SLOS280D - JANUARY 2000 - REVISED NOVEMBER 2002

- Ideal for Notebook Computers, PDAs, and Other Small Portable Audio Devices
- 1 W Into 8-Ω From 5-V Supply
- 0.3 W Into 8-Ω From 3-V Supply
- Stereo Head Phone Drive
- Mono (BTL) Signal Created by Summing Left and Right Signals Internally
- Wide Power Supply Compatibility 2.5 V to 5.5 V
- Low Supply Current
 - 3.2 mA Typical at 5 V
 - 2.7 mA Typical at 3 V
- Shutdown Control . . . 1 μA Typical
- Shutdown Pin Is TTL Compatible
- –40°C to 85°C Operating Temperature Range
- Space-Saving, Thermally-Enhanced MSOP Packaging

description

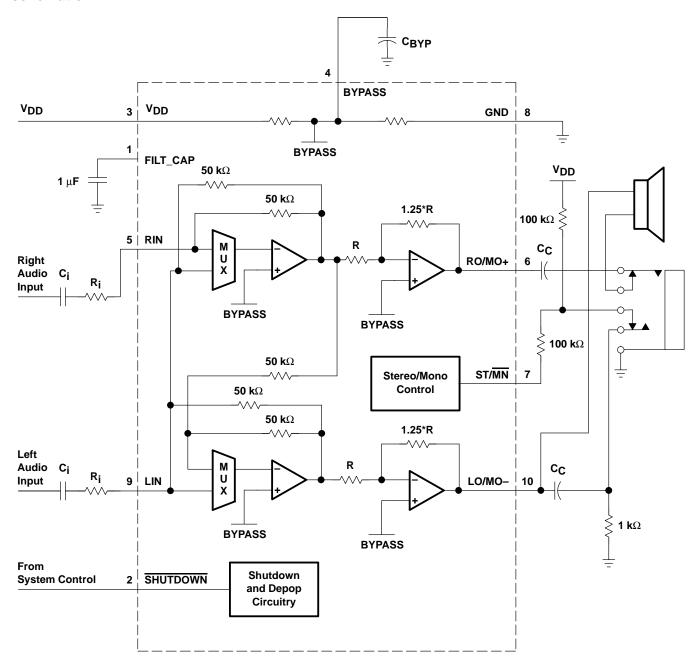
The TPA0253 is a 1-W mono bridge-tied-load (BTL) amplifier designed to drive speakers with as low as $8-\Omega$ impedance. The mono signal is created by summing left and right inputs internally. The amplifier can be reconfigured on the fly to drive two stereo single-ended (SE) signals into headphones. This makes the device ideal for use in small notebook computers, PDAs, digital personal audio players, anyplace a mono speaker and stereo headphones are required. From a 5-V supply, the TPA0253 can deliver 1-W of power into an $8-\Omega$ speaker.

The gain of the input stage is set by the user-selected input resistor and a 50-k Ω internal feedback resistor (A_V = - R_F/R_I). The power stage is internally configured with a gain of -1.25 V/V in SE mode, and -2.5 V/V in BTL mode. Thus, the overall gain of the amplifier is 62.5 k Ω /R_I in SE mode and 125 k Ω /R_I in BTL mode. The input terminals are high-impedance CMOS inputs, and can be used as summing nodes.

The TPA0253 is available in the 10-pin thermally-enhanced MSOP package (DGQ) and operates over an ambient temperature range of –40°C to 85°C.

AVAILABLE OPTIONS

	PACKAGED DEVICES	MOOD
TA	MSOP† (DGQ)	MSOP SYMBOLIZATION
-40°C to 85°C	TPA0253DGQ	AEL


[†] The DGQ package are available taped and reeled. To order a taped and reeled part, add the suffix R to the part number (e.g., TPA0253DGQR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

schematic

SLOS280D - JANUARY 2000 - REVISED NOVEMBER 2002

Terminal Functions

TERMINA	AL		DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
BYPASS	4	ı	Midrail bias voltage
FILT_CAP	1		Terminal used to filter power supply
GND	8		Ground terminal
LIN	9	ı	Left-channel input terminal
LO/MO-	10	0	Left-output in SE mode and mono negative output in BTL mode.
RIN	5	ı	Right-channel input terminal
RO/MO+	6	0	Right-output in SE mode and mono positive output in BTL mode
SHUTDOWN	2	ı	TTL-compatible shutdown terminal
ST/MN	7	I	Selects between stereo and mono mode. When held high, the amplifier is in SE stereo mode; while held low, the amplifier is in BTL mono mode.
V_{DD}	3	I	Positive power supply

