overview ...155

18.2Block Diagram ...156

18.3I/O Lines Description ...157

18.4Product Dependencies ..158

18.5Functional Description ...158

18.6Static Memory Controller (SMC) User Interface ..190

19 SDRAM Controller (SDRAMC) .. 195

iv
1768I–ATARM–09-Jul-09

AT91RM9200

19.1Overview ...195

19.2Block Diagram ...196

19.3I/O Lines Description ...196

19.4Software Interface ...197

19.5Product Dependencies ..199

19.6Functional Description ...201

19.7SDRAM Controller (SDRAMC) User Interface ..207

20 Burst Flash Controller (BFC) .. 217

20.1Overview ...217

20.2Block Diagram ...218

20.3I/O Lines Description ...218

20.4Application Example ..219

20.5Product Dependencies ..220

20.6Functional Description ...220

20.7Burst Flash Controller (BFC) User Interface ..229

21 Peripheral DMA Controller (PDC) ... 231

21.1Overview ...231

21.2Block Diagram ...231

21.3Functional Description ...232

21.4Peripheral DMA Controller (PDC) User Interface ...234

22 Advanced Interrupt Controller (AIC) .. 241

22.1Overview ...241

22.2Block Diagram ...242

22.3Application Block Diagram ..242

22.4AIC Detailed Block Diagram ..242

22.5I/O Line Description ...243

22.6Product Dependencies ..243

22.7Functional Description ...244

22.8Advanced Interrupt Controller (AIC) User Interface ...253

23 Power Management Controller (PMC) .. 263

23.1Overview ...263

23.2Product Dependencies ..264

23.3Block Diagram ...265

23.4Functional Description ...266

23.5Clock Switching Details ...275

v
1768I–ATARM–09-Jul-09

AT91RM9200

23.6Power Management Controller (PMC) User Interface ..278

24 System Timer (ST) ... 295

24.1Overview ...295

24.2Block Diagram ...295

24.3Application Block Diagram ..296

24.4Product Dependencies ..296

24.5Functional Description ...296

24.6System Timer (ST) User Interface ...298

25 Real Time Clock (RTC) .. 307

25.1Overview ...307

25.2Block Diagram ...307

25.3Product Dependencies ..307

25.4Functional Description ...308

25.5Real Time Clock (RTC) User Interface ..310

26 Debug Unit (DBGU) .. 323

26.1Overview ...323

26.2Block Diagram ...324

26.3Product Dependencies ..325

26.4UART Operations ..325

26.5Debug Unit User Interface ..332

27 Parallel Input/Output Controller (PIO) .. 347

27.1Overview ...347

27.2Block Diagram ...348

27.3Product Dependencies ..349

27.4Functional Description ...349

27.5I/O Lines Programming Example ..354

27.6Parallel Input/Output Controller (PIO) User Interface ..356

28 Serial Peripheral Interface (SPI) ... 373

28.1Overview ...373

28.2Block Diagram ...374

28.3Application Block Diagram ..375

28.4Product Dependencies ..376

28.5Functional Description ...376

28.6Serial Peripheral Interface (SPI) User Interface ..384

vi
1768I–ATARM–09-Jul-09

AT91RM9200

29 Two-wire Interface (TWI) .. 397

29.1Overview ...397

29.2Block Diagram ...397

29.3Application Block Diagram ..397

29.4Product Dependencies ..398

29.5Functional Description ...398

29.6Two-wire Interface (TWI) User Interface ..404

30 Universal Synchronous Asynchronous Receiver Transceiver
(USART) .. 413

30.1Overview ...413

30.2Block Diagram ...414

30.3Application Block Diagram ..415

30.4I/O Lines Description ..415

30.5Product Dependencies ..415

30.6Functional Description ...416

30.7USART User Interface ..439

31 Serial Synchronous Controller (SSC) .. 457

31.1Overview ...457

31.2Block Diagram ...458

31.3Application Block Diagram ..458

31.4Pin Name List ..459

31.5Product Dependencies ..459

31.6Functional Description ...459

31.7SSC Application Examples ..468

31.8Serial Synchronous Controller (SSC) User Interface ..471

32 Timer Counter (TC) .. 487

32.1Overview ...487

32.2Block Diagram ...488

32.3Pin Name List ..489

32.4Product Dependencies ..489

32.5Functional Description ...489

32.6Waveform Operating Mode ...494

32.7Timer Counter (TC) User Interface ..502

33 MultiMedia Card Interface (MCI) ... 521

33.1Description ..521

vii
1768I–ATARM–09-Jul-09

AT91RM9200

33.2Block Diagram ...522

33.3Application Block Diagram ..523

33.4Pin Name List ...523

33.5Product Dependencies ..524

33.6Bus Topology ..524

33.7MultiMedia Card Operations ..527

33.8SD Card Operations ..534

33.9MultiMedia Card Interface (MCI) User Interface ..535

34 USB Device Port (UDP) .. 555

34.1Overview ...555

34.2Block Diagram ...556

34.3Product Dependencies ..557

34.4Typical Connection ..558

34.5Functional Description ...559

34.6USB Device Port (UDP) User Interface ...574

35 USB Host Port (UHP) ... 595

35.1Overview ...595

35.2Block Diagram ...596

35.3Product Dependencies ..597

35.4Functional Description ...598

35.5Typical Connection ..600

36 Ethernet MAC (EMAC) ... 601

36.1Overview ...601

36.2Block Diagram ...602

36.3Application Block Diagram ..602

36.4Product Dependencies ..603

36.5Functional Description ...604

36.6Ethernet MAC (EMAC) User Interface ..612

37 AT91RM9200 Electrical Characteristics ... 631

37.1Absolute Maximum Ratings ...631

37.2DC Characteristics ..632

37.3Clocks Characteristics ...633

37.4Power Consumption ..634

37.5Crystal Oscillators Characteristics ...635

37.6PLL Characteristics ...635

viii
1768I–ATARM–09-Jul-09

AT91RM9200

37.7Transceiver Characteristics ...636

38 AT91RM9200 AC Characteristics ... 639

38.1Applicable Conditions and Derating Data ..639

38.2EBI Timings ...642

38.3JTAG/ICE Timings ...657

38.4ETM Timings ...660

39 AT91RM9200 Mechanical Characteristics ... 661

39.1Thermal and Reliability Considerations ...661

39.2Package Drawings ..662

39.3Soldering Profiles ..665

40 AT91RM9200 Ordering Information .. 669

41 AT91RM9200 Errata ... 671

41.1Marking ..671

41.2EBI ...672

41.3EMAC ..672

41.4MCI ..672

41.5PIO ..674

41.6PMC ..674

41.7ROM Bootloader ..675

41.8SDRAMC ...675

41.9SMC ..676

41.10SPI ...676

41.11SSC ...677

41.12TC ..678

41.13TWI ..680

41.14USART ..681

41.15USB Host Port ...681

42 Revision History ... 683

Revision History (cont.).. 688

Table of Contents... i

1768I–ATARM–09-Jul-09

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com
www.atmel.com/AT91SAM

Technical Support
AT91SAM Support
Atmel techincal support

Sales Contacts
www.atmel.com/contacts/

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifica-
tions and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically pro-
vided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted
for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof DataFlash® and others, are registered trade-
marks or trademarks of Atmel Corporation or its subsidiaries. ARM®, Thumb® and the ARMPowered® logo and others are registered trade-
marks or trademarks of ARM Limited. Other terms and product names may be the trademarks of others.

