110MHz, High Slew Rate, High Output Current Buffer

The HA-5002 is a monolithic, wideband, high slew rate, high output current, buffer amplifier.

Utilizing the advantages of the Intersil D.I. technologies, the HA-5002 current buffer offers $1300 \mathrm{~V} / \mu$ s slew rate with 110 MHz of bandwidth. The $\pm 200 \mathrm{~mA}$ output current capability is enhanced by a 3Ω output impedance.

The monolithic HA-5002 will replace the hybrid LHOOO2 with corresponding performance increases. These characteristics range from the $3000 \mathrm{k} \Omega$ input impedance to the increased output voltage swing. Monolithic design technologies have allowed a more precise buffer to be developed with more than an order of magnitude smaller gain error.

The HA-5002 will provide many present hybrid users with a higher degree of reliability and at the same time increase overall circuit performance.

For the military grade product, refer to the HA-5002/883 datasheet.

Features

- Voltage gain . 0.995
- High input impedance .3000k Ω
- Low output impedance . 3Ω
- Very high slew rate. 1300V/ $\mu \mathrm{s}$
- Very wide bandwidth . 110MHz
- High output current . $\pm 200 \mathrm{~mA}$
- Pulsed output current. 400mA
- Monolithic construction
- Pb-Free available (RoHS Compliant)

Applications

- Line driver
- Data acquisition
- 110MHz buffer
- Radar cable driver
- High power current booster
- High power current source
- Sample and holds
- Video products

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. DWG. \#
HA2-5002-2	HA2-5002-2	-55 to +125	8 Pin Metal Can	T8.C
HA4P5002-5Z (Note 1)	HA4P 5002-5Z	0 to +75	20 Ld PLCC (Pb-free)	N20.35
HA9P5002-5Z (Note 1)	5002 5Z	0 to +75	8 Ld SOIC (Pb-free)	M8.15
HA9P5002-9Z (Note 1)	5002 9Z	-40 to +85	8 Ld SOIC (Pb-free)	M8.15

NOTE:

1. These Intersil Pb -free plastic packaged products employ special Pb -free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD020.

Pinouts

HA-5002 (8 PIN METAL CAN) TOP VIEW

NOTE: Case Voltage = Floating

Absolute Maximum Ratings

Voltage Between V+ and V- Terminals	44 V
Input Voltage	V_{1} + to V_{1} -
Output Current (Continuous)	$\pm 200 \mathrm{~mA}$
Output Current (50ms On, 1s Off)	$\pm 400 \mathrm{~mA}$

Operating Conditions

Temperature Range
HA-5002-2 . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
HA-5002-5 . $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
HA-5002-9 . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right.$)	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Metal Can Package (Notes 3, 4)	155	67
PLCC Package (Note 3).	74	N/A
SOIC Package (Note 3)	157	N/A
Max Junction Temperature (Hermetic Packages, Note 2).		
Max Junction Temperature (Plastic Packages, Note 2). $+150^{\circ} \mathrm{C}$		
Max Storage Temperature Range		to $+150^{\circ} \mathrm{C}$
Max Lead Temperature (Soldering 10s) (PLCC and SOIC - Lead Tips Only)		

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.
2. Maximum power dissipation, including load conditions, must be designed to maintain the maximum junction temperature below $+175^{\circ} \mathrm{C}$ for the can packages, and below $+150^{\circ} \mathrm{C}$ for the plastic packages.
3. For θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
4. For $\theta \mathrm{JC}$, the "case temp" location is the center of the exposed metal pad on the package underside.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, R_{S}=50 \Omega, R_{L}=1 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	HA-5002-2			HA-5002-5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS									
Offset Voltage		25	-	5	20	-	5	20	mV
		Full	-	10	30	-	10	30	mV
Average Offset Voltage Drift		Full	-	30	-	-	30	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	2	7	-	2	7	$\mu \mathrm{A}$
		Full	-	3.4	10	-	2.4	10	$\mu \mathrm{A}$
Input Resistance		Full	1.5	3	-	1.5	3	-	$\mathrm{M} \Omega$
Input Noise Voltage	$10 \mathrm{~Hz}-1 \mathrm{MHz}$	25	-	18	-	-	18	-	$\mu \mathrm{V}_{\text {P-P }}$
TRANSFER CHARACTERISTICS									
Voltage Gain $\left(\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}\right)$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	25	-	0.900	-	-	0.900	-	V/V
	$R_{L}=100 \Omega$	25	-	0.971	-	-	0.971	-	V/V
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	25	-	0.995	-	-	0.995	-	V/V
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	Full	0.980	-	-	0.980	-	-	V/V
-3dB Bandwidth	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	25	-	110	-	-	110	-	MHz
AC Current Gain		25	-	40	-	-	40	-	A/mA
OUTPUT CHARACTERISTICS									
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	25	± 10	± 10.7	-	± 10	± 11.2	-	V
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	Full	± 10	± 13.5	-	± 10	± 13.9	-	V
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}$	Full	± 10	± 10.5	-	± 10	± 10.5	-	V
Output Current	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=40 \Omega$	25	-	220	-	-	220	-	mA
Output Resistance		Full	-	3	10	-	3	10	Ω
Harmonic Distortion	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=10 \mathrm{kHz}$	25	-	<0.005	-	-	<0.005	-	\%
TRANSIENT RESPONSE									
Full Power Bandwidth (Note 5)		25	-	20.7	-	-	20.7	-	MHz
Rise Time		25	-	3.6	-	-	3.6	-	ns
Propagation Delay		25	-	2	-	-	2	-	ns
Overshoot		25	-	30	-	-	30	-	\%
Slew Rate		25	1.0	1.3	-	1.0	1.3	-	V/ns
Settling Time	To 0.1\%	25	-	50	-	-	50	-	ns
Differential Gain	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	25	-	0.06	-	-	0.06	-	\%
Differential Phase	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	25	-	0.22	-	-	0.22	-	-