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD}	6 V
Input voltage range, V ₁	
Continuous total power dissipation	internally limited (see Dissipation Rating Table)
Operating free-air temperature range, T _A (see Table 3)	40°C to 85°C
Operating junction temperature range, T _J	–40°C to 150°C
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seco	nds 260°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \leq 25^{\circ} \mbox{\scriptsize C}$	DERATING FACTOR	T _A = 70°C	T _A = 85°C
DGQ	2.14 W§	17.1 mW/°C	1.37 W	1.11 W

[‡] Please see the Texas Instruments document, *PowerPAD Thermally Enhanced Package Application Report* (SLMA002), for more information on the PowerPAD™ package. The thermal data was measured on a PCB layout based on the information in the section entitled *Texas Instruments Recommended Board for PowerPAD* on page 33 of that document.

PowerPAD is a trademark of Texas Instruments.

SLOS280D – JANUARY 2000 – REVISED NOVEMBER 2002

recommended operating conditions

			MIN	MAX	UNIT
Supply voltage, V _{DD}			2.5	5.5	V
	OT/1401	V _{DD} = 3 V	2.7		
High-level input voltage, VIH	ST/MN \	V _{DD} = 5 V	4.5		V
	SHUTDOWN		2		
	OT/MAN	V _{DD} = 3 V		1.65	
Low-level input voltage, V _{IL}	ST/MN	V _{DD} = 5 V		2.75	V
	SHUTDOWN			0.8	
Operating free-air temperature, TA			-40	85	°C

electrical characteristics at specified free-air temperature, V_{DD} = 3 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITION	S	MIN	TYP	MAX	UNIT	
IVool	Output offset voltage (measured differentially)	$R_L = 4 \Omega$, $ST/\overline{MN} = 0 V$, \overline{SHUTC}			30	mV		
PSRR	Power supply rejection ratio	$V_{DD} = 2.9 \text{ V to } 3.1 \text{ V}, \text{ BTL mo}$	de		65		dB	
		SHUTDOWN, V _{DD} = 3.3 V,	$V_I = V_{DD}$			1		
Ічні	High-level input current	ST/\overline{MN} , $V_{DD} = 3.3 \text{ V}$,	$V_I = V_{DD}$			1	μΑ	
	Landard Sandardan	SHUTDOWN, V _{DD} = 3.3 V,	V _I = 0 V			1		
I L	Low-level input current	ST/\overline{MN} , $V_{DD} = 3.3 \text{ V}$,	V _I = 0 V			1	μΑ	
Z _I	Input impedance				50		kΩ	
lDD	Supply current	$V_{DD} = 2.5 \text{ V}, \overline{\text{SHUTDOWN}} = 2.5 \text{ V}$	2 V		2.7	4	mA	
I _{DD(SD)}	Supply current, shutdown mode	SHUTDOWN = 0 V			1	10	μΑ	
R _F	Feedback resistor	$\frac{V_{DD} = 2.5 \text{ V}, R_L = 4 \Omega, ST/MN}{\text{SHUTDOWN}} = 2 \text{ V}$	= 1.375 V,	47	50	57	kΩ	

operating characteristics, V_{DD} = 3 V, T_{A} = 25°C, R_{L} = 8 Ω , f = 1 kHz (unless otherwise noted)

	PARAMETER	TE	EST CONDITIONS		MIN	TYP	MAX	UNIT
		THD = 0.1%,	BTL mode,	Gain = 14 dB		300		
PO	Output power, see Note 1	THD = 0.1% Gain = 1.9 dB	SE mode, $R_L = 32 \Omega$			30		mW
THD + N	Total harmonic distortion plus noise	P _O = 250 mW,	f = 20 Hz to 20 kHz			0.2%		
Вом	Maximum output power bandwidth	Gain = 1.9 dB,	THD = 2%	·		20		kHz
	Outside stands as to a fire a settle	£ 4111-	0 0.47 5	BTL mode		46		j
	Supple ripple rejection ratio	f = 1 kHz,	$C_{(BYP)} = 0.47 \mu F$	SE mode		68		dB
V	Nicios cutaut valta as	0.47.45	f 00 H= t= 00 HH=	BTL mode	83			.,
V _n	Noise output voltage	$C(BYP) = 0.47 \mu F,$	f = 20 Hz to 20 kHz	SE mode		33		μVRMS

NOTE 1: Output power is measured at the output terminals of the device at f = 1 kHz.

electrical characteristics at specified free-air temperature, V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT	
IVool	Output offset voltage (measured differentially)	$R_L = 4 \Omega$, $ST/\overline{MN} = 0 V$, \overline{SHUT}			30	mV	
PSRR	Power supply rejection ratio	$V_{DD} = 4.9 \text{ V to } 5.1 \text{ V}, \text{ BTL m}$	ode	, ,	62		dB
	High level input compart	SHUTDOWN, V _{DD} =5.5 V,	$V_I = V_{DD}$			1	4
Іні	High-level input current	ST/\overline{MN} , $V_{DD} = 5.5 V$,	$V_I = V_{DD}$,		1	μΑ
	Law law liam tangent	SHUTDOWN, V _{DD} = 5.5 V,	V _I = 0 V			1	•
11	Low-level input current	ST/\overline{MN} , $V_{DD} = 5.5 V$,	V _I = 0 V			1	μΑ
Z _I	Input impedance				50		kΩ
IDD	Supply current	SHUTDOWN = 2 V			3.2	4.8	mA
I _{DD(SD)}	Supply current, shutdown mode	SHUTDOWN = 0 V			1	10	μΑ

operating characteristics, V_{DD} = 5 V, T_A = 25°C, R_L = 8 Ω , f = 1 kHz (unless otherwise noted)

	PARAMETER	TI	EST CONDITIONS		MIN 7	ΓYP Ν	IAX	UNIT	
	Outside a success (see a Neda 4)	THD = 0.1%,	BTL mode		-	1		W	
PO	Output power (see Note 1)	THD = 0.1%,	SE mode,	R _L = 32 Ω		85		mW	
THD + N	Total harmonic distortion plus noise	P _O = 1 W,	f = 20 Hz to 20 kHz	0.33%					
ВОМ	Maximum output power bandwidth	Gain = 8 dB,	THD = 2%		,	20		kHz	
	Occasio de als sels effectuarits		0 047 5	BTL mode		46		j	
	Supple ripple rejection ratio	f = 1 kHz,	$C_{(BYP)} = 0.47 \mu F$	SE mode		60		dB	
			£ 00 H= 40 00 HH=	BTL mode		85		.,	
V _n	Noise output voltage	$C_{(BYP)} = 0.47 \mu\text{F},$	f = 20 Hz to 20 kHz	SE mode		34		μVRMS	

NOTE 1: Output power is measured at the output terminals of the device at f = 1 kHz.

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	•	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
TPA0253DGQ	ACTIVE	MSOP- PowerPAD	DGQ	10	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AEL	Samples
TPA0253DGQG4	ACTIVE	MSOP- PowerPAD	DGQ	10	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AEL	Samples
TPA0253DGQR	ACTIVE	MSOP- PowerPAD	DGQ	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AEL	Samples
TPA0253DGQRG4	ACTIVE	MSOP- PowerPAD	DGQ	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AEL	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

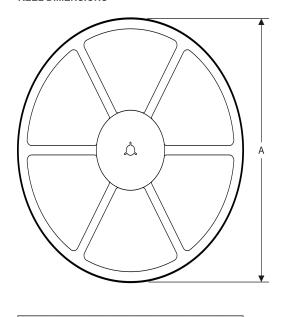
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

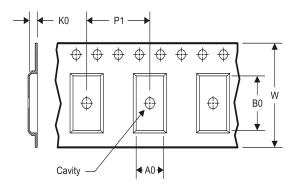
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.


