intersil

250MHz Differential Twisted-Pair Drivers

EL5171, EL5371

The EL5171 and EL5371 are single and triple bandwidth amplifiers with an output in differential form. They are primarily targeted for applications such as driving twisted-pair lines in component video applications. The input signal is single-ended and the outputs are always differential.

On the EL5171 and EL5371, two feedback inputs provide the user with the ability to set the gain of each device (stable at minimum gain of one). For a fixed gain of two, please see EL5170 and EL5370.

The output common mode level for each channel is set by the associated $\mathrm{V}_{\text {REF }}$ pin, which have a -3dB bandwidth of over 50 MHz . Generally, these pins are grounded but can be tied to any voltage reference.

All outputs are short circuit protected to withstand temporary overload condition.

The EL5171 and EL5371 are specified for operation over the full $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- Fully differential outputs and feedback
- Input range $\pm 2.3 \mathrm{~V}$ typ.
- 250MHz 3dB bandwidth
- 800V/ $\mu \mathrm{s}$ slew rate
- Low distortion at 5MHz
- Single 5 V or dual $\pm 5 \mathrm{~V}$ supplies
- 90 mA maximum output current
- Low power-8mA per channel
- Pb-free available (RoHS compliant)

Applications

- Twisted-pair driver
- Differential line driver
- VGA over twisted-pair
- ADSL/HDSL driver
- Single-ended to differential amplification
- Transmission of analog signals in a noisy environment

Pinouts

EL5171, EL5371
Pin Descriptions

EL5171	EL5371	PIN NAME	PIN FUNCTION
1		FBP	Feedback from non-inverting output
2		IN+	Non-inverting input
3		REF	Reference input, sets common-mode output voltage
4		FBN	Feedback from inverting output
5		OUT-	Inverting output
6		VS+	Positive supply
7		VS-	Negative supply
8		OUT+	Non-inverting output
	17, 21, 27	FBP3, FBP2, FBP1	Feedback from non-inverting output
	2, 6, 10	INP1, INP2, INP3	Non-inverting inputs
	4, 8, 12	REF1, REF2, REF3	Reference input, sets common-mode output voltage
	3, 7, 11	INN1, INN2, INN3	Inverting inputs, note that on EL5171, this pin is also the REF pin
	16, 20, 26	FBN3, FBN2, FBN1	Feedback from inverting output
	15, 19, 25	OUT3B, OUT2B, OUT1B	Inverting outputs
	24	VSP	Positive supply
	23	VSN	Negative supply
	18, 22, 28	OUT3, OUT2, OUT1	Non-inverting outputs
	1, 5, 9, 13	NC	No connects, grounded for best crosstalk performance
	14	$\overline{\mathrm{EN}}$	$\overline{\text { ENABLE }}$

Ordering Information

PART NUMBER (Notes 1, 2, 3)	PART MARKING	PACKAGE (Pb-free)	PKG. DWG. \#
EL5171ISZ	5171ISZ	8 Ld SOIC	M8.15E
EL5371IUZ	EL5371IUZ	28 Ld QSOP	M28.15

NOTES:

1. Add "-T*" suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb -free plastic packaged products employ special Pb -free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for EL5171, EL5371. For more information on MSL please see tech brief TB363.

EL5171, EL5371

Thermal Information

Storage Temperature Range. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation. ... See Curves
Pb-Free Reflow Profile . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{LD}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{F}}=0, \mathrm{R}_{\mathrm{G}}=\mathrm{OPEN}, \mathrm{C}_{\mathrm{LD}}=2.7 \mathrm{pF}$, Unless Otherwise Specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 4)	TYP	MAX (Note 4)	UNIT