Electrical Specifications $V_{S U P P L Y}= \pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, R_{S}=50 \Omega, R_{L}=1 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	HA-5002-2			HA-5002-5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
POWER REQUIREMENTS									
Supply Current		25	-	8.3	-	-	8.3	-	mA
		Full	-	-	10	-	-	10	mA
Power Supply Rejection Ratio	$A_{V}=10 \mathrm{~V}$	Full	54	64	-	54	64	-	dB

NOTE:
5. FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}} ; V_{P}=10 \mathrm{~V}$.

Test Circuit and Waveforms

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE

Schematic Diagram

Application Information

Layout Considerations

The wide bandwidth of the HA-5002 necessitates that high frequency circuit layout procedures be followed. Failure to follow these guidelines can result in marginal performance.
Probably the most crucial of the RF/video layout rules is the use of a ground plane. A ground plane provides isolation and minimizes distributed circuit capacitance and inductance which will degrade high frequency performance.
Other considerations are proper power supply bypassing and keeping the input and output connections as short as possible which minimizes distributed capacitance and reduces board space.

Power Supply Decoupling

For optimal device performance, it is recommended that the positive and negative power supplies be bypassed with capacitors to ground. Ceramic capacitors ranging in value from 0.01 to $0.1 \mu \mathrm{~F}$ will minimize high frequency variations in supply voltage, while low frequency bypassing requires larger valued capacitors since the impedance of the capacitor is dependent on frequency.

It is also recommended that the bypass capacitors be connected close to the HA-5002 (preferably directly to the supply pins).

Operation at Reduced Supply Levels

The HA-5002 can operate at supply voltage levels as low as $\pm 5 \mathrm{~V}$ and lower. Output swing is directly affected as well as slight reductions in slew rate and bandwidth.

Short Circuit Protection

The output current can be limited by using the following circuit:
$R_{\text {LIM }}=\frac{V_{+}}{I_{\text {OUTMAX }}}=\frac{V-}{I_{\text {OUTMAX }}}$

Capacitive Loading

The HA-5002 will drive large capacitive loads without oscillation but peak current limits should not be exceeded. Following the formula I = Cdv/dt implies that the slew rate or the capacitive load must be controlled to keep peak current below the maximum or use the current limiting approach as shown. The HA-5002 can become unstable with small capacitive loads (50pF) if certain precautions are not taken. Stability is enhanced by any one of the following: a source resistance in series with the input of 50Ω to $1 \mathrm{k} \Omega$; increasing capacitive load to 150 pF or greater; decreasing $\mathrm{C}_{\text {LOAD }}$ to 20 pF or less; adding an output resistor of 10Ω to 50Ω; or adding feedback capacitance of 50 pF or greater. Adding source resistance generally yields the best results.

$P_{\text {DMAX }}=\frac{T_{J M A X}-T_{A}}{\theta_{J C}+\theta_{C S}+\theta_{S A}}$
Where: TJMAX $=$ Maximum Junction Temperature of the Device
$\mathrm{T}_{\mathrm{A}}=$ Ambient
$\theta_{\mathrm{JC}}=$ Junction to Case Thermal Resistance
${ }^{\theta}$ CS $=$ Case to Heat Sink Thermal Resistance
$\theta_{\text {SA }}=$ Heat Sink to Ambient Thermal Resistance
Graph is based on: $\quad P_{\text {DMAX }}=\frac{T_{J M A X}-T_{A}}{\theta_{J A}}$

Typical Application

FIGURE 3. COAXIAL CABLE DRIVER - 50Ω SYSTEM

Typical Performance Curves

FIGURE 4. GAIN/PHASE vs FREQUENCY ($\left.R_{L}=1 \mathrm{k} \Omega\right)$

FIGURE 5. GAIN/PHASE vs FREQUENCY $\left(R_{L}=50 \Omega\right)$

Typical Performance Curves (Continued)

FIGURE 6. VOLTAGE GAIN vs TEMPERATURE ($\mathrm{R}_{\mathrm{L}}=100 \Omega$)

FIGURE 8. OFFSET VOLTAGE vs TEMPERATURE

FIGURE 10. MAXIMUM OUTPUT VOLTAGE vs TEMPERATURE

FIGURE 7. VOLTAGE GAIN vs TEMPERATURE ($\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$)

FIGURE 9. BIAS CURRENT vs TEMPERATURE

FIGURE 11. SUPPLY CURRENT vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 14. $\mathrm{V}_{\text {OUT }}$ MAXIMUM vs $\mathrm{V}_{\text {SUPPLY }}$

FIGURE 16. SLEW RATE vs SUPPLY VOLTAGE

FIGURE 13. INPUT/OUTPUT IMPEDANCE vs FREQUENCY

FIGURE 15. PSRR vs FREQUENCY

FIGURE 17. GAIN ERROR vs INPUT VOLTAGE

Die Characteristics
SUBSTRATE POTENTIAL (POWERED UP):
$\mathrm{V}_{1}-$

TRANSISTOR COUNT:
27
PROCESS:
Bipolar Dielectric Isolation

Metallization Mask Layout

Metal Can Packages (Can)

NOTES:

1. (All leads) $\varnothing b$ applies between L 1 and L2. Øb1 applies between L 2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.
2. Measured from maximum diameter of the product.
3. α is the basic spacing from the centerline of the tab to terminal 1 and β is the basic spacing of each lead or lead position ($N-1$ places) from α, looking at the bottom of the package.
4. N is the maximum number of terminal positions.
5. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
6. Controlling dimension: INCH .

T8.C MIL-STD-1835 MACY1-X8 (A1)

 8 LEAD METAL CAN PACKAGE| SYMBOL | INCHES | | MILLIMETERS | | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | MIN | MAX | MIN | MAX | |
| A | 0.165 | 0.185 | 4.19 | 4.70 | - |
| Øb | 0.016 | 0.019 | 0.41 | 0.48 | 1 |
| Øb1 | 0.016 | 0.021 | 0.41 | 0.53 | 1 |
| Øb2 | 0.016 | 0.024 | 0.41 | 0.61 | - |
| ØD | 0.335 | 0.375 | 8.51 | 9.40 | - |
| ØD1 | 0.305 | 0.335 | 7.75 | 8.51 | - |
| ØD2 | 0.110 | 0.160 | 2.79 | 4.06 | - |
| e | 0.20 | BSC | | BSC | - |
| e1 | 0.10 | BSC | | BSC | - |
| F | - | 0.040 | - | 1.02 | - |
| k | 0.027 | 0.034 | 0.69 | 0.86 | - |
| k1 | 0.027 | 0.045 | 0.69 | 1.14 | 2 |
| L | 0.500 | 0.750 | 12.70 | 19.05 | 1 |
| L1 | - | 0.050 | - | 1.27 | 1 |
| L2 | 0.250 | - | 6.35 | - | 1 |
| Q | 0.010 | 0.045 | 0.25 | 1.14 | - |
| α | $45^{\circ} \mathrm{BSC}$ | | $45^{\circ} \mathrm{BSC}$ | | 3 |
| β | $45^{\circ} \mathrm{BSC}$ | | $45^{\circ} \mathrm{BSC}$ | | 3 |
| N | 8 | | 8 | | 4 |

Rev. 0 5/18/94

Plastic Leaded Chip Carrier Packages (PLCC)

N20.35 (JEDEC MS-018AA ISSUE A) 20 LEAD PLASTIC LEADED CHIP CARRIER PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES		
	MIN	MAX	MIN	MAX			
A	0.165	0.180	4.20	4.57	-		
A1	0.090	0.120	2.29	3.04	-		
D	0.385	0.395	9.78	10.03	-		
D1	0.350	0.356	8.89	9.04	3		
D2	0.141	0.169	3.59	4.29	4,5		
E	0.385	0.395	9.78	10.03	-		
E1	0.350	0.356	8.89	9.04	3		
E2	0.141	0.169	3.59	4.29	4,5		
N	20			20			6

Rev. 2 11/97

NOTES:

1. Controlling dimension: INCH. Converted millimeter dimensions are not necessarily exact.
2. Dimensions and tolerancing per ANSI Y14.5M-1982.
3. Dimensions D1 and E1 do not include mold protrusions. Allowable mold protrusion is 0.010 inch $(0.25 \mathrm{~mm})$ per side. Dimensions D1 and E1 include mold mismatch and are measured at the extreme material condition at the body parting line.
4. To be measured at seating plane -C- contact point.
5. Centerline to be determined where center leads exit plastic body.
6. " N " is the number of terminal positions.

Package Outline Drawing

M8.15

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

Rev 4, 1/12

TYPICAL RECOMMENDED LAND PATTERN

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M-1994.
2. Package length does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
3. Package width does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
4. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
5. Terminal numbers are shown for reference only.
6. The lead width as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch).
7. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Intersil:

