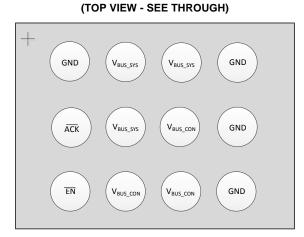


SLLSEH9A-OCTOBER 2013-REVISED OCTOBER 2013

USB CHARGER OVP SWITCH WITH ESD FOR V_{BUS CON} PIN

Check for Samples: TPD1S414

FEATURES


- Input DC Voltage Protection at V_{BUS_CON} up to 30 V
- Low R_{ON} nFET Switch Supports Host and Charging Mode
- Withstands up to 100V Open Circuit Surge Voltage (per IEC61000-4-5)
- Internal 15 ms Startup Delay
- Internal 30 ms Soft-start Delay to Minimize the USB Inrush Current
- ESD Performance V_{BUS_CON}
 - ±15 kV Contact Discharge (IEC 61000-4-2)
 - ±15 kV Air Gap Discharge (IEC 61000-4-2)
- Integrated Input Enable and Status Output Signal
- Thermal Shutdown Feature
- Space Saving WCSP Package (1.4 mm x 1.89 mm)

APPLICATIONS

- Cell Phones
- eBook
- Portable Media Players

DESCRIPTION

The TPD1S414 is a single-chip solution for USB connector's V_{BUS} line protection. The bi-directional nFET switch ensures safe current flow in both charging and host mode while protecting the internal system circuits from any over-voltage conditions at the V_{BUS_CON} pin. On the V_{BUS_CON} pin, this device can handle overvoltage protection up to 30 V. After the EN pin toggles low, the TPD1S414 waits 20 ms before turning ON the nFET through a soft start delay. ACK pin indicates the FET is completely turned ON.

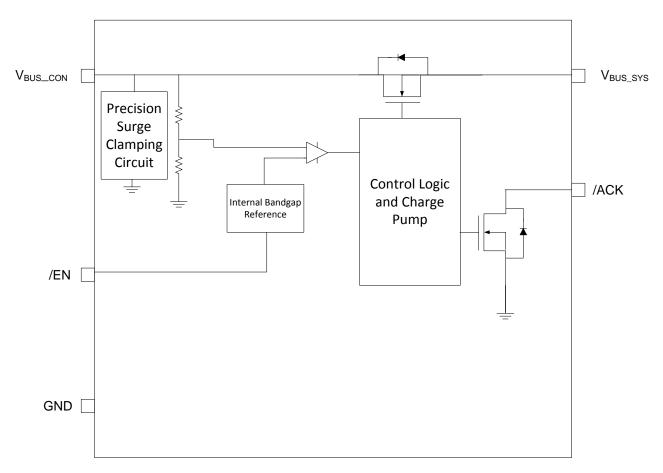
YZ PACKAGE

12-YZ Pin Mapping

			0	
	1	2	3	4
A	GND	V _{BUS_SYS}	V _{BUS_SYS}	GND
В	ACK	V _{BUS_SYS}	V _{BUS_CON}	GND
С	EN	V _{BUS_CON}	V _{BUS_CON}	GND

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TPD1S414



SLLSEH9A-OCTOBER 2013-REVISED OCTOBER 2013

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

FUNCTIONAL BLOCK DIAGRAM

Table 1. DEVICE OPERATION

Vo	Itage Condition			Current Condition	
V _{BUS_CON}	V _{BUS_CON} V _{BUS_SYS} EN		Current Flow	Comment	ACK Pin
Х	<v<sub>BUS_CON</v<sub>	High	No Flow	Switch off	High-Z
Х	>V _{BUS_CON}	High	V _{BUS_SYS} to V _{BUS_CON}	Switch off, current flows through the body diode	High-Z
<ovp< td=""><td><v<sub>BUS_CON</v<sub></td><td>Low</td><td>$V_{\text{BUS}_\text{CON}}$ to $V_{\text{BUS}_\text{SYS}}$</td><td>Current flows through the switch, normal device charging mode</td><td>Low</td></ovp<>	<v<sub>BUS_CON</v<sub>	Low	$V_{\text{BUS}_\text{CON}}$ to $V_{\text{BUS}_\text{SYS}}$	Current flows through the switch, normal device charging mode	Low
<ovp< td=""><td>>V_{BUS_CON}</td><td>Low</td><td>$V_{\text{BUS}_\text{SYS}}$ to $V_{\text{BUS}_\text{CON}}$</td><td>Current flows through the switch, normal host mode</td><td>Low</td></ovp<>	>V _{BUS_CON}	Low	$V_{\text{BUS}_\text{SYS}}$ to $V_{\text{BUS}_\text{CON}}$	Current flows through the switch, normal host mode	Low
>OVP	<v<sub>BUS_CON</v<sub>	Low	No Flow	Switch off due to OVP	High-Z
>OVP	>V _{BUS_CON}	Low	V _{BUS_SYS} to V _{BUS_CON}	Switch off, current flows through the body diode	High-Z
х	х	х	No Flow/ Current thru Body Diode	THERMAL SHUTDOWN CONDITION	High-Z
<v<sub>UVLO</v<sub>	<v<sub>BUS_CON</v<sub>	Low	No Flow	Low Voltage is cut-off from the system	High-Z

SLLSEH9A-OCTOBER 2013-REVISED OCTOBER 2013

www.ti.com

PIN NAME	PIN NUMBER	PIN TYPE	DESCRIPTION
ACK	B1	0	Open-Drain Acknowledge pin. See the Device Operation section.
ĒN	C1	I	Enable Active-Low Input. Drive $\overline{\text{EN}}$ low to enable the switch. Drive $\overline{\text{EN}}$ high to disable the switch.
V _{BUS_CON}	C3, C2, B3	I/O	Connect to USB connector V _{BUS_CON} ; IEC61000-4-2 ESD protection IEC61000-4-5 Surge protection
V _{BUS_SYS}	A3, A2, B2	I/O	Connect to internal V _{BUS} plane
GND	A1, A4, B4, C4	Ground	Connect to PCB ground plane

PIN DESCRIPTIONS

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS (1)(2)

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Supply voltage from USB connector, V _{BUS_CON}		-0.3	30	V
Internal Supply DC voltage Rail on the PCB, V_{BUS_SYS}	Internal Supply DC voltage Rail on the PCB, V _{BUS SYS}		7	V
Voltage on Input pin (\overline{EN}). V _{EN}		-0.5	7	V
Voltage on ACK pin		-0.5	7	V
Storage temperature range, T _{STG}		-40	150	°C
Operating Free Air Temperature, T _A		-40	85	°C
IEC 61000-4-2 Contact Discharge	V _{BUS_CON} pin		±15	kV
IEC 61000-4-2 Air-gap Discharge	V _{BUS_CON} pin		±15	kV
Human-Body Model	ALL Pins		±2	kV
IEC 61000-4-5 Peak Pulse Current (t _p = 8/20 μs)	V _{BUS_CON} pin		21	А
IEC 61000-4-5 Peak Pulse Power (t _p = 8/20 μs)	V _{BUS_CON} pin		700	W
IEC 61000-4-5 Open circuit voltage (t _p = 1.2/50 μs)	V _{BUS_CON} pin		100	V
Output load capacitance, C _{LOAD}	V _{BUS_SYS} pin	0.1	50	μF
Input capacitance, C _{ON}	V _{BUS_CON} pin	0.1	50	μF

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	YZ	
		12 PINS	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	89	
θ _{JC(top)}	Junction-to-case(top) thermal resistance	0.6	
θ_{JB}	Junction-to-board thermal resistance	16.3	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	2.7	C/VV
Ψ_{JB}	Junction-to-board characterization parameter	16.2	
θ _{JC(bottom)}	Junction-to-case(bottom) thermal resistance	n/A	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER			NOM	MAX	UNIT
V _{BUS_CON}	Supply voltage from USB connector			5.9	V	
V _{BUS_SYS}	Internal Supply DC voltage Rail on the PCB		5.9		V	
C _{LOAD}	Output load capacitance	V _{BUS_SYS} pin		2.2		μF
C _{IN}	Input capacitance	V _{BUS_CON} pin		1		μF
R _{PULLUP}	Pull up resistor	ACK pin		4.3	100	kΩ
I _{VBUS}	Continuous current on V_{BUS_CON} and V_{BUS_SYS} pins	V _{BUS_CON} V _{BUS_SYS}			3.5	А
IDIODE	Continuous current through the FET body diode				1	А

