




# Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED



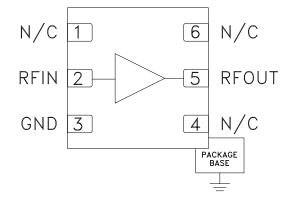
www.hittite.com

www.analog.com

THIS PAGE INTENTIONALLY LEFT BLANK






# pHEMT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz

# **Typical Applications**

The HMC788ALP2E is ideal for:

- Cellular/3G & LTE/WiMAX/4G
- LO Driver Applications
- Microwave Radio
- Test & Measurement Equipment
- UWB Communications

# **Functional Diagram**



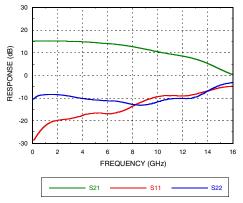
#### Features

P1dB Output Power: +20 dBm Output IP3: +33 dBm Gain: 14 dB 50 Ohm I/O's 6 Lead 2x2 mm DFN SMT Package: 4 mm<sup>2</sup>

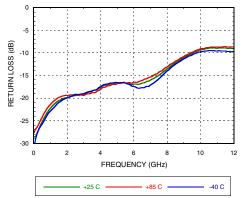
# **General Description**

The HMC788ALP2E is a GaAs pHEMT Gain Block MMIC SMT DC to 10 GHz amplifier. This 2x2 mm DFN packaged amplifier can be used as either a cascadable 50 Ohm gain stage or to drive the LO port of many of HIttite's single and double-balanced mixers with up to +20 dBm output power. The HMC788ALP2E offers 14 dB of gain and an output IP3 of +33 dBm while requiring only 76 mA from a +5V supply. The Darlington feedback pair exhibits reduced sensitivity to normal process variations and yields excellent gain stability over temperature while requiring a minimal number of external bias components.

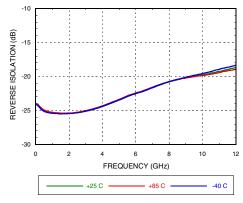
# Electrical Specifications, Vcc = 5V, $T_A = +25^{\circ} C$


| Parameter                                |                                | Min.     | Тур.           | Max. | Units            |
|------------------------------------------|--------------------------------|----------|----------------|------|------------------|
| Gain                                     | DC - 6.0 GHz<br>6.0 - 10.0 GHz | 12<br>9  | 14<br>12       |      | dB<br>dB         |
| Gain Variation Over Temperature          | DC - 6.0 GHz<br>6.0 - 10.0 GHz |          | 0.004<br>0.007 |      | dB/ °C<br>dB/ °C |
| Return Loss Input                        | DC - 6.0 GHz<br>6.0 - 10.0 GHz |          | 16<br>9        |      | dB<br>dB         |
| Return Loss Output                       | DC - 6.0 GHz<br>6.0 - 10.0 GHz |          | 9<br>12        |      | dB<br>dB         |
| Reverse Isolation                        | DC - 6.0 GHz<br>6.0 - 10 GHz   |          | 23<br>20       |      | dB<br>dB         |
| Output Power for 1 dB Compression (P1dB) | DC - 6.0 GHz<br>6.0 - 10.0 GHz | 18<br>15 | 20<br>18       |      | dBm<br>dBm       |
| Output Third Order Intercept (IP3)       | DC - 6.0 GHz<br>6.0 - 10.0 GHz |          | 33<br>30       |      | dBm<br>dBm       |
| Noise Figure                             | DC - 6.0 GHz<br>6.0 - 10.0 GHz |          | 6<br>7         |      | dB               |
| Supply Current (Icq)                     |                                | 60       | 76             | 90   | mA               |

Note: Data taken with broadband bias tee on device output.

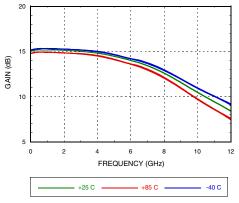




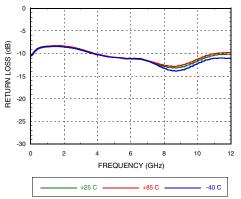


### Broadband Gain & Return Loss

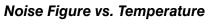


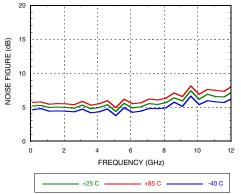
Input Return Loss vs. Temperature




Reverse Isolation vs. Temperature

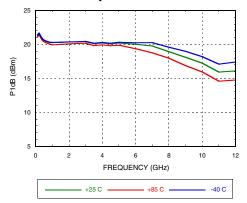




# pHEMT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz

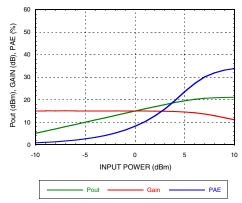




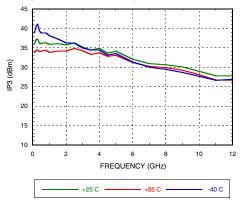

### Output Return Loss vs. Temperature





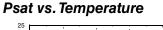


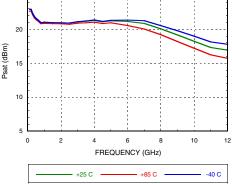


### P1dB vs. Temperature



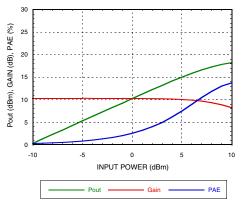
### Power Compression @ 1 GHz



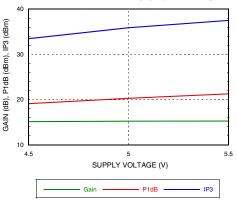

### Output IP3 vs. Temperature [1]




[1] +5 dBm / Tone Output Power


# HMC788ALP2E

# pHEMT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz






### Power Compression @ 10 GHz



#### Gain & Power vs. Supply Voltage @ 1 GHz



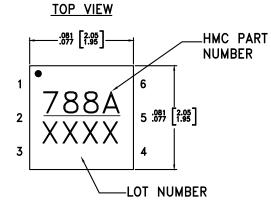


# ROHS V

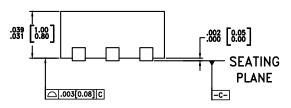
# pHEMT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz

# Absolute Maximum Ratings

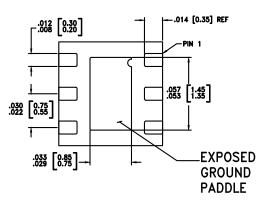
| +7V            |
|----------------|
| +15 dBm        |
| 150 °C         |
| 0.55 W         |
| 118 °C/W       |
| -65 to +150 °C |
| -40 to +85 °C  |
| Class 1A       |
|                |


# **Typical Supply Current**

| Vcc (V) | lcq (mA) |
|---------|----------|
| 4.5     | 65       |
| 5.0     | 76       |
| 5.5     | 87       |




ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS


# **Outline Drawing**



# SIDE VIEW



### BOTTOM VIEW



#### NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
- PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

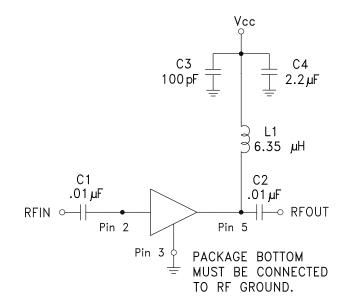
# Package Information

| Part Number                                                    | Package Body Material | Lead Finish   | MSL Rating          | Package Marking <sup>[1]</sup> |
|----------------------------------------------------------------|-----------------------|---------------|---------------------|--------------------------------|
| HMC788ALP2E RoHS-compliant Low Stress Injection Molded Plastic |                       | 100% matte Sn | MSL1 <sup>[2]</sup> | <u>788A</u><br>XXXX            |

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C



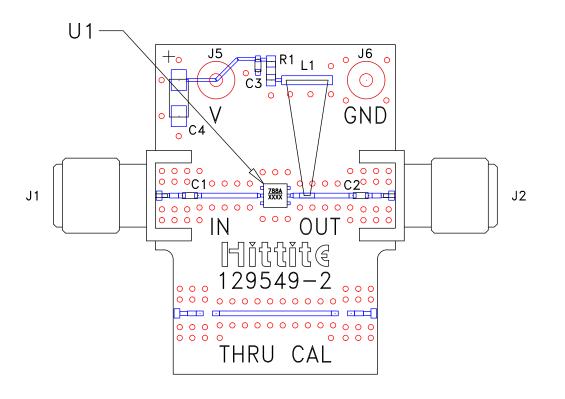

# ROHS

# pHEMT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz

# **Pin Descriptions**

| Pin Number | Function | Description                                                                                                                              | Interface Schematic |  |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| 1, 4, 6    | N/C      | The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally. |                     |  |
| 2          | RFIN     | This pin is DC coupled.<br>An off chip DC blocking capacitor is required.                                                                | RFOUT               |  |
| 5          | RFOUT    | RF output and DC Bias for the output stage.                                                                                              |                     |  |
| 3          | GND      | This pin and exposed ground paddle must be connected to RF/DC ground.                                                                    |                     |  |

# **Application Circuit**






# pHEMT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz



# **Evaluation PCB**



# List of Materials for Evaluation PCB EV1HMC788ALP2<sup>[1]</sup>

| Item    | Description                  |  |
|---------|------------------------------|--|
| J1 - J2 | PC Mount SMA Connector       |  |
| J5, J6  | DC Pin                       |  |
| C1, C2  | 0.01 µF Capacitor, 0502 Pkg. |  |
| C3      | 100 pF Capacitor, 0402 Pkg.  |  |
| C4      | 2.2 µF Case A Pkg.           |  |
| R1      | 0 Ohm Resistor, 0402 Pkg.    |  |
| L1      | Inductor, Conical 6.35 µH    |  |
| U1      | HMC788ALP2E                  |  |
| PCB [2] | 129549 Evaluation PCB        |  |

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: HMC788ALP2E