AC PERFORMANCE

BW	-3dB Bandwidth	$A_{V}=1, C_{L D}=2.7 \mathrm{pF}$		250		MHz
		$A_{V}=2, R_{F}=500, C_{L D}=2.7 \mathrm{pF}$		60		MHz
		$A_{V}=10, \mathrm{R}_{\mathrm{F}}=500, \mathrm{C}_{\mathrm{LD}}=2.7 \mathrm{pF}$		10		MHz
BW	$\pm 0.1 \mathrm{~dB}$ Bandwidth	$A_{V}=1, C_{L D}=2.7 \mathrm{pF}$		50		MHz
SR	Slew Rate (EL5171)	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}, 20 \%$ to 80%	600	800	1000	V/ $\mu \mathrm{s}$
	Slew Rate (EL5371)	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}, 20 \%$ to 80%	540	700	1000	$\mathrm{V} / \mu \mathrm{s}$
${ }^{\text {S STL }}$	Settling Time to 0.1\%	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$		10		ns
$\mathrm{t}_{\text {OVR }}$	Output Overdrive Recovery Time			20		ns
GBWP	Gain Bandwidth Product			100		MHz
$\mathrm{V}_{\text {REF }} \mathrm{BW}$ (-3dB)	VREF-3dB Bandwidth	$A_{V}=1, C_{L D}=2.7 \mathrm{pF}$		50		MHz
$\mathrm{V}_{\text {REF }}$ SR+	$\mathrm{V}_{\text {REF }}$ Slew Rate - Rise	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, 20 \%$ to 80%		90		$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{V}_{\text {REF }}$ SR-	$\mathrm{V}_{\text {REF }}$ Slew Rate - Fall	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, 20 \%$ to 80%		50		$\mathrm{V} / \mu \mathrm{s}$
V_{N}	Input Voltage Noise	at 10 kHz		26		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
I_{N}	Input Current Noise	at 10 kHz		2		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
HD2	Second Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P, }}, 5 \mathrm{MHz}$		-94		dBc
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P, }}, 20 \mathrm{MHz}$		-94		dBc
HD3	Third Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P, }}, 5 \mathrm{MHz}$		-77		dBc
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P, }}, 20 \mathrm{MHz}$		-75		dBc
dG	Differential Gain at 3.58 MHz	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{~A}_{\mathrm{V}}=2$		0.1		\%
d θ	Differential Phase at 3.58 MHz	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{~A}_{\mathrm{V}}=2$		0.5		-
e_{S}	Channel Separation	at $\mathrm{f}=1 \mathrm{MHz}$		90		dB
INPUT CHARACTERISTICS						
V_{OS}	Input Referred Offset Voltage			± 1.5	± 25	mV
I_{IN}	Input Bias Current ($\mathrm{V}_{\mathrm{IN}}{ }^{+}, \mathrm{V}_{\mathrm{IN}}{ }^{-}$)		-14	-6	-3	$\mu \mathrm{A}$
$\mathrm{I}_{\text {REF }}$	Input Bias Current (VREF)		0.5	1.3	4	$\mu \mathrm{A}$
$\mathrm{R}_{\text {IN }}$	Differential Input Resistance			300		$\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	Differential Input Capacitance			1		pF
DMIR	Differential Mode Input Range		± 2.1	± 2.3	± 2.5	V
CMIR+	Common Mode Positive Input Range at $\mathrm{V}_{\mathrm{IN}}{ }^{+}, \mathrm{V}_{\mathrm{IN}}{ }^{-}$	Tested only for EL5371	3.1	3.4		V

EL5171, EL5371

Electrical Specifications $V_{S^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{S^{-}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{LD}}=1 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{F}}=0, \mathrm{R}_{\mathrm{G}}=\mathrm{OPEN}, \mathrm{C}_{\mathrm{LD}}=2.7 \mathrm{pF}$, Unless Otherwise Specified. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 4)	TYP	MAX (Note 4)	UNIT
CMIR-	Common Mode Negative Input Range at $\mathrm{V}_{1 \mathrm{IN}^{+}}, \mathrm{V}_{1 \mathrm{~N}^{-}}$	Tested only for EL5371		-4.5	-4.2	V
$\mathrm{V}_{\text {REFIN }}{ }^{+}$	Positive Reference Input Voltage Range (EL5371)	$\mathrm{V}_{1 \mathrm{~N}^{+}}=\mathrm{V}_{1 \mathrm{~N}^{-}}=0 \mathrm{~V}$	3.5	± 3.8		V
$\mathrm{V}_{\text {REFIN }}{ }^{-}$	Negative Reference Input Voltage Range (EL5371)	$\mathrm{V}_{\mathrm{IN}}{ }^{+}=\mathrm{V}_{\mathrm{IN}}{ }^{-}=0 \mathrm{~V}$		-3.3	-3	V
$\mathrm{V}_{\text {REFOS }}$	Output Offset Relative to $\mathrm{V}_{\text {REF }}$ (EL5371)			± 60	± 100	mV
CMRR	Input Common Mode Rejection Ratio (EL5371)	$\mathrm{V}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V}$	70	82		dB
Gain	Gain Accuracy	$\mathrm{V}_{\mathrm{IN}}=1$ (EL5171)	0.981	0.996	1.011	V
		$\mathrm{V}_{\mathrm{IN}}=1$ (EL5371)	0.978	0.993	1.008	V
OUTPUT CHARACTERISTICS						
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=500 \Omega$ to GND (EL5171)		± 3.4		V
		$\mathrm{R}_{\mathrm{L}}=500 \Omega$ to GND (EL5371)	± 3.6	± 3.9		V
IOUT(Max)	Maximum Output Current	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 3.24$ (EL5171)	± 70	± 90	± 120	mA
		$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 3.24$ (EL5371)	± 50	± 70	± 90	mA
$\mathrm{R}_{\text {OUT }}$	Output Impedance			130		$\mathrm{m} \Omega$
SUPPLY						
V SUPPLY	Supply Operating Range	$\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$	4.75		11	V
$\mathrm{I}_{\mathbf{S}(\mathrm{ON})}$	Power Supply Current - Per Channel		6.8	7.5	8.2	mA
$\mathrm{I}_{\mathbf{S}(\mathrm{OFF})^{+}}$	Positive Power Supply Current - Disabled (EL5371)	$\overline{\mathrm{EN}}$ pin tied to 4.8V		1.7	10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{S} \text { (OFF) }}$	Negative Power Supply Current - Disabled (EL5371)		-200	-120		$\mu \mathrm{A}$
PSRR	Power Supply Rejection Ratio	V_{S} from $\pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ (EL5171)	70	84		dB
		V_{S} from $\pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ (EL5371)	65	83		dB
ENABLE (EL5371 ONLY)						
t_{EN}	Enable Time			215		ns
${ }^{\text {t }}$ DS	Disable Time			0.95		$\mu \mathrm{s}$
V_{IH}	$\overline{\text { EN Pin Voltage for Power-Up }}$				$\mathrm{V}^{+}+\mathbf{- 1 . 5}$	V
$\mathrm{V}_{\text {IL }}$	$\overline{\text { EN }}$ Pin Voltage for Shutdown		$\mathrm{V}_{\mathbf{S}}+\mathbf{- 0 . 5}$			V
IIH-EN	$\overline{\text { EN Pin Input Current High }}$	At $\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$		122	130	$\mu \mathrm{A}$
IIL-EN	$\overline{\mathrm{EN}}$ Pin Input Current Low	At $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	-10	-8		$\mu \mathrm{A}$

NOTE:
4. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.

Connection Diagrams

FIGURE 1. EL5171

Typical Performance Curves

FIGURE 3. FREQUENCY RESPONSE

FIGURE 5. FREQUENCY RESPONSE vs RLD

FIGURE 7. FREQUENCY RESPONSE

FIGURE 4. FREQUENCY RESPONSE FOR VARIOUS GAIN

FIGURE 6. FREQUENCY RESPONSE vs $C_{\text {LD }}$

FIGURE 8. FREQUENCY RESPONSE vs R LD

Typical Performance Curves (continuod)

FIGURE 9. FREQUENCY RESPONSE - $\mathrm{V}_{\text {REF }}$

FIGURE 11. PSRR vs FREQUENCY

FIGURE 13. vOLTAGE AND CURRENT NOISE vS FREQUENCY

FIGURE 10. OUTPUT IMPEDANCE vs FREQUENCY

FIGURE 12. CMRR vs FREQUENCY

FIGURE 14. ChANNEL ISOLATION vs FREQUENCY

Typical Performance Curves (continuod)

FIGURE 15. HARMONIC DISTORTION vs DIFFERENTIAL OUTPUT VOLTAGE

FIGURE 17. HARMONIC DISTORTION vs RLD

FIGURE 19. HARMONIC DISTORTION vs FREQUENCY

FIGURE 16. HARMONIC DISTORTION vs DIFFERENTIAL OUTPUT VOLTAGE

FIGURE 18. HARMONIC DISTORTION vs R LD

10ns/DIV

FIGURE 20. SMALL SIGNAL TRANSIENT RESPONSE

Typical Performance Curves (continuod)

FIGURE 21. LARGE SIGNAL TRANSIENT RESPONSE

FIGURE 23. DISABLED RESPONSE

FIGURE 22. ENABLED RESPONSE

FIGURE 24. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 25. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