SUPPLY CURRENT CONSUMPTION

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{VBUS_SLEEP}	V _{BUS_CON} Operating Current Consumption	Measured at $V_{BU\underline{S}_CON}$ pin, V_{BUS_CON} = 5 V, \overline{EN} =5V		30	70	μA
I _{VBUS}		Measured at $V_{BU\underline{S}\ CON}$ pin, V_{BUS_CON} = 5 V, EN 0 V and no load		175	373	μA
I _{VBUS_SYS}	V _{BUS_CON} Operating Current Consumption	Measured at V _{BUS_SYS} pin, V _{BUS_SYS} = 5 V, EN = 0 V and V _{BUS_CON} = Hi Z		175	373	μΑ
I _{HOST_LEAK}	Host Mode Leakage current	Measured at V _{BUS_SYS} . V _{BUS_CON} = Hi Z, EN = 5 V, V _{BUS_SYS} = 5V	90		200	μA

ELECTRICAL CHARACTERISTICS (EN, ACK PINS)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIH	High-level input voltage, EN		1.2		6	V
VIL	Low-level input voltage, EN				0.8	V
IIL	Input Leakage Current EN	V ₁ = 3.3 V			1	μA
V _{OL}	Low-level output voltage, ACK	I _{OL} = 3 mA			0.4	V

ELECTRICAL CHARACTERISTICS (OVP CIRCUIT)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OVP_RISING}	Input overvoltage protection threshold, V _{BUS_CON}	$V_{\text{BUS}_\text{CON}}$ increasing from 5 V	6	6.2	6.4	V
V _{HYS_OVP}	Hysteresis on OVP, V _{BUS_CON}	V_{BUS_CON} decreasing from 7 V to 5 V		50		mV
V _{OVP_FALLING}	Input overvoltage protection threshold, V _{BUS_CON}	V_{BUS_CON} decreasing from 7 V to 5 V	5.93		6.37	V
V _{UVLO}	Input under voltage lockout, V _{BUS_CON}	$V_{BUS\ CON}$ voltage rising from 0 V to 5 \overline{V}	3.1	3.3	3.5	V
V _{HYS_UVLO}	Hysteresis on UVLO, V _{BUS_CON}	Difference between rising and falling UVLO thresholds		100		mV
V _{UVLO_FALLING}	Input under voltage lockout, V _{BUS_CON}	$V_{BUS\ CON}$ voltage rising from 5 V to 0 \bar{V}	3	3.2	3.4	V
V _{UVLO_SYS}	V _{BUS_SYS} under voltage lockout, V _{BUS_SYS}	$V_{BUS\ SYS}$ voltage rising from 0 V to 5 \bar{V}	3.1	3.6	4.3	V

SLLSEH9A-OCTOBER 2013-REVISED OCTOBER 2013

ELECTRICAL CHARACTERISTICS (OVP CIRCUIT) (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{HYS_UVLO_SYS}	V _{BUS_SYS} UVLO Hysteresis, V _{BUS_SYS}	Difference between rising and falling UVLO thresholds on V _{BUS_SYS}		480		mV
V _{UVLO_SYS_FALL}	V _{BUS_SYS} undervoltage lockout, V _{BUS_SYS}	$V_{BUS\ SYS}$ voltage falling from 7 V to 5 \bar{V}	3	3.2	3.4	V

THERMAL SHUTDOWN FEATURE

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{SHDN}	Thermal Shutdown	Junction temperature		145		°C
	Thermal-Shutdown Hysteresis	Junction temperature		35		°C

SWITCHING CHARACTERISTICS (nFET)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{DS(on)}	Switch ON Resistance	$V_{BUS_CON} = 5 \text{ V}, I_{OUT} = 1 \text{ A}, T_A = 25^{\circ}\text{C}$		39	50	mΩ

TIMING REQUIREMENTS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{DELAY}	USB Charging Turn-ON Delay	Measured from EN asserted LOW to nFET beginning to Turn ON ⁽¹⁾ excluding soft-start time		20		ms
t _{SS}	USB Charging rise time (Soft Start Delay)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		25		ms
t _{OFF_DELAY}	USB Charging Turn-OFF time	Measured from \overline{EN} asserted High to V _{BUS_SYS} falling to 10% with R _{LOAD} = 10 Ω and No C _{LOAD} on V _{BUS_SYS}		4		μs
Over Voltage	Protection					
t _{OVP_response}	OVP Response time	Measured from OVP Condition to FET Turn OFF $^{(1)(2)}$. V_{BUS_CON} rises at 1V / 100ns			100	ns
t _{OVP_Recov}	Recovery Time	Measured from OVP Clear to FET Turn $\mathrm{ON}^{(1)(3)}$		20		ms

(1) Shown in TIMING DIAGRAM Plots

(2) Parameters provided for reference only, and do not constitute part of TI's published device specifications for purposes of TI's product warranty.

(3) Excludes soft start time

SLLSEH9A -OCTOBER 2013-REVISED OCTOBER 2013

TEXAS INSTRUMENTS

www.ti.com

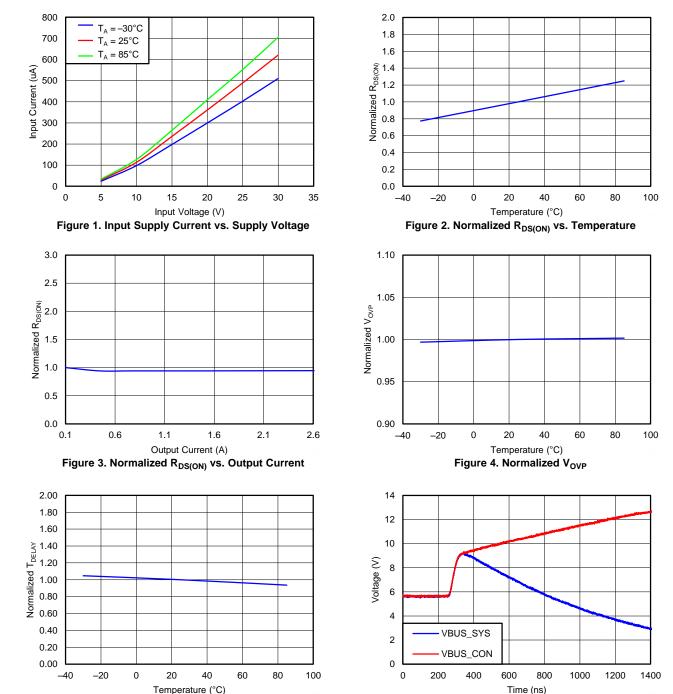
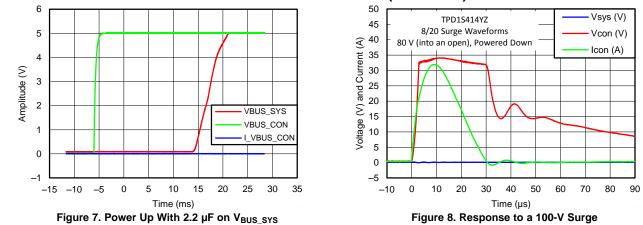


Figure 6. V_{OVP} Response Time

Figure 5. Normalized T_{DELAY}


TPD1S414

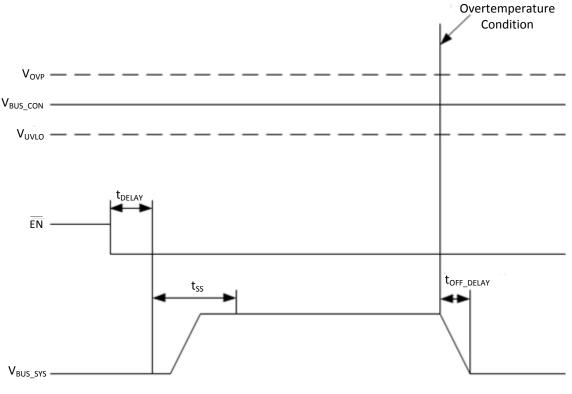
SLLSEH9A-OCTOBER 2013-REVISED OCTOBER 2013

TYPICAL CHARACTERISTICS (continued)

SLLSEH9A -OCTOBER 2013-REVISED OCTOBER 2013

www.ti.com

DEVICE INFORMATION

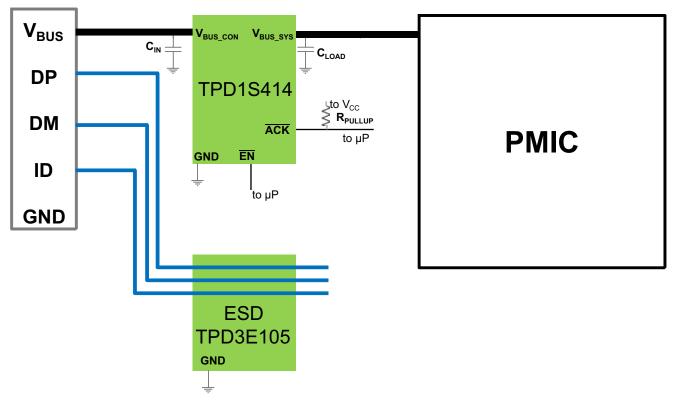

DEVICE OPERATION

The TPD1S414 provides a single-chip ESD protection, surge protection and over voltage protection solution for portable USB charging and <u>Host</u> interfaces. It offers over voltage protection at the V_{BUS_CON} pin up to 30 V. The TPD1S414 also provides a ACK pin that indicates to the system if a fault condition has occurred. The TPD1S414 offers an ESD clamp and a Surge Clamp for V_{BUS_CON} pin, thus eliminating the need for external TVS clamp circuits in the application.

The TPD1S414 has an internal oscillator and charge pump that controls the turn-on of the internal <u>nFET</u> switch. The internal oscillator controls the timers that enable the charge pump and resets the open-drain ACK output. If V_{BUS_CON} is less than V_{OVP} , the internal charge pump is enabled. After a 15 ms internal delay, the charge-pump starts-up, turns on <u>the</u> internal nFET switch through a soft start. Once the nFE<u>T</u> is completely turned ON, TPD1S414 asserts ACK pin LOW. At any time, if V_{BUS_CON} rises above V_{OVP} , the ACK pin is in High-Z and is pulled HIGH through external resistors. The nFET switch is turned OFF.

OVP OPERATION

When the V_{BUS_CON} voltage rises above V_{OVP} , the internal nFET switch is turned OFF, removing power from the system. The response is rapid, with the FET switch turning off in less than 100 ns. The ACK pin is set to High-Z when an overvoltage condition is detected and the nFET is turned OFF. This pin can be pulled up through external resistors to indicate a OVP condition. When the V_{BUS_CON} voltage returns below $V_{OVP} - V_{HYS-OVP}$, the nFET switch is turned on again after the internal delay of tO_{VP_Recov} . This delay time ensures that the V_{BUS_CON} supply has stabilized before turning the switch back on. After t_{OVP_Recov} , the TPD1S414 turns ON the nFET through a soft start to ensure that the USB Inrush current compliance is met. When the OVP condition is cleared and the nFET is completely turned ON, the ACK is reset LOW.



TIMING DIAGRAMS

8

SLLSEH9A-OCTOBER 2013-REVISED OCTOBER 2013

APPLICATION INFORMATION

Figure 10. Typical Application Configuration for TPD1S414

The IEC 61000-4-5 standard specifies the lightning and industrial surge model. Power lines like the V_{BUS} line on the USB port is subject to switching and lightning transients. Power supply switching transients can enter the system due to capacitor bank switching on the rail, minor load switching on the system and various system faults like arcing to the grounding system of the installation. Direct lightning to the outer installations cause an over voltage condition on the V_{BUS} line. In the event of an over voltage condition, the OVP block of the Processor or the protection circuitry turns off isolating the system from these transients. Abruptly turning off the Load, causes a further ripple due to the inductive nature of the charging cable. End systems require protection against these transients. These transients have greater energy than the ESD events. Systems cannot be protected from these transients using simple ESD diodes. The TPD1S414 has a precision trigger and precision clamping circuit that ensures a DC tolerance of 30 V while suppressing surge voltage up to 100V under 35 V.

SLLSEH9A -OCTOBER 2013-REVISED OCTOBER 2013

BOARD LAYOUT

TPD1S414 can be routed in a single layer PCB. PCB traces to V_{BUS_SYS} , V_{BUS_CON} , and GND can be routed in the fashion shown in Figure 11.

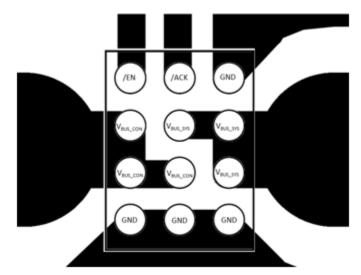


Figure 11. V_{BUS_SYS} , V_{BUS_CON} , and GND pins tied together

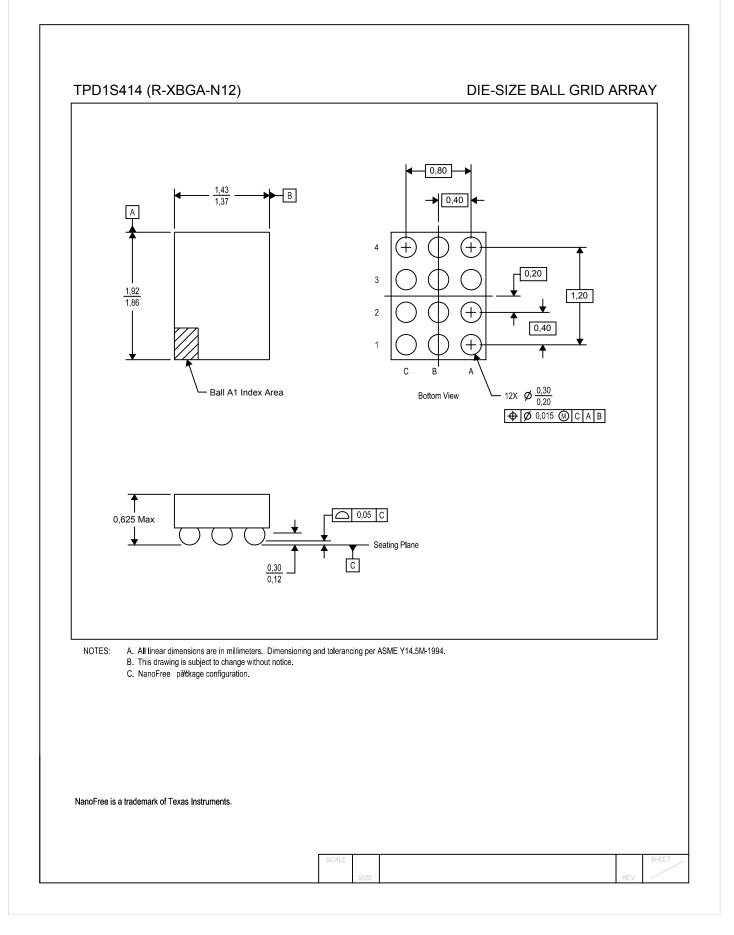
Tying V_{BUS_SYS} , V_{BUS_CON} , and GND pins respectively together provides lower resistance connectivity between the USB connector and the PMIC. For this example, the trace widths to V_{BUS_SYS} , V_{BUS_CON} are 25 mils (0.635 mm) under TPD1S414. There are no VIAs required within the SMD pads in this design. Stitching VIAs for GND can be placed near the component instead.

The decoupling capacitors per the recommended operating settings should be placed as close as possible to the TPD1S414. There should be a short path from the device ground pins to the system ground plane. This ensures best protection under ESD and surge transients.

Page

INSTRUMENTS

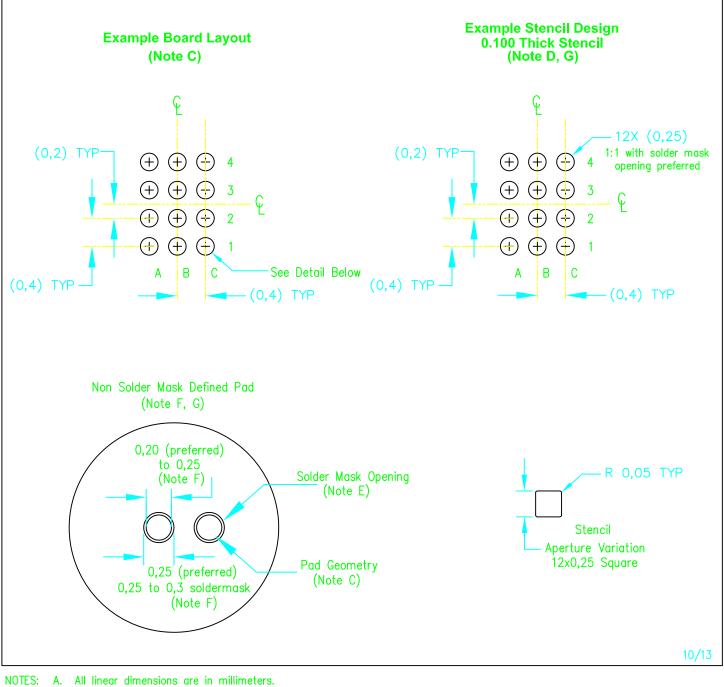
www.ti.com


ÈXAS

SLLSEH9A-OCTOBER 2013-REVISED OCTOBER 2013

REVISION HISTORY

Changes	from	Original	(October	2013)	to	Revision	Α
enangee		enginai	(0000000	,			


•	Changed text in the DESCRIPTION From: TPD1S414 waits 15 ms before turning ON the nFET To: TPD1S414 waits 20 ms before turning ON the nFET	1
•	Deleted Peak input current on V _{BUS_CON} pin, I _{BUS} from the ABSOLUTE MAXIMUM RATINGS table	3
•	Deleted Continuous forward current through the FET body diode, I _{DIODE} from the ABSOLUTE MAXIMUM RATINGS table	3
•	Added Voltage on ACK pin to the ABSOLUTE MAXIMUM RATINGS table	3
•	Added values to the THERMAL INFORMATION table	3
•	Added Continuous current on $V_{BUS_{CON}}$ and $V_{BUS_{SYS}}$ pins to the RECOMMENDED OPERATING CONDITIONS table	4
•	Added Continuous forward current through the FET body diode, I _{DIODE} to the RECOMMENDED OPERATING CONDITIONS table	4
•	Changed the I _{HOST_LEAK} MAX value From: 160 To: 200 µA in the SUPPLY CURRENT CONSUMPTION table	4
•	Changed horizontal axis labeling on Figure 6	6
•	Deleted graphs: Enabling the Load Switch, Connecting V _{BUS_CON} , and OVP Operation from the TIMING DIAGRAMS section	8
•	Changed Figure 10	9
•	Added text to the APPLICATION INFORMATION section	9

YZ (R-DSBGA-N12)

(Pb-Free Solder Spheres)

DIE-SIZE BALL GRID ARRAY

- A. An infear dimensions are in minimeters.
 B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations.
 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
 - F. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Wafer Chip Scale Packages, Texas Instruments Literature No. SBVA017 and also the Product Data Sheet for specific thermal information, via requirements, and recommended routing guidelines. These documents are available at www.ti.com <htp://www.ti.com>.
 - G. Placement force during assembly must be kept below 30g per solder sphere.

1-Nov-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPD1S414YZR	ACTIVE	DSBGA	ΥZ	12	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	RH414	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

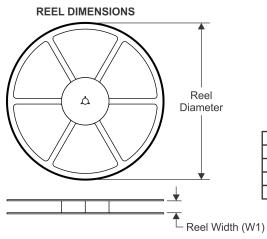
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

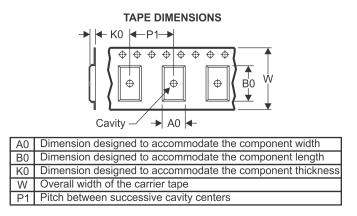
(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM


1-Nov-2013

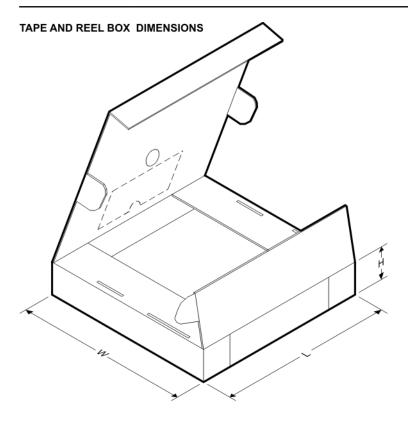

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPD1S414YZR	DSBGA	YZ	12	3000	180.0	8.4	1.5	1.99	0.75	4.0	8.0	Q2
TPD1S414YZR	DSBGA	ΥZ	12	3000	178.0	9.2	1.49	1.99	0.75	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

13-Sep-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPD1S414YZR	DSBGA	YZ	12	3000	182.0	182.0	17.0
TPD1S414YZR	DSBGA	YZ	12	3000	220.0	220.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments: TPD1S414YZR