http://www.atmel.com/
www.atmel.com
http://www.atmel.com/products/AT91CAP/
http://www.atmel.com/products/AT91/
http://www.atmel.com/dyn/products/ip_blocks.asp?family_id=615
http://www.atmel.com/products/PowerManage/
http://www.atmel.com/products/Dream/
http://www.atmel.com/products/Dream/
http://support.atmel.no/bin/customer
http://support.atmel.no/bin/customer
mailto:info@dream.fr <info@dream.fr>
mailto:asic@atmel.com <asic@atmel.com>
http://www.atmel.com/dyn/products/support.asp
http://www.atmel.com/contacts/
http://www.atmel.com/contacts/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Atmel:

 AT91RM9200-QU-002 AT91RM9200-CJ-002

http://www.mouser.com/atmel
http://www.mouser.com/access/?pn=AT91RM9200-QU-002
http://www.mouser.com/access/?pn=AT91RM9200-CJ-002

	Features
	1. Description
	2. Block Diagram
	3. Signal Description
	4. Package and Pinout
	4.1 208-pin PQFP Package Outline
	4.2 208-pin PQFP Package Pinout
	4.3 256-ball BGA Package Outline
	4.4 256-ball BGA Package Pinout

	5. Power Considerations
	5.1 Power Supplies
	5.2 Power Consumption

	6. I/O Considerations
	6.1 JTAG Port Pins
	6.2 Test Pin
	6.3 Reset Pin
	6.4 PIO Controller A, B, C and D Lines

	7. Processor and Architecture
	7.1 ARM920T Processor
	7.2 Debug and Test
	7.3 Boot Program
	7.4 Embedded Software Services
	7.5 Memory Controller

	8. Memories
	8.1 Embedded Memories
	8.1.1 Internal Memory Mapping
	8.1.1.1 Internal RAM
	8.1.1.2 Internal ROM
	8.1.1.3 USB Host Port

	9. System Peripherals
	9.1 Reset Controller
	9.2 Advanced Interrupt Controller
	9.3 Power Management Controller
	9.4 Debug Unit
	9.5 PIO Controller

	10. User Peripherals
	10.1 User Interface
	10.2 Peripheral Identifiers
	10.3 Peripheral Multiplexing on PIO Lines
	10.3.1 PIO Controller A Multiplexing
	10.3.2 PIO Controller B Multiplexing
	10.3.3 PIO Controller C Multiplexing
	10.3.4 PIO Controller D Multiplexing
	10.3.5 System Interrupt
	10.3.6 External Interrupts

	10.4 External Bus Interface
	10.5 Static Memory Controller
	10.6 SDRAM Controller
	10.7 Burst Flash Controller
	10.8 Peripheral DMA Controller (PDC)
	10.9 System Timer
	10.10 Real-time Clock
	10.11 USB Host Port
	10.12 USB Device Port
	10.13 Ethernet MAC
	10.14 Serial Peripheral Interface
	10.15 Two-wire Interface
	10.16 USART
	10.17 Serial Synchronous Controller
	10.18 Timer Counter
	10.19 MultiMedia Card Interface

	11. ARM920T Processor Overview
	11.1 Overview
	11.2 Block Diagram
	11.3 ARM9TDMI Processor
	11.3.1 Instruction Type
	11.3.2 Data Types
	11.3.3 ARM9TDMI Operating Modes
	11.3.4 ARM9TDMI Registers
	11.3.4.1 Modes and Exception Handling
	11.3.4.2 Status Registers
	11.3.4.3 Exception Types

	11.3.5 ARM Instruction Set Overview
	11.3.6 Thumb Instruction Set Overview

	11.4 CP15 Coprocessor
	11.4.1 CP15 Register Access

	11.5 Memory Management Unit (MMU)
	11.5.1 Domain
	11.5.2 MMU Faults

	11.6 Caches, Write Buffers and Physical Address
	11.6.1 Instruction Cache (ICache)
	11.6.2 Data Cache (DCache) and Write Buffer
	11.6.2.1 DCache
	11.6.2.2 Write Buffer
	11.6.2.3 Physical Address Tag RAM (PA TAG RAM)

	11.7 ARM920T User Interface
	11.7.1 CP15 Register 0, ID Code and Cache Type
	11.7.1.1 ID Code
	11.7.1.2 Cache Type

	11.7.2 CP15 Register 1, Control
	11.7.3 CP15 Register 2, TTB
	11.7.4 CP15 Register 3, Domain Access Control Register
	11.7.5 CP15 Register 4, Reserved
	11.7.6 CP15 Register 5, Fault Status Register
	11.7.7 CP15 Register 6, Fault Address Register
	11.7.8 CP15 Register 7, Cache Operation Register
	11.7.9 CP15 Register 8, TLB Operations Register
	11.7.10 CP15 Register 9, Cache Lockdown Register
	11.7.11 CP15 Register 10, TLB Lockdown Register
	11.7.12 CP15 Registers 11, 12, Reserved
	11.7.13 CP15 Register 13, FCSE PID Register
	11.7.14 CP15 Register 14, Reserved
	11.7.15 CP15 Register 15, Test Configuration Register

	12. Debug and Test Features (DBG Test)
	12.1 Overview
	12.2 Block Diagram
	12.3 Application Examples
	12.3.1 Debug Environment

	12.4 Test Environment
	12.5 Debug and Test Pin Description
	12.6 Functional Description
	12.6.1 Test Mode Pins
	12.6.2 Embedded In-Circuit Emulator
	12.6.3 Debug Unit
	12.6.4 Embedded Trace Macrocell
	12.6.4.1 Trace Port
	12.6.4.2 Implementation Details
	12.6.4.3 Application Board Restriction

	12.6.5 IEEE 1149.1 JTAG Boundary Scan
	12.6.5.1 JTAG Boundary Scan Register

	12.6.6 AT91RM9200 ID Code Register

	13. Boot Program
	13.1 Overview
	13.2 Flow Diagram
	13.3 Bootloader
	13.3.1 Valid Image Detection
	13.3.1.1 Example

	13.3.2 Structure of ARM Vector 6
	13.3.2.1 Example

	13.3.3 Bootloader Sequence
	13.3.3.1 Device Initialization
	13.3.3.2 Download Procedure
	13.3.3.3 Serial DataFlash Download
	13.3.3.4 Serial Two-wire EEPROM Download
	13.3.3.5 8-bit Parallel Flash Download (Applicable to Devices with EBI)

	13.4 Boot Uploader
	13.4.1 External Communication Channels
	13.4.1.1 DBGU Serial Port
	13.4.1.2 Xmodem Protocol
	13.4.1.3 USB Device Port
	13.4.1.4 DFU Protocol

	13.5 Hardware and Software Constraints

	14. Embedded Software Services
	14.1 Overview
	14.2 Service Definition
	14.2.1 Service Structure
	14.2.1.1 Structure Definition
	14.2.1.2 Methods
	14.2.1.3 Service Entry Point

	14.2.2 Using a Service
	14.2.2.1 Opening a Service
	14.2.2.2 Overloading a Method

	14.3 Embedded Software Services
	14.3.1 Definition
	14.3.2 ROM Entry Service
	14.3.3 Tempo Service
	14.3.3.1 Presentation
	14.3.3.2 Tempo Service Description
	14.3.3.3 Using the Service

	14.3.4 Xmodem Service
	14.3.4.1 Presentation
	14.3.4.2 Xmodem Service Description
	14.3.4.3 Using the Service

	14.3.5 DataFlash Service
	14.3.5.1 Presentation
	14.3.5.2 DataFlash Service Description
	14.3.5.3 Using the Service

	14.3.6 CRC Service
	14.3.6.1 Presentation
	14.3.6.2 CRC Service Description
	14.3.6.3 Using the Service

	14.3.7 Sine Service
	14.3.7.1 Presentation
	14.3.7.2 Sine Service Description

	15. AT91RM9200 Reset Controller
	15.1 Overview
	15.1.1 Reset Conditions
	15.1.1.1 NRST Conditions
	15.1.1.2 NTRST Assertion

	15.1.2 Reset Management
	15.1.2.1 System Reset
	15.1.2.2 Test Access Port (TAP) Reset

	15.1.3 Required Features for the Reset Controller

	16. Memory Controller(MC)
	16.1 Overview
	16.2 Block Diagram
	16.3 Functional Description
	16.3.1 Bus Arbiter
	16.3.2 Address Decoder
	16.3.2.1 External Memory Areas
	16.3.2.2 Internal Memory Mapping
	16.3.2.3 Internal Memory Area 0
	16.3.2.4 Boot Mode Select

	16.3.3 Remap Command
	16.3.4 Abort Status
	16.3.5 Misalignment Detector
	16.3.6 Memory Controller Interrupt

	16.4 User Interface
	16.4.1 MC Remap Control Register
	16.4.2 MC Abort Status Register
	16.4.3 MC Abort Address Status Register
	16.4.4 MC Master Priority Register

	17. External Bus Interface (EBI)
	17.1 Overview
	17.2 Block Diagram
	17.3 I/O Lines Description
	17.4 Application Example
	17.4.1 Hardware Interface
	17.4.2 Connection Examples

	17.5 Product Dependencies
	17.5.1 I/O Lines

	17.6 Functional Description
	17.6.1 Bus Multiplexing
	17.6.2 Pull-up Control
	17.6.3 Static Memory Controller
	17.6.4 SDRAM Controller
	17.6.5 Burst Flash Controller
	17.6.6 CompactFlash Support
	17.6.6.1 I/O Mode, Common Memory Mode and Attribute Memory Mode
	17.6.6.2 Read/Write Signals
	17.6.6.3 Access Type
	17.6.6.4 Multiplexing of CompactFlash Signals on EBI Pins
	17.6.6.5 CompactFlash Application Example

	17.6.7 NAND Flash/ SmartMedia Support

	17.7 Implementation Examples
	17.7.1 16-bit SDRAM
	17.7.1.1 Hardware Configuration
	17.7.1.2 Software Configuration

	17.7.2 32-bit SDRAM
	17.7.2.1 Hardware Configuration
	17.7.2.2 Software Configuration

	17.7.3 NOR Flash on NCS0
	17.7.3.1 Hardware Configuration
	17.7.3.2 Software Configuration

	17.7.4 Compact Flash
	17.7.4.1 Hardware Configuration
	17.7.4.2 Software Configuration

	17.8 External Bus Interface (EBI) User Interface
	17.8.1 EBI Chip Select Assignment Register
	17.8.2 EBI Configuration Register

	18. Static Memory Controller (SMC)
	18.1 Description
	18.2 Block Diagram
	18.3 I/O Lines Description
	18.4 Multiplexed Signals
	18.5 Product Dependencies
	18.5.1 I/O Lines

	18.6 Functional Description
	18.6.1 External Memory Interface
	18.6.1.1 External Memory Mapping
	18.6.1.2 Chip Select Lines
	18.6.1.3 Data Bus Width

	18.6.2 Write Access
	18.6.2.1 Write Access Type
	18.6.2.2 Byte Select Access
	18.6.2.3 Write Data Hold Time

	18.6.3 Read Access
	18.6.3.1 Read Protocols
	18.6.3.2 Standard Read Protocol
	18.6.3.3 Early Read Protocol

	18.6.4 Wait State Management
	18.6.4.1 Standard Wait States
	18.6.4.2 External Wait States
	18.6.4.3 Data Float Wait States
	18.6.4.4 Chip Select Change Wait State
	18.6.4.5 Early Read Wait State

	18.6.5 Setup and Hold Cycles
	18.6.5.1 Read Access
	18.6.5.2 Write Access
	18.6.5.3 Data Float Wait States with Setup Cycles

	18.6.6 LCD Interface Mode
	18.6.7 Memory Access Waveforms
	18.6.7.1 Read Accesses in Standard and Early Protocols
	18.6.7.2 Accesses with Setup and Hold
	18.6.7.3 Accesses Using NWAIT Input Signal
	18.6.7.4 Memory Access Example Waveforms

	18.7 Static Memory Controller (SMC) User Interface
	18.7.1 SMC Chip Select Registers

	19. SDRAM Controller (SDRAMC)
	19.1 Overview
	19.2 Block Diagram
	19.3 I/O Lines Description
	19.4 Software Interface
	19.4.1 32-bit Memory Data Bus Width
	19.4.2 16-bit Memory Data Bus Width

	19.5 Product Dependencies
	19.5.1 SDRAM Device Initialization
	19.5.2 I/O Lines
	19.5.3 Interrupt

	19.6 Functional Description
	19.6.1 SDRAM Controller Write Cycle
	19.6.2 SDRAM Controller Read Cycle
	19.6.3 Border Management
	19.6.4 SDRAM Controller Refresh Cycles
	19.6.5 Power Management
	19.6.5.1 Self-refresh Mode
	19.6.5.2 Low-power Mode

	19.7 SDRAM Controller (SDRAMC) User Interface
	19.7.1 SDRAMC Mode Register
	19.7.2 SDRAMC Refresh Timer Register
	19.7.3 SDRAMC Configuration Register
	19.7.4 SDRAMC Self-refresh Register
	19.7.5 SDRAMC Low-power Register
	19.7.6 SDRAMC Interrupt Enable Register
	19.7.7 SDRAMC Interrupt Disable Register
	19.7.8 SDRAMC Interrupt Mask Register
	19.7.9 SDRAMC Interrupt Status Register

	20. Burst Flash Controller (BFC)
	20.1 Overview
	20.2 Block Diagram
	20.3 I/O Lines Description
	20.4 Application Example
	20.4.1 Burst Flash Interface

	20.5 Product Dependencies
	20.5.1 I/O Lines

	20.6 Functional Description
	20.6.1 Burst Flash Controller Reset State
	20.6.2 Burst Flash Controller Clock Selection
	20.6.3 Burst Flash Controller Asynchronous Mode
	20.6.4 Burst Flash Controller Synchronous Mode
	20.6.4.1 Burst Read Protocols
	20.6.4.2 Read Access in Burst Mode
	20.6.4.3 Burst Suspension for Transfer Enabling
	20.6.4.4 Continuous Burst Reads

	20.7 Burst Flash Controller (BFC) User Interface
	20.7.1 Burst Flash Controller Mode Register

	21. Peripheral DMA Controller (PDC)
	21.1 Overview
	21.2 Block Diagram
	21.3 Functional Description
	21.3.1 Configuration
	21.3.2 Memory Pointers
	21.3.3 Transfer Counters
	21.3.4 Data Transfers
	21.3.5 Priority of PDC Transfer Requests

	21.4 Peripheral DMA Controller (PDC) User Interface
	21.4.1 PDC Receive Pointer Register
	21.4.2 PDC Receive Counter Register
	21.4.3 PDC Transmit Pointer Register
	21.4.4 PDC Transmit Counter Register
	21.4.5 PDC Receive Next Pointer Register
	21.4.6 PDC Receive Next Counter Register
	21.4.7 PDC Transmit Next Pointer Register
	21.4.8 PDC Transmit Next Counter Register
	21.4.9 PDC Transfer Control Register
	21.4.10 PDC Transfer Status Register

	22. Advanced Interrupt Controller (AIC)
	22.1 Overview
	22.2 Block Diagram
	22.3 Application Block Diagram
	22.4 AIC Detailed Block Diagram
	22.5 I/O Line Description
	22.6 Product Dependencies
	22.6.1 I/O Lines
	22.6.2 Power Management
	22.6.3 Interrupt Sources

	22.7 Functional Description
	22.7.1 Interrupt Source Control
	22.7.1.1 Interrupt Source Mode
	22.7.1.2 Interrupt Source Enabling
	22.7.1.3 Interrupt Clearing and Setting
	22.7.1.4 Interrupt Status
	22.7.1.5 Internal Interrupt Source Input Stage
	22.7.1.6 External Interrupt Source Input Stage

	22.7.2 Interrupt Latencies
	22.7.2.1 External Interrupt Edge Triggered Source
	22.7.2.2 External Interrupt Level Sensitive Source
	22.7.2.3 Internal Interrupt Edge Triggered Source
	22.7.2.4 Internal Interrupt Level Sensitive Source

	22.7.3 Normal Interrupt
	22.7.3.1 Priority Controller
	22.7.3.2 Interrupt Nesting
	22.7.3.3 Interrupt Vectoring
	22.7.3.4 Interrupt Handlers

	22.7.4 Fast Interrupt
	22.7.4.1 Fast Interrupt Source
	22.7.4.2 Fast Interrupt Control
	22.7.4.3 Fast Interrupt Vectoring
	22.7.4.4 Fast Interrupt Handlers

	22.7.5 Protect Mode
	22.7.6 Spurious Interrupt
	22.7.7 General Interrupt Mask

	22.8 Advanced Interrupt Controller (AIC) User Interface
	22.8.1 Base Address
	22.8.2 AIC Source Mode Register
	22.8.3 AIC Source Vector Register
	22.8.4 AIC Interrupt Vector Register
	22.8.5 AIC FIQ Vector Register
	22.8.6 AIC Interrupt Status Register
	22.8.7 AIC Interrupt Pending Register
	22.8.8 AIC Interrupt Mask Register
	22.8.9 AIC Core Interrupt Status Register
	22.8.10 AIC Interrupt Enable Command Register
	22.8.11 AIC Interrupt Disable Command Register
	22.8.12 AIC Interrupt Clear Command Register
	22.8.13 AIC Interrupt Set Command Register
	22.8.14 AIC End of Interrupt Command Register
	22.8.15 AIC Spurious Interrupt Vector Register
	22.8.16 AIC Debug Control Register

	23. Power Management Controller (PMC)
	23.1 Overview
	23.2 Product Dependencies
	23.2.1 I/O Lines
	23.2.2 Interrupt
	23.2.3 Oscillator and PLL Characteristics
	23.2.4 Peripheral Clocks
	23.2.5 USB Clocks

	23.3 Block Diagram
	23.4 Functional Description
	23.4.1 Operating Modes Definition
	23.4.2 Clock Definitions
	23.4.3 Clock Generator
	23.4.4 Slow Clock Oscillator
	23.4.4.1 Slow Clock Oscillator Connection
	23.4.4.2 Slow Clock Oscillator Startup Time

	23.4.5 Main Oscillator
	23.4.5.1 Main Oscillator Connections
	23.4.5.2 Main Oscillator Startup Time
	23.4.5.3 Main Oscillator Control
	23.4.5.4 Main Clock Frequency Counter
	23.4.5.5 Main Oscillator Bypass

	23.4.6 Divider and PLL Blocks
	23.4.6.1 PLL Filters
	23.4.6.2 PLL Source Clock
	23.4.6.3 Divider and Phase Lock Loop Programming
	23.4.6.4 PLLB Divider by 2

	23.4.7 Clock Controllers
	23.4.7.1 Master Clock Controller
	23.4.7.2 Processor Clock Controller
	23.4.7.3 Peripheral Clock Controller
	23.4.7.4 USB Clock Controller
	23.4.7.5 Programmable Clock Output Controller

	23.5 Clock Switching Details
	23.5.1 Master Clock Switching Timings
	23.5.2 Clock Switching Waveforms

	23.6 Power Management Controller (PMC) User Interface
	23.6.1 PMC System Clock Enable Register
	23.6.2 PMC System Clock Disable Register
	23.6.3 PMC System Clock Status Register
	23.6.4 PMC Peripheral Clock Enable Register
	23.6.5 PMC Peripheral Clock Disable Register
	23.6.6 PMC Peripheral Clock Status Register
	23.6.7 PMC Clock Generator Main Oscillator Register
	23.6.8 PMC Clock Generator Main Clock Frequency Register
	23.6.9 PMC Clock Generator PLL A Register
	23.6.10 PMC Clock Generator PLL B Register
	23.6.11 PMC Master Clock Register
	23.6.12 PMC Programmable Clock Register 0 to 3
	23.6.13 PMC Interrupt Enable Register
	23.6.14 PMC Interrupt Disable Register
	23.6.15 PMC Status Register
	23.6.16 PMC Interrupt Mask Register

	24. System Timer (ST)
	24.1 Overview
	24.2 Block Diagram
	24.3 Application Block Diagram
	24.4 Product Dependencies
	24.4.1 Power Management
	24.4.2 Interrupt Sources

	24.5 Functional Description
	24.5.1 System Timer Clock
	24.5.2 Period Interval Timer (PIT)
	24.5.3 Watchdog Timer (WDT)
	24.5.4 Real-time Timer (RTT)

	24.6 System Timer (ST) User Interface
	24.6.1 ST Control Register
	24.6.2 ST Period Interval Mode Register
	24.6.3 ST Watchdog Mode Register
	24.6.4 ST Real-Time Mode Register
	24.6.5 ST Status Register
	24.6.6 ST Interrupt Enable Register
	24.6.7 ST Interrupt Disable Register
	24.6.8 ST Interrupt Mask Register
	24.6.9 ST Real-time Alarm Register
	24.6.10 ST Current Real-Time Register

	25. Real Time Clock (RTC)
	25.1 Overview
	25.2 Block Diagram
	25.3 Product Dependencies
	25.3.1 Power Management
	25.3.2 Interrupt

	25.4 Functional Description
	25.4.1 Reference Clock
	25.4.2 Timing
	25.4.3 Alarm
	25.4.4 Error Checking
	25.4.5 Updating Time/Calendar

	25.5 Real Time Clock (RTC) User Interface
	25.5.1 RTC Control Register
	25.5.2 RTC Mode Register
	25.5.3 RTC Time Register
	25.5.4 RTC Calendar Register
	25.5.5 RTC Time Alarm Register
	25.5.6 RTC Calendar Alarm Register
	25.5.7 RTC Status Register
	25.5.8 RTC Status Clear Command Register
	25.5.9 RTC Interrupt Enable Register
	25.5.10 RTC Interrupt Disable Register
	25.5.11 RTC Interrupt Mask Register
	25.5.12 RTC Valid Entry Register

	26. Debug Unit (DBGU)
	26.1 Overview
	26.2 Block Diagram
	26.3 Product Dependencies
	26.3.1 I/O Lines
	26.3.2 Power Management
	26.3.3 Interrupt Source

	26.4 UART Operations
	26.4.1 Baud Rate Generator
	26.4.2 Receiver
	26.4.2.1 Receiver Reset, Enable and Disable
	26.4.2.2 Start Detection and Data Sampling
	26.4.2.3 Receiver Ready
	26.4.2.4 Receiver Overrun
	26.4.2.5 Parity Error
	26.4.2.6 Receiver Framing Error

	26.4.3 Transmitter
	26.4.3.1 Transmitter Reset, Enable and Disable
	26.4.3.2 Transmit Format
	26.4.3.3 Transmitter Control

	26.4.4 Peripheral DMA Controller
	26.4.5 Test Modes
	26.4.6 Debug Communication Channel Support
	26.4.7 Chip Identifier

	26.5 Debug Unit User Interface
	26.5.1 Debug Unit Control Register
	26.5.2 Debug Unit Mode Register
	26.5.3 Debug Unit Interrupt Enable Register
	26.5.4 Debug Unit Interrupt Disable Register
	26.5.5 Debug Unit Interrupt Mask Register
	26.5.6 Debug Unit Status Register
	26.5.7 Debug Unit Receiver Holding Register
	26.5.8 Debug Unit Baud Rate Generator Register
	26.5.9 Debug Unit Chip ID Register
	26.5.10 Debug Unit Chip ID Extension Register

	27. Parallel Input/Output Controller (PIO)
	27.1 Overview
	27.2 Block Diagram
	27.3 Product Dependencies
	27.3.1 Pin Multiplexing
	27.3.2 External Interrupt Lines
	27.3.3 Power Management
	27.3.4 Interrupt Generation

	27.4 Functional Description
	27.4.1 Pull-up Resistor Control
	27.4.2 I/O Line or Peripheral Function Selection
	27.4.3 Peripheral A or B Selection
	27.4.4 Output Control
	27.4.5 Synchronous Data Output
	27.4.6 Multi Drive Control (Open Drain)
	27.4.7 Output Line Timings
	27.4.8 Inputs
	27.4.9 Input Glitch Filtering
	27.4.10 Input Change Interrupt

	27.5 I/O Lines Programming Example
	27.6 Parallel Input/Output Controller (PIO) User Interface
	27.6.1 PIO Enable Register
	27.6.2 PIO Disable Register
	27.6.3 PIO Status Register
	27.6.4 PIO Output Enable Register
	27.6.5 PIO Output Disable Register
	27.6.6 PIO Output Status Register
	27.6.7 PIO Input Filter Enable Register
	27.6.8 PIO Input Filter Disable Register
	27.6.9 PIO Input Filter Status Register
	27.6.10 PIO Set Output Data Register
	27.6.11 PIO Clear Output Data Register
	27.6.12 PIO Output Data Status Register
	27.6.13 PIO Pin Data Status Register
	27.6.14 PIO Interrupt Enable Register
	27.6.15 PIO Interrupt Disable Register
	27.6.16 PIO Interrupt Mask Register
	27.6.17 PIO Interrupt Status Register
	27.6.18 PIO Multi-driver Enable Register
	27.6.19 PIO Multi-driver Disable Register
	27.6.20 PIO Multi-driver Status Register
	27.6.21 PIO Pull-Up Disable Register
	27.6.22 PIO Pull-Up Enable Register
	27.6.23 PIO Pad Pull-Up Status Register
	27.6.24 PIO Peripheral A Select Register
	27.6.25 PIO Peripheral B Select Register
	27.6.26 PIO Peripheral AB Status Register
	27.6.27 PIO Output Write Enable Register
	27.6.28 PIO Output Write Disable Register
	27.6.29 PIO Output Write Status Register

	28. Serial Peripheral Interface (SPI)
	28.1 Overview
	28.2 Block Diagram
	28.3 Application Block Diagram
	28.4 Product Dependencies
	28.4.1 I/O Lines
	28.4.2 Power Management
	28.4.3 Interrupt

	28.5 Functional Description
	28.5.1 Master Mode Operations
	28.5.1.1 Fixed Peripheral Select
	28.5.1.2 Variable Peripheral Select
	28.5.1.3 Chip Selects
	28.5.1.4 Clock Generation and Transfer Delays
	28.5.1.5 Mode Fault Detection
	28.5.1.6 Master Mode Flow Diagram
	28.5.1.7 Master Mode Block Diagram

	28.5.2 SPI Slave Mode
	28.5.3 Data Transfer

	28.6 Serial Peripheral Interface (SPI) User Interface
	28.6.1 SPI Control Register
	28.6.2 SPI Mode Register
	28.6.3 SPI Receive Data Register
	28.6.4 SPI Transmit Data Register
	28.6.5 SPI Status Register
	28.6.6 SPI Interrupt Enable Register
	28.6.7 SPI Interrupt Disable Register
	28.6.8 SPI Interrupt Mask Register
	28.6.9 SPI Chip Select Register

	29. Two-wire Interface (TWI)
	29.1 Overview
	29.2 Block Diagram
	29.3 Application Block Diagram
	29.4 Product Dependencies
	29.4.1 I/O Lines
	29.4.2 Power Management
	29.4.3 Interrupt

	29.5 Functional Description
	29.5.1 Transfer Format
	29.5.2 Modes of Operation
	29.5.3 Transmitting Data
	29.5.4 Read/Write Flowcharts

	29.6 Two-wire Interface (TWI) User Interface
	29.6.1 TWI Control Register
	29.6.2 TWI Master Mode Register
	29.6.3 TWI Internal Address Register
	29.6.4 TWI Clock Waveform Generator Register
	29.6.5 TWI Status Register
	29.6.6 TWI Interrupt Enable Register
	29.6.7 TWI Interrupt Disable Register
	29.6.8 TWI Interrupt Mask Register
	29.6.9 TWI Receive Holding Register
	29.6.10 TWI Transmit Holding Register

	30. Universal Synchronous Asynchronous Receiver Transceiver (USART)
	30.1 Overview
	30.2 Block Diagram
	30.3 Application Block Diagram
	30.4 I/O Lines Description
	30.5 Product Dependencies
	30.5.1 I/O Lines
	30.5.2 Power Management
	30.5.3 Interrupt

	30.6 Functional Description
	30.6.1 Baud Rate Generator
	30.6.1.1 Baud Rate in Asynchronous Mode
	30.6.1.2 Baud Rate in Synchronous Mode
	30.6.1.3 Baud Rate in ISO 7816 Mode

	30.6.2 Receiver and Transmitter Control
	30.6.3 Synchronous and Asynchronous Modes
	30.6.3.1 Transmitter Operations
	30.6.3.2 Asynchronous Receiver
	30.6.3.3 Synchronous Receiver
	30.6.3.4 Receiver Operations
	30.6.3.5 Parity
	30.6.3.6 Multi-drop Mode
	30.6.3.7 Transmitter Timeguard
	30.6.3.8 Receiver Time-out
	30.6.3.9 Framing Error
	30.6.3.10 Transmit Break
	30.6.3.11 Receive Break
	30.6.3.12 Hardware Handshaking

	30.6.4 ISO7816 Mode
	30.6.4.1 ISO7816 Mode overview
	30.6.4.2 Protocol T = 0
	30.6.4.3 Protocol T = 1

	30.6.5 IrDA Mode
	30.6.5.1 IrDA Modulation
	30.6.5.2 IrDA Baud Rate
	30.6.5.3 IrDA Demodulator

	30.6.6 RS485 Mode
	30.6.7 Modem Mode
	30.6.8 Test Modes
	30.6.8.1 Normal Mode
	30.6.8.2 Automatic Echo
	30.6.8.3 Local Loopback
	30.6.8.4 Remote Loopback

	30.7 USART User Interface
	30.7.1 USART Control Register
	30.7.2 USART Mode Register
	30.7.3 USART Interrupt Enable Register
	30.7.4 USART Interrupt Disable Register
	30.7.5 USART Interrupt Mask Register
	30.7.6 USART Channel Status Register
	30.7.7 USART Receive Holding Register
	30.7.8 USART Transmit Holding Register
	30.7.9 USART Baud Rate Generator Register
	30.7.10 USART Receiver Time-out Register
	30.7.11 USART Transmitter Timeguard Register
	30.7.12 USART FI DI RATIO Register
	30.7.13 USART Number of Errors Register
	30.7.14 USART IrDA FILTER Register

	31. Serial Synchronous Controller (SSC)
	31.1 Overview
	31.2 Block Diagram
	31.3 Application Block Diagram
	31.4 Pin Name List
	31.5 Product Dependencies
	31.5.1 I/O Lines
	31.5.2 Power Management
	31.5.3 Interrupt

	31.6 Functional Description
	31.6.1 Clock Management
	31.6.1.1 Clock Divider
	31.6.1.2 Transmitter Clock Management
	31.6.1.3 Receiver Clock Management

	31.6.2 Transmitter Operations
	31.6.3 Receiver Operations
	31.6.4 Start
	31.6.5 Frame Sync
	31.6.5.1 Frame Sync Data
	31.6.5.2 Frame Sync Edge Detection

	31.6.6 Data Format
	31.6.7 Loop Mode
	31.6.8 Interrupt

	31.7 SSC Application Examples
	31.8 Serial Synchronous Controller (SSC) User Interface
	31.8.1 SSC Control Register
	31.8.2 SSC Clock Mode Register
	31.8.3 SSC Receive Clock Mode Register
	31.8.4 SSC Receive Frame Mode Register
	31.8.5 SSC Transmit Clock Mode Register
	31.8.6 SSC Transmit Frame Mode Register
	31.8.7 SSC Receive Holding Register
	31.8.8 SSC Transmit Holding Register
	31.8.9 SSC Receive Synchronization Holding Register
	31.8.10 SSC Transmit Synchronization Holding Register
	31.8.11 SSC Status Register
	31.8.12 SSC Interrupt Enable Register
	31.8.13 SSC Interrupt Disable Register
	31.8.14 SSC Interrupt Mask Register

	32. Timer Counter (TC)
	32.1 Overview
	32.2 Block Diagram
	32.3 Pin Name List
	32.4 Product Dependencies
	32.4.1 I/O Lines
	32.4.2 Power Management
	32.4.3 Interrupt

	32.5 Functional Description
	32.5.1 TC Description
	32.5.1.1 16-bit Counter
	32.5.1.2 Clock Selection
	32.5.1.3 Clock Control
	32.5.1.4 TC Operating Modes
	32.5.1.5 Trigger

	32.5.2 Capture Operating Mode
	32.5.2.1 Capture Registers A and B
	32.5.2.2 Trigger Conditions

	32.6 Waveform Operating Mode
	32.6.0.3 Waveform Selection
	32.6.0.4 External Event/Trigger Conditions
	32.6.0.5 Output Controller

	32.7 Timer Counter (TC) User Interface
	32.7.1 TC Block Control Register
	32.7.2 TC Block Mode Register
	32.7.3 TC Channel Control Register
	32.7.4 TC Channel Mode Register: Capture Mode
	32.7.5 TC Channel Mode Register: Waveform Mode
	32.7.6 TC Counter Value Register
	32.7.7 TC Register A
	32.7.8 TC Register B
	32.7.9 TC Register C
	32.7.10 TC Status Register
	32.7.11 TC Interrupt Enable Register
	32.7.12 TC Interrupt Disable Register
	32.7.13 TC Interrupt Mask Register

	33. MultiMedia Card Interface (MCI)
	33.1 Description
	33.2 Block Diagram
	33.3 Application Block Diagram
	33.4 Pin Name List
	33.5 Product Dependencies
	33.5.1 I/O Lines
	33.5.2 Power Management
	33.5.3 Interrupt

	33.6 Bus Topology
	33.7 MultiMedia Card Operations
	33.7.1 Command - Response Operation
	33.7.2 Data Transfer Operation
	33.7.3 Read Operation
	33.7.4 Write Operation

	33.8 SD Card Operations
	33.9 MultiMedia Card Interface (MCI) User Interface
	33.9.1 MCI Control Register
	33.9.2 MCI Mode Register
	33.9.3 MCI Data Timeout Register
	33.9.4 MCI SDCard Register
	33.9.5 MCI Argument Register
	33.9.6 MCI Command Register
	33.9.7 MCI Response Register
	33.9.8 MCI Receive Data Register
	33.9.9 MCI Transmit Data Register
	33.9.10 MCI Status Register
	33.9.11 MCI Interrupt Enable Register
	33.9.12 MCI Interrupt Disable Register
	33.9.13 MCI Interrupt Mask Register

	34. USB Device Port (UDP)
	34.1 Overview
	34.2 Block Diagram
	34.3 Product Dependencies
	34.3.1 I/O Lines
	34.3.2 Power Management
	34.3.3 Interrupt

	34.4 Typical Connection
	34.5 Functional Description
	34.5.1 USB V2.0 Full-speed Introduction
	34.5.1.1 USB V2.0 Full-speed Transfer Types
	34.5.1.2 USB Bus Transactions
	34.5.1.3 USB Transfer Event Definitions

	34.5.2 Handling Transactions with USB V2.0 Device Peripheral
	34.5.2.1 Setup Transaction
	34.5.2.2 Data IN Transaction
	34.5.2.3 Data OUT Transaction
	34.5.2.4 Status Transaction
	34.5.2.5 Status IN Transfer
	34.5.2.6 Status OUT Transfer
	34.5.2.7 Stall Handshake

	34.5.3 Controlling Device States
	34.5.3.1 From Powered State to Default State
	34.5.3.2 From Default State to Address State
	34.5.3.3 From Address State to Configured State
	34.5.3.4 Enabling Suspend
	34.5.3.5 Receiving a Host Resume
	34.5.3.6 Sending an External Resume

	34.6 USB Device Port (UDP) User Interface
	34.6.1 UDP Frame Number Register
	34.6.2 UDP Global State Register
	34.6.3 UDP Function Address Register
	34.6.4 UDP Interrupt Enable Register
	34.6.5 UDP Interrupt Disable Register
	34.6.6 UDP Interrupt Mask Register
	34.6.7 UDP Interrupt Status Register
	34.6.8 UDP Interrupt Clear Register
	34.6.9 UDP Reset Endpoint Register
	34.6.10 UDP Endpoint Control and Status Register
	34.6.11 UDP FIFO Data Register
	34.6.12 UDP Transceiver Control Register

	35. USB Host Port (UHP)
	35.1 Overview
	35.2 Block Diagram
	35.3 Product Dependencies
	35.3.1 I/O Lines
	35.3.2 Power Management
	35.3.3 Interrupt

	35.4 Functional Description
	35.4.1 Host Controller Interface
	35.4.2 Host Controller Driver

	35.5 Typical Connection

	36. Ethernet MAC (EMAC)
	36.1 Overview
	36.2 Block Diagram
	36.3 Application Block Diagram
	36.4 Product Dependencies
	36.4.1 I/O Lines
	36.4.2 Power Management
	36.4.3 Interrupt

	36.5 Functional Description
	36.5.1 Media Independent Interface
	36.5.1.1 General
	36.5.1.2 RMII Transmit and Receive Operation

	36.5.2 Transmit/Receive Operation
	36.5.2.1 Preamble and Start of Frame Delimiter (SFD)
	36.5.2.2 Destination Address
	36.5.2.3 Source Address
	36.5.2.4 Length/Type
	36.5.2.5 LLC Data
	36.5.2.6 FCS Field

	36.5.3 Frame Format Extensions
	36.5.4 DMA Operations
	36.5.4.1 Transmitter Mode
	36.5.4.2 Receiver Mode

	36.5.5 Address Checking

	36.6 Ethernet MAC (EMAC) User Interface
	36.6.1 EMAC Control Register
	36.6.2 EMAC Configuration Register
	36.6.3 EMAC Status Register
	36.6.4 EMAC Transmit Address Register
	36.6.5 EMAC Transmit Control Register
	36.6.6 EMAC Transmit Status Register
	36.6.7 EMAC Receive Buffer Queue Pointer Register
	36.6.8 EMAC Receive Status Register
	36.6.9 EMAC Interrupt Status Register
	36.6.10 EMAC Interrupt Enable Register
	36.6.11 EMAC Interrupt Disable Register
	36.6.12 EMAC Interrupt Mask Register
	36.6.13 EMAC PHY Maintenance Register
	36.6.14 EMAC Hash Address Low Register
	36.6.15 EMAC Hash Address High Register
	36.6.16 EMAC Specific Address (1, 2, 3 and 4) High Register
	36.6.17 EMAC Specific Address (1, 2, 3 and 4) Low Register
	36.6.18 EMAC Statistics Register Block Registers

	37. AT91RM9200 Electrical Characteristics
	37.1 Absolute Maximum Ratings
	37.2 DC Characteristics
	37.3 Clock Characteristics
	37.3.1 Processor Clock Characteristics
	37.3.2 Master Clock Characteristics

	37.4 Crystal Oscillator Characteristics
	37.4.1 32 kHz Oscillator Characteristics
	37.4.2 Main Oscillator Characteristics
	37.4.3 XIN Clock Characteristics (1)

	37.5 Power Consumption
	37.6 PLL Characteristics
	37.7 Transceiver Characteristics
	37.7.1 Electrical Characteristics
	37.7.2 Switching Characteristics

	38. AT91RM9200 AC Characteristics
	38.1 Applicable Conditions and Derating Data
	38.1.1 Conditions and Timings Computation
	38.1.2 Temperature Derating Factor
	38.1.3 VDDCORE Voltage Derating Factor
	38.1.4 VDDIOM Voltage Derating Factor

	38.2 EBI Timings
	38.2.1 SMC Signals Relative to MCK
	38.2.2 SDRAMC Signals Relative to SDCK
	38.2.3 BFC Signals Relative to BFCK

	38.3 JTAG/ICE Timings
	38.3.1 ICE Interface Signals
	38.3.2 JTAG Interface Signals

	38.4 ETM Timings
	38.4.1 Timings Data
	38.4.2 Design Considerations

	39. AT91RM9200 Mechanical Characteristics
	39.1 Thermal and Reliability Considerations
	39.1.1 Thermal Data
	39.1.2 Reliability Data
	39.1.3 Junction Temperature

	39.2 Package Drawings
	39.3 Soldering Profiles
	39.3.1 Standard Packages
	39.3.2 Green and RoHS-compliant Packages

	40. AT91RM9200 Ordering Information
	41. AT91RM9200 Errata
	41.1 Marking
	41.2 EBI
	41.2.1 A24 not wired internally between the EBI and the PIO

	41.3 EMAC
	41.3.1 Using Receive frames and buffers not word-aligned

	41.4 MCI
	41.4.1 Data Endianess inversion from the MCI to MMC or SD Card
	41.4.2 Data Timeout Error Flag
	41.4.3 STREAM command not supported
	41.4.4 STOP during a WRITE_MULTIPLE_BLOCK command
	41.4.5 DTIP flag
	41.4.6 STOP command with SYNCHRONISED special command
	41.4.7 Data FIFO and status bits
	41.4.8 DATA FIFO problem with PDC
	41.4.9 DATA_CRC_ERR flag never rises
	41.4.10 STOP during a READ_MULTIPLE_BLOCK command
	41.4.11 Data write operation and number of bytes

	41.5 PIO
	41.5.1 NWAIT activity depends on use of PC6
	41.5.2 Output Data Status Register is always Read/Write

	41.6 PMC
	41.6.1 Constraints on the Master Clock selection sequence
	41.6.2 MCKRDY does not rise in some cases
	41.6.3 PMC, Clock Generator: Bad switching when writing PLL registers with same MUL and DIV values
	41.6.4 OSCBYPASS is not functional with PLLA

	41.7 ROM Bootloader
	41.8 SDRAMC
	41.8.1 SDRC_IMR can be written
	41.8.2 No wrap-around for SDRAM devices with two internal banks
	41.8.3 No tRC after refresh when low-power mode is enabled
	41.8.4 Some devices are not supported
	41.8.5 Interrupt Disable Register

	41.9 SMC
	41.9.1 Address Bus continuously active
	41.9.2 16-bit write access constraints

	41.10 SPI
	41.10.1 Slave Mode Receiver does not mask the highest data bits
	41.10.2 No chip select configuration change before end of current transfer
	41.10.3 NPCSx rises if no data is to be transmitted
	41.10.4 Mode Fault does not allow more than one Master on Chip Select 0

	41.11 SSC
	41.11.1 Receiver does not take into account a start condition while receiving data
	41.11.2 RXSYN and TXSYN not cleared when read
	41.11.3 Receiver Speed Limitations
	41.11.4 Transmitter Speed Limitations
	41.11.5 Disabling the SSC does not stop the Frame Synchronization signal generation
	41.11.6 No delay when start condition overlays data transmit
	41.11.7 Unexpected delay on TD output

	41.12 TC
	41.12.1 Wrong Compare at restart if burst low
	41.12.2 Wrong 0 captured before Compare RC trigger
	41.12.3 Erroneous capture with burst low
	41.12.4 Bad capture at restart if burst low
	41.12.5 TIOA and TIOB outputs stuck in case of simultaneous events
	41.12.6 TIMER_CLOCK2 not sampled on same edge as TIMER_CLOCK0 and TIMER_CLOCK1
	41.12.7 Triggers do not clear the counter in Up/Down Mode
	41.12.8 Triggers in Up/Down Mode are lost when burst signal is active
	41.12.9 Clock Selection Limitation in Up/Down Mode
	41.12.10 Spurious counter overflow in Up/Down Mode

	41.13 TWI
	41.13.1 Disabling Does not Operate Correctly
	41.13.2 NACK Status Bit Lost
	41.13.3 Possible Receive Holding Register Corruption
	41.13.4 Clock Divider
	41.13.5 Software reset
	41.13.6 TXCOMP and TXRDY reset
	41.13.7 Data lost on high latency

	41.14 USART
	41.14.1 RTS0 not connected
	41.14.2 US_IF must be initialized
	41.14.3 TXD signal is floating in Modem and Hardware Handshaking modes
	41.14.4 DCD is active High instead of Low
	41.14.5 Bad value in Number of Errors Register

	41.15 USB Host Port
	41.15.1 No pulldown on port 2 using 208-lead PQFP package

	42. Revision History
	Revision History (cont.)
	Table of Contents