Simplified Schematic

Description of Operation and Application Information

Product Description

The EL5171 and EL5371 are wide bandwidth, low power and single-ended to differential output amplifiers. The EL5171 is a single channel differential amplifier. Since the $I_{N^{-}}$pin and REF pin are tied together internally, the EL5171 can be used as a single-ended to differential converter. The EL5371 is a triple channel differential amplifier. The EL5371 has a separate $I_{N^{-}}$ pin and REF pin for each channel. It can be used as a single/differential ended to differential converter. The EL5171 and EL5371 are internally compensated for closed loop gain of +1 or greater. Connected in gain of 1 and driving a $1 \mathrm{k} \Omega$ differential load, the EL5171 and EL5371 have a -3dB bandwidth of 250 MHz . Driving a 200Ω differential load at gain of 2 , the bandwidth is about 30 MHz . The EL5371 is available with a power-down feature to reduce the power while the amplifier is disabled.

Input, Output, and Supply Voltage Range

The EL5171 and EL5371 have been designed to operate with a single supply voltage of 5 V to 10 V or split supplies with its total voltage from 5 V to 10 V . The amplifiers have an input common mode voltage range from -4.5 V to 3.4 V for $\pm 5 \mathrm{~V}$ supply. The differential mode input range (DMIR) between the two inputs is from -2.3 V to +2.3 V . The input voltage range at the REF pin is from -3.3 V to 3.8 V . If the input common mode or differential mode signal is outside the above-specified ranges, it will cause the output signal to become distorted.

The output of the EL5171 and EL5371 can swing from -3.9V to +3.9 V at $1 \mathrm{k} \Omega$ differential load at $\pm 5 \mathrm{~V}$ supply. As the load resistance becomes lower, the output swing is reduced.

Differential and Common Mode Gain Settings

For EL5171, since the $I_{N^{-}}$pin and REF pin are bound together as the REF pin in an 8 Ld package, the signal at the REF pin is part of
the common mode signal and also part of the differential mode signal. For the true balance differential outputs, the REF pin must be tied to the same bias level as the $I_{N^{+}}$pin. For a $\pm 5 \mathrm{~V}$ supply, just tie the REF pin to GND if the $\mathrm{I}_{\mathrm{N}}+$ pin is biased at 0 V with a 50Ω or 75Ω termination resistor. For a single supply application, if the $\mathrm{l}_{\mathrm{N}^{+}}$is biased to half of the rail, the REF pin should be biased to half of the rail also.

The gain setting for EL5171 is expressed in Equation 1:
$v_{O D M}=V_{I N^{+}} \times\left(1+\frac{R_{F 1}+R_{F 2}}{R_{G}}\right)$
$V_{\text {OCM }}=V_{\text {REF }}=0 V$

$$
\text { ODM }=V_{I N^{+}} \times\left(1+\frac{2 R_{F}}{R_{G}}\right)
$$

Where:

- $\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{F} 1}=\mathrm{R}_{\mathrm{F} 2}=\mathrm{R}_{\mathrm{F}}$

The EL5371 has a separate $I_{N^{-}}$pin and REF pin. It can be used as a single/differential ended to differential converter. The voltage applied at REF pin can set the output common mode voltage and the gain is one.

The gain setting for EL5371 is expressed in Equation 2:
$\mathrm{V}_{\text {OCM }}=\mathrm{V}_{\text {REF }}$
$\mathrm{V}_{\mathrm{ODM}}=\left(\mathrm{V}_{\mathrm{IN}^{+}}-\mathrm{V}_{\mathrm{IN}^{-}}\right) \times\left(1+\frac{\mathrm{R}_{\mathrm{F} 1}+\mathrm{R}_{\mathrm{F} 2}}{\mathrm{R}_{\mathrm{G}}}\right)$

$$
\text { ODM }=\left(V_{I_{N}}+-V_{I_{N}}\right) \times\left(1+\frac{2 R_{F}}{R_{G}}\right)
$$

Where:

- $\mathrm{R}_{\mathrm{F} 1}=\mathrm{R}_{\mathrm{F} 2}=\mathrm{R}_{\mathrm{F}}$

Choice of Feedback Resistor and Gain Bandwidth Product

For applications that require a gain of +1 , no feedback resistor is required. Just short the OUT+ pin to the FBP pin and the OUTpin to the FBN pin. For gains greater than +1, the feedback resistor forms a pole with the parasitic capacitance at the inverting input. As this pole becomes smaller, the amplifier's phase margin is reduced. This causes ringing in the time domain and peaking in the frequency domain. Therefore, R_{F} has some maximum value that should not be exceeded for optimum performance. If a large value of R_{F} must be used, a small capacitor in the few Pico farad range in parallel with R_{F} can help to reduce the ringing and peaking at the expense of reducing the bandwidth.

The bandwidth of the EL5171 and EL5371 depends on the load and the feedback network. R_{F} and R_{G} appear in parallel with the load for gains other than +1. As this combination gets smaller, the bandwidth falls off. Consequently, R_{F} also has a minimum value that should not be exceeded for optimum bandwidth performance. For gain of $+1, R_{F}=0$ is optimum. For the gains other than +1, optimum response is obtained with R_{F} between 500Ω to $1 \mathrm{k} \Omega$.

The EL5171 and EL5371 have a gain bandwidth product of 100 MHz for $R_{L D}=1 \mathrm{k} \Omega$. For gains ≥ 5, their bandwidth can be predicted by Equation 3:
Gain $\times B W=100 \mathrm{MHz}$

Driving Capacitive Loads and Cables

The EL5171 and EL5371 can drive 50pF differential capacitor in parallel with $1 \mathrm{k} \Omega$ differential load with less than 5 dB of peaking at gain of +1 . If less peaking is desired in applications, a small series resistor (usually between 5Ω to 50Ω) can be
placed in series with each output to eliminate most peaking. However, this will reduce the gain slightly. If the gain setting is greater than 1 , the gain resistor R_{G} can then be chosen to make up for any gain loss, which may be created by the additional series resistor at the output.

When used as a cable driver, double termination is always recommended for reflection-free performance. For those applications, a back-termination series resistor at the amplifier's output will isolate the amplifier from the cable and allow extensive capacitive drive. However, other applications may have high capacitive loads without a back-termination resistor. Again, a small series resistor at the output can help to reduce peaking.

Disable/Power-Down (for EL5371 only)

The EL5371 can be disabled and its outputs placed in a high impedance state. The turn-off time is about $0.95 \mu \mathrm{~s}$ and the turn-on time is about 215ns. When disabled, the amplifier's supply current is reduced to $1.7 \mu \mathrm{~A}$ for $\mathrm{I}_{\mathrm{S}^{+}}$and $120 \mu \mathrm{~A}$ for I_{S} typically, thereby effectively eliminating the power consumption. The amplifier's power-down can be controlled by standard CMOS signal levels at the ENABLE pin. The applied logic signal is relative to the $\mathrm{V}_{\mathrm{S}}+$ pin. Letting the $\overline{\mathrm{EN}}$ pin float or applying a signal that is less than 1.5 V below $\mathrm{V}_{\mathrm{S}^{+}}$will enable the amplifier. The amplifier will be disabled when the signal at the $\overline{\mathrm{EN}}$ pin is above $\mathrm{V}_{\mathrm{S}^{+}}-0.5 \mathrm{~V}$.

Output Drive Capability

The EL5171 and EL5371 have internal short circuit protection. Its typical short circuit current is $\pm 90 \mathrm{~mA}$ for EL5171 and $\pm 70 \mathrm{~mA}$ for EL5371. If the output is shorted indefinitely, the power dissipation could easily increase such that the part will be destroyed. Maximum reliability is maintained if the output current never exceeds $\pm 60 \mathrm{~mA}$. This limit is set by the design of the internal metal interconnections.

Power Dissipation

With the high output drive capability of the EL5171 and EL5371, it is possible to exceed the $+135^{\circ} \mathrm{C}$ absolute maximum junction temperature under certain load current conditions. Therefore, it is important to calculate the maximum junction temperature for the application to determine if the load conditions or package types need to be modified for the amplifier to remain in the safe operating area.

The maximum power dissipation allowed in a package is determined according to Equation 4:
$P D_{\text {MAX }}=\frac{T_{J M A X}-T_{\text {AMAX }}}{\Theta_{J A}}$
Where:

- $\mathrm{T}_{\text {JMAX }}=$ Maximum junction temperature
- $\mathrm{T}_{\text {AMAX }}=$ Maximum ambient temperature
- $\theta_{\mathrm{JA}}=$ Thermal resistance of the package

The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply

EL5171, EL5371

voltage, plus the power in the IC due to the load, or as represented in Equation 5:

$$
\begin{equation*}
\mathrm{PD}=\mathrm{i} \times\left(\mathrm{V}_{\mathrm{STOT}} \times \mathrm{I}_{\mathrm{SMAX}}+\left(\mathrm{V}_{\mathrm{STOT}}-\Delta \mathrm{V}_{\mathrm{O}}\right) \times \frac{\Delta \mathrm{V}_{\mathrm{O}}}{\mathrm{R}_{\mathrm{LD}}}\right) \tag{EQ.5}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{STOT}}=\text { Total supply voltage }=\mathrm{V}_{\mathrm{S}^{+}}-\mathrm{V}_{\mathrm{S}^{-}} \\
& \text {I }_{\text {SMAX }}=\text { Maximum quiescent supply current per channel } \\
& \Delta \mathrm{V}_{\mathrm{O}}=\text { Maximum differential output voltage of the application } \\
& \mathrm{R}_{\mathrm{LD}}=\text { Differential load resistance } \\
& \text { ILOAD } \text { = Load current } \\
& \mathrm{i}=\text { Number of channels }
\end{aligned}
$$

By setting the two $\mathrm{PD}_{\text {MAX }}$ equations equal to each other, we can solve the output current and $\mathrm{R}_{\text {LOAD }}$ to avoid the device overheat.

Power Supply Bypassing and Printed Circuit Board Layout

As with any high frequency device, a good printed circuit board layout is necessary for optimum performance. Lead lengths should be as sort as possible. The power supply pin must be well
bypassed to reduce the risk of oscillation. For normal single supply operation, where the $\mathrm{V}_{\mathbf{S}^{-}}$pin is connected to the ground plane, a single $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor from $\mathrm{V}_{\mathbf{S}^{+}}$to GND will suffice. This same capacitor combination should be placed at each supply pin to ground if split supplies are to be used. In this case, the $\mathrm{V}_{\mathbf{S}^{-}}$pin becomes the negative supply rail.

For good AC performance, parasitic capacitance should be kept to a minimum. Use of wire wound resistors should be avoided because of their additional series inductance. Use of sockets should also be avoided, if possible. Sockets add parasitic inductance and capacitance that can result in compromised performance. Minimizing parasitic capacitance at the amplifier's inverting input pin is very important. The feedback resistor should be placed very close to the inverting input pin. Strip line design techniques are recommended for the signal traces.

As the signal is transmitted through a cable, the high frequency signal will be attenuated. One way to compensate this loss is to boost the high frequency gain at the receiver side.

Typical Applications

FIGURE 27. TWISTED PAIR CABLE RECEIVER

EL5171, EL5371

DC Gain $=1+\frac{2 R_{F}}{R_{G}}$

$$
\mathrm{f}_{\mathrm{L}} \cong \frac{1}{2 \pi \mathrm{R}_{\mathrm{G}} \mathrm{C}_{\mathrm{C}}}
$$

(HF)Gain $=1+\frac{2 R_{F}}{R_{G} \| R_{G C}}$

$$
\mathrm{f}_{\mathrm{H}} \cong \frac{1}{2 \pi \mathrm{R}_{\mathrm{GC}} \mathrm{C}_{\mathrm{C}}}
$$

FIGURE 28. TRANSMIT EQUALIZER

Package Outline Drawing

M8.15E

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 0, 08/09

SIDE VIEW "A

$\underline{\underline{\text { TYPICAL RECOMMENDED LAND PATTERN }}}$

DETAIL "A"

NOTES:

1. Dimensions are in millimeters. Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3. Unless otherwise specified, tolerance : Decimal ± 0.05
4. Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side.
5. The pin \#1 identifier may be either a mold or mark feature.
6. Reference to JEDEC MS-012.

Shrink Small Outline Plastic Packages (SSOP) Quarter Size Outline Plastic Packages (QSOP)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension " B " does not include dambar protrusion. Allowable dambar protrusion shall be 0.10 mm (0.004 inch) total in excess of " B " dimension at maximum material condition.
10. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact.

M28.15

28 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE (0.150" WIDE BODY)

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.053	0.069	1.35	1.75	-
A1	0.004	0.010	0.10	0.25	-
A2	-	0.061	-	1.54	-
B	0.008	0.012	0.20	0.30	9
C	0.007	0.010	0.18	0.25	-
D	0.386	0.394	9.81	10.00	3
E	0.150	0.157	3.81	3.98	4
e	0.025	SSC	0.635	BSC	-
H	0.228	0.244	5.80	6.19	-
h	0.0099	0.0196	0.26	0.49	5
L	0.016	0.050	0.41	1.27	6
N	28			28	7
α	0°	8°	0°	8°	-

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Intersil:

