

Sample &

Buy

TPS22969

SLVSCJ7A - MARCH 2014 - REVISED MARCH 2014

TPS22969 5.5-V, 6-A, 4.4-mΩ On-Resistance Load Switch

Technical

Documents

Features

- Integrated Single Channel Load Switch
- VBIAS Voltage Range: 2.5V to 5.5V
- VIN Voltage Range: 0.8V to 5.5V
- Ultra Low RON Resistance
 - $R_{ON} = 4.4$ -m Ω at $V_{IN} = 1.05$ -V ($V_{BIAS} = 5$ V)
- 6A Maximum Continuous Switch Current
- Low Quiescent Current (20 μ A (typ) for V_{BIAS} = 5V)
- Low Shutdown Current (1 μ A (typ) for V_{BIAS} = 5V)
- Low Control Input Threshold Enables Use of 1.2-V or Higher GPIO
- Controlled and Fixed Slew Rate Across V_{BIAS} and V_{IN}
 - t_R = 599µs at V_{IN} = 1.05V (V_{BIAS} = 5V)
- Quick Output Discharge (QOD)
- SON 8-Terminal Package with Thermal Pad
- ESD Performance Tested per JESD 22
 - 2kV Human-Body Model (HBM)
 - 1kV Charged-Device Model (CDM)

2 Applications

- Ultrabook[™]/Notebooks
- Desktop PC
- Industrial PC
- Chromebook
- Servers
- Set-top Boxes
- **Telecom Systems**
- Tablet PC

Simplified Schematic 4

Typical Application: driving high current core rails for a processor

3 Description

Tools &

Software

The TPS22969 is a small, ultra-low R_{ON}, single channel load switch with controlled turn on. The device contains an N-channel MOSFET that can operate over an input voltage range of 0.8-V to 5.5-V and can support а maximum continuous current of 6-A.

Support &

Community

...

The combination of ultra-low RON and high current capability of the device makes it ideal for driving processor rails with very tight voltage dropout tolerances. The controlled rise time of the device greatly reduces inrush current caused by large bulk load capacitances, thereby reducing or eliminating power supply droop. The switch can be independently controlled via the ON terminal, which is capable of interfacing directly with low-voltage control signals originating from microcontrollers or low voltage discrete logic. The device further reduces the total solution size by integrating a 224- Ω pull-down resistor for quick output discharge (QOD) when the switch is turned off.

The TPS22969 is available in a small 3mm x 3mm SON-8 package (DNY). The DNY package integrates a thermal pad which allows for high power dissipation in high current and high temperature applications. The device is characterized for operation over the free-air temperature range of -40°C to 85°C.

Device Information

ORDER NUMBER	PACKAGE	BODY SIZE
TPS22969DNY	WSON (8)	3mm × 3mm

Table of Contents

1	Feat	tures 1
2	Арр	lications 1
3	Des	cription 1
4	Sim	plified Schematic1
5	Rev	ision History 2
6	Terr	ninal Configuration and Functions
7	Spe	cifications 3
	7.1	Absolute Maximum Ratings 3
	7.2	Handling Ratings 4
	7.3	Recommended Operating Conditions 4
	7.4	Thermal Information 4
	7.5	Electrical Characteristics 5
	7.6	Electrical Characteristics 6
	7.7	Switching Characteristics 7
	7.8	Typical Characteristics 9
8	Deta	ailed Description 14

5 Revision History

Changes from Original (February 2014) to Revision A

Product Folder Links:	TPS22969

	8.1	Overview	14
	8.2	Functional Block Diagram	14
	8.3	Feature Description	15
9	Арр	lications and Implementation	16
	9.1	Application Information	16
	9.2	Typical Application	16
10	Pow	ver Supply Recommendations	19
11	Lay	out	19
	11.1	Layout Guidelines	19
		Layout Example	
12	Dev	ice and Documentation Support	21
	12.1	Trademarks	21
	12.2	Electrostatic Discharge Caution	21
	12.3	Glossary	21
13	Mec	hanical, Packaging, and Orderable	
		rmation	21

Copyright © 2014, Texas Instruments Incorporated

Texas
INSTRUMENTS

www.ti.com

Page

6 Terminal Configuration and Functions

Top View

Bottom View

Terminal Functions

٦	TERMINAL	I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
VIN	1, 2	I	Switch input. Place ceramic bypass capacitor(s) between this terminal and GND. See the Detailed Description section for more information.
VIN	Exposed thermal Pad	I	Switch input. Place ceramic bypass capacitor(s) between this terminal and GND. See the Detailed Description section for more information.
VBIAS	3	I	Bias voltage. Power supply to the device.
ON	4	I	Active high switch control input. Do not leave floating.
GND	5	-	Ground.
VOUT	6, 7, 8	0	Switch output. Place ceramic bypass capacitor(s) between this terminal and GND. See the Detailed Description section for more information.

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

		MIN	MAX	UNIT
V _{IN}	Input voltage range	-0.3	6	V
V _{BIAS}	Bias voltage range	-0.3	6	V
V _{OUT}	Output voltage range	-0.3	6	V
V _{ON}	ON terminal voltage range	-0.3	6	V
I _{MAX}	Maximum Continuous Switch Current		6	А
I _{PLS}	Maximum Pulsed Switch Current, pulse < 300-µs, 2% duty cycle		8	А
T _A	Operating free-air temperature range	-40	85	°C
TJ	Maximum junction temperature		125	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

		MIN	MAX	UNIT
T _{STG}	Storage temperature range	-65	150	°C
T _{LEAD}	Maximum lead temperature (10-s soldering time)		300	°C
V _{ESD} ⁽¹⁾	Human-Body Model (HBM) ⁽²⁾		2	kV
VESD	Charged-Device Model (CDM) ⁽³⁾		1	kV

(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in to the device.

(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{IN}	Input voltage range		0.8	V _{BIAS}	V
V _{BIAS}	Bias voltage range		2.5	5.5	V
V _{ON}	ON voltage range		0	5.5	V
V _{OUT}	Output voltage range			V _{IN}	V
V _{IH, ON}	High-level voltage, ON	$V_{BIAS} = 2.5V$ to $5.5V$	1.2	5.5	V
V _{IL, ON}	Low-level voltage, ON	V_{BIAS} = 2.5V to 5.5V	0	0.5	V
C _{IN}	Input Capacitor		1 ⁽¹⁾		μF

(1) Refer to Detailed Description section.

7.4 Thermal Information

		TPS22969	
	THERMAL METRIC ⁽¹⁾	DNY 8 TERMINALS	UNIT
R_{\thetaJA}	Junction-to-ambient thermal resistance	44.6	
R _{0JCtop}	Junction-to-case (top) thermal resistance	44.4	
$R_{\theta JB}$	Junction-to-board thermal resistance	17.6	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	0.4	C/VV
Ψ _{JB}	Junction-to-board characterization parameter	17.4	
R _{0JCbot}	Junction-to-case (bottom) thermal resistance	1.1	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

www.ti.com

7.5 Electrical Characteristics

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature $-40^{\circ}C \leq T_A \leq 85^{\circ}C$ (Full) and $V_{BIAS} = 5.0V$. Typical values are for $T_A = 25^{\circ}C$ (unless otherwise noted).

	PARAMETER	TEST CO	NDITIONS	T _A	MIN	TYP	MAX	UNIT
CURRENT	TS AND THRESHOLDS						1	
I _{Q, VBIAS}	V _{BIAS} quiescent current	$I_{OUT} = 0, V_{IN} = V_{BIAS}$ $V_{ON} = 5.0V$	<u>.</u>	Full		20.4	26.0	μA
I _{SD, VBIAS}	V _{BIAS} shutdown current	$V_{ON} = 0V, V_{OUT} = 0V$	V	Full		1.1	1.5	μA
			$V_{IN} = 5.0V$				0.1	
			V _{IN} = 3.3V] [0.1	
I _{SD, VIN}	VIN shutdown current	$V_{ON} = 0V,$ $V_{OUT} = 0V$	V _{IN} = 1.8V	Full			0.1	μA
		V _{OUT} = 0V	V _{IN} = 1.05V				0.1	
			$V_{IN} = 0.8V$				0.1	
I _{ON}	ON terminal leakage current	V _{ON} = 5.5V		Full			0.1	μA
V _{HYS, ON}	ON terminal hysteresis	$V_{BIAS} = V_{IN}$		25°C		113		mV
	NCE CHARACTERISTICS			++				
		I _{OUT} = -200mA,		25°C		4.4	5.0	
			$V_{IN} = 5.0V$	Full			5.6	mΩ
				25°C		4.4	5.0	-
			V _{IN} = 3.3V	Full			5.6	mΩ
			V _{IN} = 2.5V	25°C		4.4	5.0	
				Full			5.6	mΩ
D	0	$V_{BIAS} = 5.0V$		25°C		4.4	5.0	
R _{ON}	On-state resistance		V _{IN} = 1.8V	Full			5.6	mΩ
				25°C		4.4	5.0	
			V _{IN} = 1.05V	Full			5.6	mΩ
				25°C		4.4	5.0	
			$V_{IN} = 0.8V$	Full			5.6	mΩ
		$I_{OUT} = -6A,$ $V_{BIAS} = 5.0V$	V _{IN} = 1.05V	Full		4.6	5.8 ⁽¹⁾	mΩ
R _{PD}	Output pulldown resistance	$V_{IN} = 5.0V, V_{ON} = 0V$	V, V _{OUT} = 1V	Full		224	233	Ω

(1) Parameter verified by design and characterization, but not tested in production.

SLVSCJ7A-MARCH 2014-REVISED MARCH 2014

www.ti.com

7.6 Electrical Characteristics

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature $-40^{\circ}C \le T_A \le 85^{\circ}C$ (Full) and $V_{BIAS} = 2.5V$. Typical values are for $T_A = 25^{\circ}C$ unless otherwise noted.

	PARAMETER	TEST CONE	DITIONS	TA	MIN	TYP	MAX	UNIT
CURRENT	S AND THRESHOLDS			1				
I _{Q, VBIAS}	V _{BIAS} quiescent current	$I_{OUT} = 0, V_{IN} = V_{BIAS}, V_{ON} = 5.0V$		Full		9.9	12.5	μA
I _{SD, VBIAS}	V _{BIAS} shutdown current	$V_{ON} = 0V, V_{OUT} = 0V$		Full		0.5	0.65	μA
			V _{IN} = 2.5V				0.1	
	V abutdown ourront	$V_{ON} = 0V,$	$V_{IN} = 1.8V$	Full			0.1	
I _{SD, VIN}	V _{IN} shutdown current	$V_{OUT} = 0V$	$V_{IN} = 1.05V$				0.1	μA
			$V_{IN} = 0.8V$				0.1	
I _{ON}	ON terminal input leakage current	V _{ON} = 5.5V		Full			0.1	μA
V _{HYS, ON}	ON terminal hysteresis	$V_{BIAS} = V_{IN}$		25°C		83		mV
RESISTAN	ICE CHARACTERISTICS						,	
				25°C		4.7	5.3	
			V _{IN} =2.5V	Full			6.0	mΩ
				25°C		4.6	5.2	0
D	On state resistance	I _{OUT} = -200mA,	V _{IN} =1.8V	Full			5.8	mΩ
R _{ON}	On-state resistance	$V_{BIAS} = 2.5V$		25°C		4.5	5.1	0
			V _{IN} =1.05V	Full			5.7	mΩ
		V _{IN} =	N/ 0.0)/	25°C		4.5	5.1	
			$V_{IN} = 0.8V$	Full			5.7	mΩ
R _{PD}	Output pulldown resistance	$V_{IN} = 2.5V, V_{ON} = 0V,$	V _{OUT} = 1V	Full		224	233	Ω

7.7 Switching Characteristics

Refer to the timing test circuit in Figure 1 (unless otherwise noted) for references to external components used for the test condition in the switching characteristics table. Switching characteristics shown below are only valid for the power-up sequence where VIN and VBIAS are already in steady state condition before the ON terminal is asserted high.

	PARAMETER	TEST CONDITION	MIN TYP	MAX UNIT
V _{IN} = \$	5V, V _{ON} = V _{BIAS} = 5V, T _A = 25ºC (unless of	herwise noted)		
t _{ON}	Turn-on time		2397	
t _{OFF}	Turn-off time		4	
t _R	V _{OUT} rise time	$R_{L} = 10\Omega, C_{L} = 0.1\mu F$	2663	μs
t _F	V _{OUT} fall time		2	
t _D	Delay time		1009	
V _{IN} = '	1.05V, V _{ON} = V _{BIAS} = 5V, T _A = 25⁰C (unless	s otherwise noted)		
t _{ON}	Turn-on time		1064	
t _{OFF}	Turn-off time		4	
t _R	V _{OUT} rise time	$R_L = 10\Omega, \ C_L = 0.1 \mu F$	599	μs
t _F	V _{OUT} fall time		2	
t _D	Delay time		727	
V _{IN} = 0	$0.8V, V_{ON} = V_{BIAS} = 5V, T_A = 25^{\circ}C$ (unless	otherwise noted)		
t _{ON}	Turn-on time		981	
t _{OFF}	Turn-off time		4	
t _R	V _{OUT} rise time	$R_{L} = 10\Omega, C_{L} = 0.1\mu F$	500	μs
t _F	V _{OUT} fall time		2	
t _D	Delay time		714	
$V_{IN} = 2$	$2.5V, V_{ON} = 5V, V_{BIAS} = 2.5V, T_A = 25^{\circ}C$ (u	nless otherwise noted)		
t _{ON}	Turn-on time		1576	
t _{OFF}	Turn-off time		8	
t _R	V _{OUT} rise time	$R_L = 10\Omega, C_L = 0.1\mu F$	1372	μs
t _F	V _{OUT} fall time		2	
t _D	Delay time		865	
V _{IN} = '	$1.05V, V_{ON} = 5V, V_{BIAS} = 2.5V, T_A = 25^{\circ}C$ (1	unless otherwise noted)		
t _{ON}	Turn-on time		1080	
t _{OFF}	Turn-off time		8	
t _R	V _{OUT} rise time	$R_L = 10\Omega, C_L = 0.1\mu F$	604	μs
t _F	V _{OUT} fall time		2	
t _D	Delay time		738	
$V_{IN} = 0$	$0.8V, V_{ON} = 5V, V_{BIAS} = 2.5V, T_A = 25^{\circ}C$ (u	nless otherwise noted)	1	
t _{ON}	Turn-on time		994	
t _{OFF}	Turn-off time		8	
t _R	V _{OUT} rise time	$R_L = 10\Omega, C_L = 0.1\mu F$	502	μs
t _F	V _{OUT} fall time		2	
t _D	Delay time		723	1

Texas Instruments

www.ti.com

(A) Rise and fall times of the control signal is 100ns.

7.8 Typical Characteristics

TPS22969

SLVSCJ7A-MARCH 2014-REVISED MARCH 2014

www.ti.com

Typical Characteristics (continued)

Typical Characteristics (continued)

TPS22969 SLVSCJ7A – MARC<u>H 2014 – REVISED MARCH 2014</u>

www.ti.com

Typical Characteristics (continued)

Typical Characteristics (continued)

Submit Documentation Feedback

TEXAS INSTRUMENTS

8 Detailed Description

8.1 Overview

The device is a 5.5V, 6A load switch in a 8-terminal SON package. To reduce voltage drop for low voltage and high current rails, the device implements an ultra-low resistance N-channel MOSFET which reduces the drop out voltage through the device.

The device has a controlled and fixed slew rate which helps reduce or eliminate power supply droop due to large inrush currents. During shutdown, the device has very low leakage currents, thereby reducing unneccessary leakages for downstream modules during standby. Integrated control logic, driver, charge pump, and output discharge FET eliminates the need for any external components, which reduces solution size and BOM count.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 On/off Control

The ON terminal controls the state of the load switch, and asserting the terminal high (active high) enables the switch. The ON terminal is compatible with standard GPIO logic threshold and can be used with any microcontroller or discrete logic with 1.2-V or higher GPIO voltage. This terminal cannot be left floating and must be tied either high or low for proper functionality.

8.3.2 Input Capacitor (C_{IN})

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1- μ F ceramic capacitor, C_{IN}, placed close to the terminals, is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop in high-current application. When switching heavy loads, it is recommended to have an input capacitor 10 times higher than the output capacitor to avoid excessive voltage drop; however, a 10 to 1 ratio for capacitance is not required for proper functionality of the device, but a ratio smaller than 10 to 1 (such as 1 to 1) could cause a V_{IN} dip upon turn-on due to inrush currents based on external factor such as board parasitics and output bulk capacitance.

8.3.3 Output Capacitor (C_L)

Due to the integrated body diode in the N-channel MOSFET, a C_{IN} greater than C_L is highly recommended. A C_L greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from VOUT to VIN. A C_{IN} to C_L ratio of 10 to 1 is recommended for minimizing V_{IN} dip caused by inrush currents during startup, however a 10 to 1 ratio for capacitance is not required for proper functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause a V_{IN} dip upon turn-on due to inrush currents based on external factor such as board parasitics and output bulk capacitance.

8.3.4 V_{IN} and V_{BIAS} Voltage Range

For optimal R_{ON} performance, make sure $V_{IN} \le V_{BIAS}$. The device may still be functional if $V_{IN} > V_{BIAS}$ but it will exhibit R_{ON} greater than what is listed in the Electrical Characteristics table. See Figure 28 for an example of a typical device. Notice the increasing R_{ON} as V_{IN} increases. Be sure to never exceed the maximum voltage rating for V_{IN} and V_{BIAS}. Performance of the device is not guaranteed for V_{IN} > V_{BIAS}.

Figure 28. R_{ON} vs V_{IN} ($V_{IN} > V_{BIAS}$)

(1)

The VIN to VOUT voltage drop in the device is determined by the R_{ON} of the device and the load current. The R_{ON} of the device depends upon the V_{IN} and V_{BIAS} conditions of the device. Refer to the R_{ON} specification of the device in the Electrical Characteristics table of this datasheet. Once the R_{ON} of the device is determined based upon the V_{IN} and V_{BIAS} conditions, use Equation 1 to calculate the VIN to VOUT voltage drop:

$$\Delta V = I_{LOAD} \times R_{ON}$$

where

16

- ΔV = voltage drop from VIN to VOUT
- $I_{I,OAD} = load current$
- R_{ON} = On-resistance of the device for a specific V_{IN} and V_{BIAS} combination

An appropriate I_{LOAD} must be chosen such that the I_{MAX} specification of the device is not violated.

Applications and Implementation

9.1 Application Information

This section will highlight some of the design considerations when implementing this device in various applications. A PSPICE model for this device is also available in the product page of this device on www.ti.com for further aid.

9.2 Typical Application

This application demonstrates how the TPS22969 can be used to power downstream modules with large capacitances. The example below is powering a 100-uF capacitive output load.

9.2.1 Design Requirements

For this design example, use the following as the input parameters.

DESIGN PARAMETER	EXAMPLE VALUE						
V _{IN}	1.05V						
V _{BIAS}	5.0V						
Load current	6A						

Table 1. Design Parameters

9.2.2 Detailed Design Procedure

To begin the design process, the designer needs to know the following:

- VIN voltage
- **VBIAS** voltage
- Load current

VIN to VOUT Voltage Drop 9.2.2.1

9.2.2.2 Inrush Current

To determine how much inrush current will be caused by the C_L capacitor, use Equation 2:

$$I_{\text{INRUSH}} = C_{\text{L}} \times \frac{dV_{\text{OUT}}}{dt}$$

where

- I_{INRUSH} = amount of inrush caused by C_L
- C_L = capacitance on VOUT
- dt = time it takes for change in V_{OUT} during the ramp up of VOUT when the device is enabled
- dV_{OUT} = change in V_{OUT} during the ramp up of VOUT when the device is enabled

An appropriate C_L value should be placed on VOUT such that the I_{MAX} and I_{PLS} specificiations of the device are not violated.

Figure 30. Inrush current ($V_{BIAS} = 5V$, $V_{IN} = 1.05V$, $C_L = 100\mu$ F)

9.2.2.3 Thermal Considerations

The maximum IC junction temperature should be restricted to 125° C under normal operating conditions. To calculate the maximum allowable dissipation, $P_{D(max)}$ for a given output current and ambient temperature, use Equation 3.

$$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = \frac{\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}}{\boldsymbol{\theta}_{\mathsf{J}\mathsf{A}}}$$

where

- P_{D(max)} = maximum allowable power dissipation
- $T_{J(max)}$ = maximum allowable junction temperature (125°C for the TPS22969)
- T_A = ambient temperature of the device
- Θ_{JA} = junction to air thermal impedance. See Thermal Information section. This parameter is highly dependent upon board layout.

TPS22969

SLVSCJ7A - MARCH 2014 - REVISED MARCH 2014

(3)

TPS22969

SLVSCJ7A-MARCH 2014-REVISED MARCH 2014

www.ti.com

INSTRUMENTS

Texas

9.2.3 Application Curves

10 Power Supply Recommendations

The device is designed to operate from a V_{BIAS} range of 2.5-V to 5.5-V and V_{IN} range of 0.8-V to 5.5-V. This supply must be well regulated and placed as close to the device terminal as possible with the recommended 1µF bypass capacitor. If the supply is located more than a few inches from the device terminals, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 10-µF may be sufficient.

11 Layout

11.1 Layout Guidelines

- VIN and VOUT traces should be as short and wide as possible to accommodate for high current.
- Use vias under the exposed thermal pad for thermal relief for high current operation.
- The VIN terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical
 recommended bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor should be
 placed as close to the device terminals as possible.
- The VOUT terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is one-tenth of the VIN bypass capacitor of X5R or X7R dielectric rating. This capacitor should be placed as close to the device terminals as possible.
- The VBIAS terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 0.1-μF ceramic with X5R or X7R dielectric.

TEXAS INSTRUMENTS

www.ti.com

11.2 Layout Example

() VIA to VIN Plane

Figure 39. Recommended Board Layout

12 Device and Documentation Support

12.1 Trademarks

Ultrabook is a trademark of Intel.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

1-Jul-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS22969DNYR	ACTIVE	WSON	DNY	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	969A0	Samples
TPS22969DNYT	ACTIVE	WSON	DNY	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	969A0	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

1-Jul-2014

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22969DNYR	WSON	DNY	8	3000	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
TPS22969DNYT	WSON	DNY	8	250	180.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

28-Mar-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22969DNYR	WSON	DNY	8	3000	370.0	355.0	55.0
TPS22969DNYT	WSON	DNY	8	250	195.0	200.0	45.0

DNY0008A

PACKAGE OUTLINE

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

DNY0008A

EXAMPLE BOARD LAYOUT

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DNY0008A

EXAMPLE STENCIL DESIGN

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments: TPS22969DNYR TPS22969DNYT