11-Apr-2013

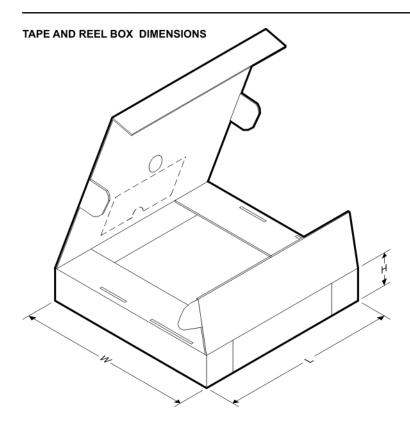
PACKAGE MATERIALS INFORMATION


www.ti.com 27-Jan-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

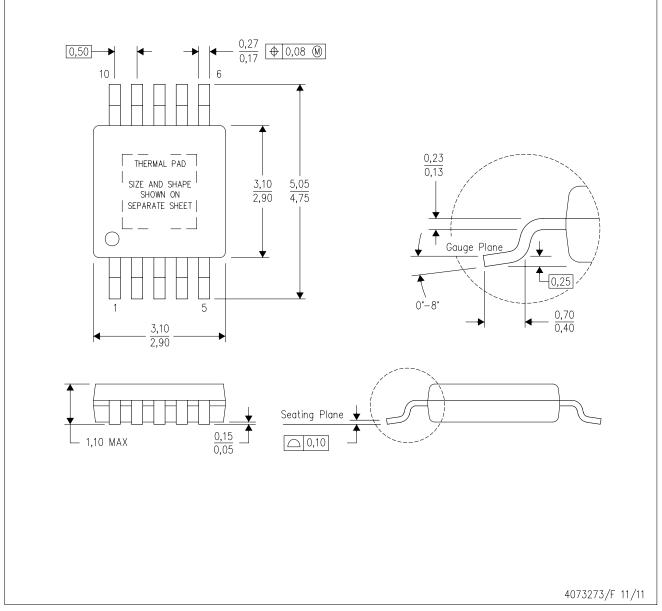

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPA0253DGQR	MSOP- Power PAD	DGQ	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com 27-Jan-2012



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPA0253DGQR	MSOP-PowerPAD	DGQ	10	2500	358.0	335.0	35.0

DGQ (S-PDSO-G10)

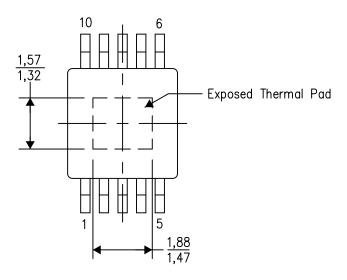
PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com>.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. F. Falls within JEDEC MO-187 variation BA-T.

PowerPAD is a trademark of Texas Instruments.

DGQ (S-PDSO-G10)


PowerPAD™ PLASTIC SMALL OUTLINE

THERMAL INFORMATION

This PowerPAD package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

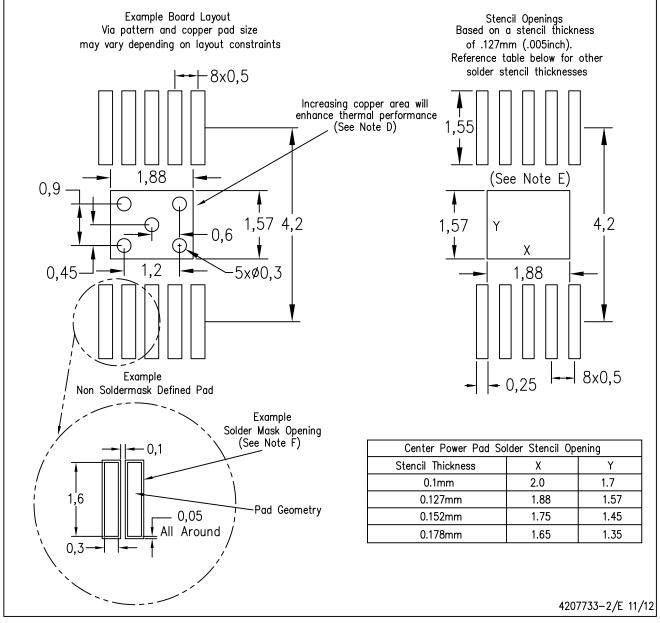
For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Top View

Exposed Thermal Pad Dimensions

4206324-2/H 12/14


NOTE: A. All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments

DGQ (S-PDSO-G10)

PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments:

TPA0253DGQ TPA0253DGQG4 TPA0253DGQR TPA0253DGQRG4